JPS63214188A - Production of amino acid decarboxylation product and apparatus therefor - Google Patents

Production of amino acid decarboxylation product and apparatus therefor

Info

Publication number
JPS63214188A
JPS63214188A JP4744787A JP4744787A JPS63214188A JP S63214188 A JPS63214188 A JP S63214188A JP 4744787 A JP4744787 A JP 4744787A JP 4744787 A JP4744787 A JP 4744787A JP S63214188 A JPS63214188 A JP S63214188A
Authority
JP
Japan
Prior art keywords
amino acid
reaction
raw material
reaction solution
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4744787A
Other languages
Japanese (ja)
Other versions
JPH0545236B2 (en
Inventor
Masahiko Ishida
昌彦 石田
Tetsuo Yamaguchi
哲男 山口
Toshiki Mutsukushi
六串 俊己
Yusaku Nishimura
勇作 西村
Setsuo Saito
斉藤 節雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4744787A priority Critical patent/JPS63214188A/en
Publication of JPS63214188A publication Critical patent/JPS63214188A/en
Publication of JPH0545236B2 publication Critical patent/JPH0545236B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain an amino acid decarboxylation product useful as medicines in high purity and concentration, by adding immobilized amino acid decarboxylate to a raw material amino acid and reacting both within a suitable action pH region. CONSTITUTION:Immobilized particles of amino acid decarboxylase are introduced into a reaction vessel 5 and held therein and a raw material solution 1 of an amino acid, such as dibasic amino acid, is added through a raw material transfer pipe 3 and reacted until the pH attains <=6.5 which is an enzymic suitable action pH range. The raw material is successively added so as to attain the total concentration of a monobasic acid which is a reaction product substance and raw material amino acids attains >=1wt.%. A slurry of the raw material amino acid in a concentration corresponding to the concentration of the product substance is then fed by a raw material transfer pump 4 drivably connected to a pH sensor 8 and pH automatic regulator 9 and a reaction solution 6 in an equal volume is taken out by a reaction solution transfer pipe 10 to carry out continuous operation. The resultant reaction solution is subsequently passed through a reaction solution concentrator 11 and dryer 13 to recover a monobasic amino acid which is a dried product 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アミノ酸脱炭酸生成物の製造方法及び製造装
置に係り、特に基質アミノ酸から固定化アミノ酸脱炭酸
酵素により脱炭酸生成物を得るに好適な製造方法及び製
造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and apparatus for producing amino acid decarboxylated products, and in particular to a method and apparatus for producing decarboxylated products from a substrate amino acid using an immobilized amino acid decarboxylase. The present invention relates to a suitable manufacturing method and manufacturing apparatus.

〔従来の技術〕[Conventional technology]

アミノ酸の脱炭酸生成物、例えばT−アミノ酪酸は医薬
用に使用されており、現在化学合成法により製造されて
いる。
Decarboxylation products of amino acids, such as T-aminobutyric acid, are used medicinally and are currently produced by chemical synthesis methods.

本発明者らは、酵素反応を利用した実用性の高い製造方
法、すなわち、高濃度でかつ純度の高い脱炭酸生成物を
含む反応液を得ることができる製造方法の発明を目的と
し研究した。
The present inventors conducted research with the aim of inventing a highly practical production method that utilizes an enzymatic reaction, that is, a production method that can obtain a reaction solution containing a highly concentrated and highly purified decarboxylation product.

酵素によるアミノ酸の脱炭酸反応の存在は、すでに知ら
れており、各反応に対応する酵素のいくつかは植物及び
微生物から分離されている。これらについては、ジャー
ナル・バイオロジカル・ケミストリー、第206巻(1
954年) p215〜219.  ジャーナル・バイ
オロジカル・ケミストリー、第235巻(1960年)
p1649〜1652.ジャーナル・バイオロジカル・
ケミストリー、第235巻(1960年)p1653〜
1657.バイオケミカル・ジャーナル、第62巻。
The existence of amino acid decarboxylation reactions by enzymes is already known, and several enzymes corresponding to each reaction have been isolated from plants and microorganisms. These are discussed in Journal Biological Chemistry, Volume 206 (1).
954) p215-219. Journal Biological Chemistry, Volume 235 (1960)
p1649-1652. Journal Biological
Chemistry, Volume 235 (1960) p1653~
1657. Biochemical Journal, Volume 62.

p301〜303 (Journal Biologi
cal Chemistry+206゜p215.19
54年+ p215〜219. Journal  B
iologicalChemistry、235.、1
960年、p1649〜1652.JournalBi
ological Chemistry+ 235.+
 1960年、 p1653〜1657、 Bioch
emical Journal、62. p301(1
956年))において論じられている。
p301-303 (Journal Biology
cal Chemistry+206°p215.19
54+ p215-219. Journal B
iological chemistry, 235. ,1
960, p1649-1652. JournalBi
Logical Chemistry+ 235. +
1960, p1653-1657, Bioch
chemical Journal, 62. p301(1
956)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの酵素は作用pH域が狭く、かつ、脱炭
酸生成物は水への溶解性が極めて高く、吸湿性で結晶化
しにくい。さらに、公知の方法は、希薄な基質濃度でか
つpH緩衝液存在下でのみ行っており、反応後、大がか
りな濃縮操作や、化学合成法と同様に反応後のpH緩衝
剤や中和剤を除去し生成物を分離精製することが必要で
ある。
However, these enzymes have a narrow operating pH range, and the decarboxylated products have extremely high solubility in water, are hygroscopic, and are difficult to crystallize. Furthermore, known methods are carried out only at dilute substrate concentrations and in the presence of pH buffers, and require extensive concentration operations and the use of pH buffers and neutralizing agents after the reaction, similar to chemical synthesis methods. It is necessary to remove and separate and purify the product.

本発明者らは、酵素を溶液状態で、かつ高濃度の基質溶
液と、緩衝液の存在下や中和剤の添加なしに接触させ、
脱炭酸反応を試みた。しかし、上記条件下では、酵素は
高濃度基質阻害作用を受け、かつ、反応開始時のpHが
好適pH域にない、ため、酵素が失活し、第1図に示す
ように、反応速度が低下し、効率よく反応させることが
困難であることがわかった。
The present inventors contacted the enzyme in solution with a highly concentrated substrate solution in the presence of a buffer or without the addition of a neutralizing agent,
A decarboxylation reaction was attempted. However, under the above conditions, the enzyme is subject to high concentration substrate inhibition and the pH at the start of the reaction is not in the preferred pH range, so the enzyme is inactivated and the reaction rate is reduced, as shown in Figure 1. It was found that it was difficult to react efficiently.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者らは、pH緩衝液や中和剤の添加なし
に、高濃度の脱炭酸アミノ酸の溶液を得る方法について
鋭意検討した。
Therefore, the present inventors conducted extensive research on a method for obtaining a highly concentrated solution of decarboxylated amino acids without adding a pH buffer or a neutralizing agent.

その結果、アミノ酸脱炭酸酵素を固定化することにより
、上記高濃度基質阻害作用が軽減し、かつ、反応pHが
好適域からある程度はずれていても失活しにくく、pH
安定性が増加することを見い出した(第2図)。固定化
しないフリーの酵素を用い、第3図に示すように緩衝液
や中和剤を添加せずに反応進行に伴う反応液のpH変化
を監視しながら、原料アミノ酸を好適pH域になるよう
に半連続的に供給すれば反応をある程度の期間継続でき
る。しかし、pHの変化によりやがて酵素が失活し、反
応が停止してしまう。しかし、pH変化に対しさらに安
定な固定化酵素を使用することにより、第4図に示すよ
うに反応を継続的に行えることを見い出した。
As a result, by immobilizing amino acid decarboxylase, the above-mentioned high-concentration substrate inhibition effect is reduced, and even if the reaction pH deviates to some extent from the preferred range, it is difficult to deactivate, and the pH
It was found that the stability increased (Figure 2). Using a free enzyme that is not immobilized, as shown in Figure 3, without adding a buffer or neutralizing agent, the raw amino acid was adjusted to the appropriate pH range while monitoring the pH change of the reaction solution as the reaction progressed. If it is supplied semi-continuously, the reaction can be continued for a certain period of time. However, changes in pH eventually deactivate the enzyme and stop the reaction. However, it has been found that by using an immobilized enzyme that is more stable against pH changes, the reaction can be carried out continuously as shown in FIG. 4.

本発明は、上記新規な知見に基づいて、さらに研究を重
ねた結果完成したものであって、その第1番目の発明は
、アミノ酸脱炭酸生成物質の製造方法の発明であっ、て
、「原料アミノ酸に固定化アミノ酸デカルボキシラーゼ
を反応液中で作用させて前記アミノ酸の脱炭酸生成物質
を製造するに当たり、前記原料アミノ酸を、前記反応液
の反応pHが前記固定化アミノ酸デカルボキシラーゼの
好適作用pH域に保持されるように、前記反応液に過不
足な(供給する」ことを特徴とするものであり、 その第2番目の発明は、前記アミノ酸脱炭酸生成物質の
製造方法を直接実施するための、アミノ酸脱炭酸生成物
質製造装置の発明であって、「反応槽内の反応液の混合
機構と、前記反応槽 内の反応液のpHを検出するpH
検出装置と、 前記pH検出装置に連動してpH設定が
できるpH調節装置と、pH調整装置と連動して前記反
応槽へ所要量の原料アミノ酸を供給する原料アミノ酸供
給機構と、反応槽から固定化粒子の流出を防止する粒子
捕捉機構と、反応液のみを槽外に抜き出す機構とを有す
る」ことを特徴とするものである。
The present invention was completed as a result of further research based on the above-mentioned novel findings, and the first invention is the invention of a method for producing an amino acid decarboxylation product. In producing a decarboxylated product of the amino acid by allowing the immobilized amino acid decarboxylase to act on the amino acid in a reaction solution, the raw material amino acid is used in a reaction pH range of the reaction solution suitable for the action of the immobilized amino acid decarboxylase. The second invention is characterized in that the reaction solution is supplied in excess or insufficient amount so that the amino acid decarboxylation product is maintained at , an invention of an apparatus for producing an amino acid decarboxylation product, which includes: a mixing mechanism for a reaction solution in a reaction tank; and a pH for detecting the pH of the reaction solution in the reaction tank.
a detection device, a pH adjustment device that can set pH in conjunction with the pH detection device, a raw material amino acid supply mechanism that supplies a required amount of raw amino acid to the reaction tank in conjunction with the pH adjustment device, and This system is characterized by having a particle trapping mechanism that prevents the outflow of chemical particles, and a mechanism that extracts only the reaction liquid to the outside of the tank.

以下、本発明の内容をさらに詳しく説明する。Hereinafter, the content of the present invention will be explained in more detail.

本発明に適用できる酵素反応の種類は、2塩基性アミノ
酸の脱炭酸反応であれば特に限定されない。例えば、グ
ルタミン酸、アスパラギン酸等からそれぞれ対応する1
塩基性アミノ酸とα位のカルボキシル基起源の炭酸ガス
を生成する脱炭酸反応である。
The type of enzymatic reaction that can be applied to the present invention is not particularly limited as long as it is a decarboxylation reaction of dibasic amino acids. For example, the corresponding 1 from glutamic acid, aspartic acid, etc.
This is a decarboxylation reaction that produces carbon dioxide gas originating from basic amino acids and the carboxyl group at the α-position.

本発明に使用する酵素の起源は、特に限定されない。例
えば、グルタミン酸脱炭酸酵素としては大腸菌などの微
生物起源の酵素でも、カポチャなどの植物起源の酵素で
も使用できる。
The origin of the enzyme used in the present invention is not particularly limited. For example, as the glutamic acid decarboxylase, enzymes originating from microorganisms such as Escherichia coli or enzymes originating from plants such as Kapocha can be used.

固定化方法も特に限定されない。例えば、グルタルアル
デヒドによる共有結合法、ポリアクリルアミドゲルによ
るゲル包括法等、従来公知の方法も十分適用できる。
The immobilization method is also not particularly limited. For example, conventionally known methods such as a covalent bonding method using glutaraldehyde and a gel entrapment method using polyacrylamide gel are also fully applicable.

基質としての原料アミノ酸は、フリーの2塩基アミノ酸
を用いる。前記アミノ酸の形態としては、結晶等の固体
であっても、固体を分散したスラリーであっても、さら
に濃厚溶液であってもよい。
A free dibasic amino acid is used as a raw material amino acid as a substrate. The form of the amino acid may be a solid such as a crystal, a slurry in which a solid is dispersed, or a concentrated solution.

但し、スラリー及び液体は、出来るだけ濃厚であること
が好ましいが、好ましくは1%以上が良い。
However, it is preferable that the slurry and liquid be as thick as possible, preferably 1% or more.

そして、反応液中の原料アミノ酸及び反応生成物の合計
濃度を1%以上の高い濃度に保つことにより、反応生成
物の分離を容易にすることができる。
By maintaining the total concentration of the raw material amino acid and the reaction product in the reaction solution at a high concentration of 1% or more, the reaction product can be easily separated.

pHは、反応すなわち、使用する酵素の特性によって適
宜選択される。一般に脱炭酸反応の好適pHは6以下で
ある。
The pH is appropriately selected depending on the reaction, that is, the characteristics of the enzyme used. Generally, the preferred pH for the decarboxylation reaction is 6 or less.

反応温度も、対応する酵素の熱安定性により適宜選択さ
れる。通常30℃以上で行うことができる。
The reaction temperature is also appropriately selected depending on the thermal stability of the corresponding enzyme. This can usually be carried out at a temperature of 30°C or higher.

30℃以下では反応速度が低く、実用的ではない。If the temperature is below 30°C, the reaction rate is low and it is not practical.

反応pHの検出方法も特に限定されず、従来公知の方法
が十分用いられる。例えば、pH電極による検出が行わ
れる。
The method for detecting the reaction pH is also not particularly limited, and conventionally known methods may be used. For example, detection is performed using a pH electrode.

反応形式は、反応の進行に伴い、炭酸ガスが発生するこ
とと、反応液のpHを均一に調節するため流動層方式が
適している。
As for the reaction type, a fluidized bed type is suitable because carbon dioxide gas is generated as the reaction progresses and the pH of the reaction solution can be uniformly adjusted.

〔作 用〕[For production]

本発明は反応触媒として脱炭酸酵素を固定化した酵素を
用いるので、これにより高濃度基質阻害を防ぎ又は軽減
させることができ、また、反応pHが好適域からある程
度はずれていても酵素が失活しにくくなる。
Since the present invention uses an enzyme in which decarboxylase is immobilized as a reaction catalyst, it is possible to prevent or reduce high concentration substrate inhibition, and the enzyme is inactivated even if the reaction pH deviates from the preferred range to some extent. It becomes difficult to do.

さらに、本発明は反応液中のpHを検出し、反応中にp
H緩緩衝中中和剤の添加なしに、基質である原料アミノ
酸の添加のみで、かつ反応pHを一該固定化酵素の最適
pH域になるように原料アミノ酸を可不足なく添加する
ことにより調整するようにしているので、反応後にpH
1l衝剤や中和剤の除去なしに、反応生成物を得ること
ができる。
Furthermore, the present invention detects the pH in the reaction solution and detects the pH during the reaction.
Adjust the reaction pH by adding as much raw amino acid as possible to the optimal pH range for the immobilized enzyme without adding a neutralizing agent to the H mild buffer, by adding only the raw amino acid as the substrate. After the reaction, the pH
The reaction product can be obtained without removing the 1l buffer or neutralizing agent.

〔実施例〕〔Example〕

まず、本発明のアミノ酸脱炭酸生成物質製造装置の実施
例の概略図に基づいて、本発明の具体的ブスセスフロー
を説明する。
First, a specific process flow of the present invention will be explained based on a schematic diagram of an embodiment of the apparatus for producing an amino acid decarboxylation product of the present invention.

第5図に於いて、原料液1、すなわち、2塩基性アミノ
酸の溶液もしくはスラリーは原料液貯槽2から原料液移
送ポンプ4により原料液移送配管3を経て反応槽5に供
給される。反応槽5の槽内は、目的とする脱炭酸反応に
対応する酵素を固定化した固定化粒子を反応液中に懸垂
させた流動層を形成している。流動化の駆動力としては
、通気、例えば反応により生成する炭酸ガスを循環して
通気することによっても、機械攪拌によって行ってもよ
い。反応液6のpHはpH検出装置8により検出され、
その信号がpH自動調整装置9に送信される。pH自動
調整装置には、あらかじめ、反応の最適pHに入るよう
に原料移送ポンプ4の0n−offを行う上限値、下限
値のいずれか一方、或いは両方が設定されている。反応
の進行により、反応液のpHが変化し、最適域からはず
れた際には、上記のpH自動調整系統により、過不足な
く原料液が供給される0反応中に発生する炭酸ガスは生
成炭酸ガス排出用配管7により反応槽から排出される。
In FIG. 5, a raw material liquid 1, ie, a dibasic amino acid solution or slurry, is supplied from a raw material liquid storage tank 2 to a reaction tank 5 via a raw material liquid transfer pipe 3 by a raw material liquid transfer pump 4. Inside the reaction tank 5, a fluidized bed is formed in which immobilized particles on which an enzyme corresponding to the desired decarboxylation reaction is immobilized are suspended in the reaction liquid. The driving force for fluidization may be aeration, for example, by circulating carbon dioxide gas produced by the reaction, or by mechanical stirring. The pH of the reaction solution 6 is detected by a pH detection device 8,
The signal is transmitted to the pH automatic adjustment device 9. In the automatic pH adjustment device, one or both of an upper limit value and a lower limit value for turning off the raw material transfer pump 4 so as to reach the optimum pH for the reaction is set in advance. As the reaction progresses, the pH of the reaction solution changes and when it deviates from the optimum range, the pH automatic adjustment system described above will supply the raw material solution in just the right amount.The carbon dioxide gas generated during the reaction will be replaced by the produced carbon dioxide. Gas is discharged from the reaction tank through a gas discharge pipe 7.

生成した1塩基性アミノ酸を含む反応液6は反応液移送
配管IOを経て、濃縮袋filに移送され濃縮される。
The reaction solution 6 containing the produced monobasic amino acid is transferred to the concentration bag fil via the reaction solution transfer pipe IO and concentrated.

濃縮反応液はさらに濃縮反応液移送配管12を経て乾燥
装置13により乾燥され乾燥生成物移送配管14を経て
系外に乾燥生成物15として抜き出される。
The concentrated reaction liquid further passes through a concentrated reaction liquid transfer pipe 12, is dried by a drying device 13, and is extracted out of the system as a dry product 15 via a dry product transfer pipe 14.

また、生成物の純度を高めるには、第6図のフローのよ
うに、反応液6をtM縮装置11で濃縮する際析出する
未反応の原料アミノ酸結晶を固液分離装置16で除去し
、反応生成物を含む母液のみを乾燥装置13で乾燥する
こともできる。
In addition, in order to increase the purity of the product, as shown in the flowchart of FIG. 6, unreacted raw material amino acid crystals that are precipitated when the reaction solution 6 is concentrated in the tM condensation device 11 are removed in the solid-liquid separation device 16, It is also possible to dry only the mother liquor containing the reaction product using the drying device 13.

また、第7図に示すように、反応液を濃縮装置11で濃
縮後、冷却装置20で冷却して、未反応アミノ酸結晶を
さらに効率よく除去し、製品の純度を高めることもでき
る。
Furthermore, as shown in FIG. 7, the reaction solution can be concentrated in a concentrator 11 and then cooled in a cooling device 20 to more efficiently remove unreacted amino acid crystals and improve the purity of the product.

さらに、図示はしていないが、反応液からの未反応の原
料アミノ酸の除去をされに十分に行うために、固液分離
装置16と乾燥装置13との中間にイオン交換体充填塔
を配設してもよい。
Furthermore, although not shown, an ion exchanger-packed column is provided between the solid-liquid separation device 16 and the drying device 13 in order to sufficiently remove unreacted raw material amino acids from the reaction solution. You may.

次に、本発明のアミノ酸脱炭酸生成物質製造装置の実施
例の概略図を示す第5図に基づいて、前記装置の操作方
法について述べる。
Next, a method of operating the apparatus will be described based on FIG. 5, which is a schematic diagram of an embodiment of the apparatus for producing an amino acid decarboxylation product of the present invention.

第5図において、まず反応槽5に、アミノ酸脱炭酸酵素
の固定化粒子を所定濃度になる様に水中に懸垂し、攪拌
下で恒温に保持する。次いで、3より原料アミノ酸を所
定pHになるまで添加する。
In FIG. 5, first, immobilized particles of amino acid decarboxylase are suspended in water to a predetermined concentration in a reaction tank 5, and maintained at a constant temperature under stirring. Next, starting material amino acids are added from step 3 until a predetermined pH is reached.

反応が進行し、pHが設定pHよりも上昇するのを待っ
て、順次原料を添加し、所定の生成物濃度になるまで添
加する。所定の生成物濃度に到達後、その生成物濃度に
相当する濃度の原料アミノ酸のスラリーを、pH検出装
置!f8.pH自動調整装置9に連動した供給ポンプ4
により供給すると共に、同容量の反応液を反応液移送配
管10より抜き出すことにより連続的に運転する。
After waiting for the reaction to proceed and the pH to rise above the set pH, raw materials are sequentially added until a predetermined product concentration is reached. After reaching a predetermined product concentration, a slurry of raw material amino acids with a concentration corresponding to the product concentration is passed through a pH detection device! f8. Supply pump 4 linked to pH automatic adjustment device 9
At the same time, the same volume of the reaction liquid is extracted from the reaction liquid transfer pipe 10, thereby operating continuously.

以下、本発明のアミノ酸脱炭酸生成物質の製造方法の実
施例について説明する。
Examples of the method for producing an amino acid decarboxylation product of the present invention will be described below.

実施例1 大腸菌エシヱリシア・コリ起源のL−グルタミン酸脱炭
酸酵素1×105単位を含む水溶液5−とアミノ化シリ
カゲル(φ1n)5−とグルタルアルデヒド3−添加下
で40℃で1時間接触させ、アミノシリカゲル粒子にグ
ルタルアルデヒドを架橋剤としてL−グルタミン酸脱炭
酸酵素を5.3X10’単位固定した。本固定化酵素5
−と水35−を50m(φ30X711m)の円筒形反
応槽に入れ、槽底部に設置した単孔ノズルから液中に反
応槽気相部の気体を200mf/l1linで循環通気
させ、固定化酵素の粒子を流動化させた。反応槽内は4
0℃に恒温化し、かつ反応槽側面にpH電極を設置し、
設定pHを本酵素の最適pHである4、5に設定し、p
H自動調整装置によりpHを自動調整できるようにした
Example 1 An aqueous solution 5-containing 1 x 105 units of L-glutamic acid decarboxylase originating from Escherichia coli, and aminated silica gel (φ1n) 5- were brought into contact at 40°C for 1 hour with the addition of glutaraldehyde 3-. 5.3×10′ units of L-glutamic acid decarboxylase were immobilized on silica gel particles using glutaraldehyde as a crosslinking agent. This immobilized enzyme 5
- and water 35- were placed in a 50 m (φ30 x 711 m) cylindrical reaction tank, and the gas in the gas phase of the reaction tank was circulated into the liquid at 200 mf/l lin through a single-hole nozzle installed at the bottom of the tank to remove the immobilized enzyme. The particles were fluidized. Inside the reaction tank is 4
The temperature was kept constant at 0°C, and a pH electrode was installed on the side of the reaction tank.
Set the pH to 4 or 5, which is the optimum pH for this enzyme, and
The pH can be adjusted automatically using the H automatic adjustment device.

一方、L−グルタミン酸結晶の20%スラリーを調製し
、上記のpH自動調整装置と連動させた供給ポンプによ
り反応槽中にon−off制御により供給した。20時
間経過後に反応液中のγ−アミノ酪酸は平衡濃度13.
9%に達した。反応モル収率は99%であった。
On the other hand, a 20% slurry of L-glutamic acid crystals was prepared and supplied into the reaction tank under on-off control using a supply pump linked to the automatic pH adjustment device. After 20 hours, γ-aminobutyric acid in the reaction solution reached an equilibrium concentration of 13.
It reached 9%. The reaction molar yield was 99%.

本反応液を収集し、50−を10mに減圧濃縮した。This reaction solution was collected, and 50- was concentrated under reduced pressure to 10 m.

生成するL−グルタミン酸の結晶を濾別して濃縮液10
mZを得た0本液を減圧乾燥し、純白の乾燥粉末6.7
g (モル収率98%)を得た。純度は99.5%であ
った。本粉末にはL−グルタミン酸0.5%を含む。
The L-glutamic acid crystals produced are separated by filtration and concentrated liquid 10
The 0 liquid obtained with mZ was dried under reduced pressure to obtain a pure white dry powder of 6.7
g (98% molar yield) was obtained. Purity was 99.5%. This powder contains 0.5% L-glutamic acid.

実施例2 カポチャ起源のL−グルタミン酸脱炭酸酵素2×10S
単位を含む水溶液10−を、下記の3成分を混合した液
と混合し、ゾル状物30gを得た。
Example 2 L-glutamic acid decarboxylase derived from Kapocha 2×10S
An aqueous solution 10- containing the unit was mixed with a mixture of the following three components to obtain 30 g of a sol.

A : IN HC/!  24m トリスヒドロキシメチルアミノメタン1.9g蒸溜水 
3.2− Bニアクリルアミド 3g メチレンビスアクリルアミド 0.08gフェリシアン
化カリウム 0.7g 蒸溜水 7WII C:l、4%過硫酸アンモニウム 2−上記ゾルを1.
5酊の間隙を有するガラス壁間に流し入れ、窒素雰囲気
下で、100ルツクスの照明下に15℃、40分間静置
して、厚さ1.5鴎のゲルプレートを調製した。
A: IN HC/! 24m Trishydroxymethylaminomethane 1.9g Distilled water
3.2-B Niacrylamide 3g Methylenebisacrylamide 0.08g Potassium ferricyanide 0.7g Distilled water 7WII C:l, 4% ammonium persulfate 2-The above sol was added to 1.
The gel plate was poured between glass walls having a gap of 5 mm, and allowed to stand at 15° C. for 40 minutes under 100 lux lighting under a nitrogen atmosphere to prepare a gel plate with a thickness of 1.5 mm.

上記ゲルプレートを1鶴角に細断し、L−グルタミン酸
脱炭酸酵素を固定化した粒子を調製した。
The above-mentioned gel plate was cut into small pieces to prepare particles on which L-glutamic acid decarboxylase was immobilized.

本粒子と水120−を200d (φ40X160 t
m)の円筒形反応槽に入れ、槽底部に設置したノズルか
ら液中に反応槽気相部の気体を300m1/lll1n
で循環通気して、固定化酵素の粒子を流動化させた。反
応槽内の温度は40℃に恒温化し、かつ反応槽側面にp
H電極を設置し、設定pHを本酵素の最適pHである4
、4に設定し、pH自動調節装置によりpHを自動調整
できるようにした。
This particle and water 120-200 d (φ40 x 160 t
m) into a cylindrical reaction tank, and the gas in the gas phase of the reaction tank was introduced into the liquid through a nozzle installed at the bottom of the tank at a rate of 300ml/lll1n.
The immobilized enzyme particles were fluidized by circulating aeration. The temperature inside the reaction tank was kept constant at 40°C, and a p
Install the H electrode and set the pH to 4, which is the optimum pH for this enzyme.
, 4, so that the pH could be automatically adjusted using an automatic pH controller.

一方、L−グルタミン酸結晶の25%スラリーを調製し
、上記のpH自動調節装置と連動させた供給ポンプによ
り、反応槽中にon−off 1rlJiにより供給し
た。20時間経過後に反応液のγ−アミノ酪酸は平衡濃
度17.2%に達した。反応モル収率は98%であった
On the other hand, a 25% slurry of L-glutamic acid crystals was prepared and supplied into the reaction tank in an on-off 1rlJi manner using a supply pump linked to the above-mentioned automatic pH controller. After 20 hours, γ-aminobutyric acid in the reaction solution reached an equilibrium concentration of 17.2%. The reaction molar yield was 98%.

本反応液を収集し、200−を100−に減圧濃縮した
。生成するL−グルタミン酸の結晶を濾別して、濃縮液
100−を得た。本液を減圧乾燥し、純白の乾燥粉末2
7.3g(モル収率98%)を得た。純度は99.3%
であった。本粉末にはL−グルタミン酸を0.2%含む
This reaction solution was collected and concentrated under reduced pressure from 200- to 100-. The L-glutamic acid crystals produced were filtered off to obtain a concentrated solution 100-. Dry this solution under reduced pressure to obtain pure white dry powder 2.
7.3 g (molar yield 98%) was obtained. Purity is 99.3%
Met. This powder contains 0.2% L-glutamic acid.

実施例3 嫌気性細菌クロストリジウム・ウエルチイ起源のL−グ
ルタミン酸脱炭酸酵素1. I XIO’単位を含む水
溶液5mZとアミノ化シリカゲル(φ1關)5−とをグ
ルタルアルデヒド3−添加下で40℃、1時間接触させ
、アミノ化シリカゲル粒子にL−グルタミン酸脱炭酸酵
素を3.8X10’単位固定した。
Example 3 L-glutamate decarboxylase originating from the anaerobic bacterium Clostridium weltsii 1. 5 mZ of an aqueous solution containing I 'The unit was fixed.

本固定化酵素5sfと水35−を50d(φ30X71
醋)の円筒形反応槽に入れ、槽底部に設置した単孔ノズ
ルから液中に反応槽気相部の気体を200m1/win
で循環通気させ、固定化酵素の粒子を流動化させた。反
応槽内は40℃に恒温化した。また、反応槽側面にpH
電極を設置し、設定pHを本酵素の最適pHである4、
7に設定し、pH自動調整装置によりpHを自動調整で
きるようにした。
This immobilized enzyme 5sf and water 35-50d (φ30X71
The gas from the gas phase of the reaction tank is poured into the liquid through a single-hole nozzle installed at the bottom of the tank at a rate of 200 m1/win.
Circulating aeration was performed to fluidize the immobilized enzyme particles. The temperature inside the reaction tank was kept constant at 40°C. In addition, the pH on the side of the reaction tank
Install the electrode and set the pH to 4, which is the optimum pH for this enzyme.
7, so that the pH could be automatically adjusted using an automatic pH adjustment device.

一方、L−グルタミン酸結晶の20%スラリーを調製し
、上記のpH自自動調節装色連動させた供給ポンプによ
り反応槽中にon−off制御により供給した。20時
間経過後に反応槽中のγ−アミノ酪酸は平衡濃度13.
9%に達した。反応モル収率は99%であった。
On the other hand, a 20% slurry of L-glutamic acid crystals was prepared and supplied into the reaction tank under on-off control using the supply pump linked to automatic pH adjustment and coloring. After 20 hours, the equilibrium concentration of γ-aminobutyric acid in the reaction tank was 13.
It reached 9%. The reaction molar yield was 99%.

本反応液50m/を10rslに減圧濃縮した。生成す
るL−グルタミン酸の結晶を濾別して濃縮液10m1を
得た。本漬を減圧乾燥し、純白の乾燥粉末6.8g(モ
ル収率97%)を得た。純度は99.5%であった。
50ml of this reaction solution was concentrated under reduced pressure to 10rsl. The L-glutamic acid crystals produced were filtered off to obtain 10 ml of a concentrated solution. Honzuke was dried under reduced pressure to obtain 6.8 g of pure white dry powder (molar yield 97%). Purity was 99.5%.

本粉末にはL−グルタミン酸を0.5%含む。This powder contains 0.5% L-glutamic acid.

実施例4 嫌気性細菌クロストリジウム・ウエルチイ起源のL−ア
スパラギン酸脱炭酸酵素lXl0’単位を含む水溶液5
−とアミノ化シリカゲル(φ1m1)5rslとをグル
タルアルデヒド3−添加下で、40℃、1時間接触させ
、アミノ化シリカゲル粒子にL−グルタミン酸脱炭酸酵
素295単位固定した。
Example 4 Aqueous solution 5 containing lXl0' units of L-aspartate decarboxylase originating from the anaerobic bacterium Clostridium weltsii
- and 5 rsl of aminated silica gel (φ1ml) were brought into contact with each other at 40°C for 1 hour with the addition of 3-glutaraldehyde, and 295 units of L-glutamic acid decarboxylase were immobilized on the aminated silica gel particles.

本固定化酵素5−と水35mZを50m1(φ30X7
1m)の円筒形反応槽に入れ、槽底部に設置した単孔ノ
ズルから液中に反応槽気相部の気体を200m1/mi
nで循環通気させ、固定化酵素の粒子を流動化させた。
This immobilized enzyme 5- and 35 mZ of water were added to 50 m1 (φ30×7
The gas from the gas phase of the reaction tank was poured into the liquid at a rate of 200 m1/mi through a single-hole nozzle installed at the bottom of the tank.
The particles of immobilized enzyme were fluidized by circulating aeration at n.

反応槽内は40℃に恒温化した。また、反応槽側面にp
H電極を設置し、設定pHを本酵素の最適pHである4
、7に設定し、pH自動調整装置によりpHを自動調整
できるようにした。
The temperature inside the reaction tank was kept constant at 40°C. Also, on the side of the reaction tank,
Install the H electrode and set the pH to 4, which is the optimum pH for this enzyme.
, 7, so that the pH could be automatically adjusted using an automatic pH adjustment device.

一方、L−アスパラギン酸結晶の20%スラリーを調製
し、上記のpH自動調整装置と連動させた供給ポンプに
より反応槽中にon−off制御により供給した。20
時間経過後に反応槽中のβ−アラニンは平衡濃度13.
3%に達した。モル反応収率は99%であった。
On the other hand, a 20% slurry of L-aspartic acid crystals was prepared and supplied into the reaction tank under on-off control using a supply pump linked to the automatic pH adjustment device. 20
After a period of time, the equilibrium concentration of β-alanine in the reaction tank was 13.
It reached 3%. The molar reaction yield was 99%.

本反応液50m/を10mFに減圧濃縮した。生成する
L−アスパラギン酸の結晶を濾別して濃縮液10mZを
得た。本漬を減圧乾燥し、純白の乾燥粉末6.5g (
モル収率96%)を得た。純度は79.4%であった。
50ml of this reaction solution was concentrated under reduced pressure to 10mF. The L-aspartic acid crystals produced were filtered off to obtain a concentrated solution 10mZ. Honzuke was dried under reduced pressure, and 6.5g of pure white dry powder (
A molar yield of 96%) was obtained. Purity was 79.4%.

本粉末にはL−アスパラギン酸を力、4%含む。This powder contains 4% L-aspartic acid.

比較例 実施例1で用いた同一ロンドのL−グルタミン酸脱炭酸
酵素5.3X10’単位を0.5 Mクエン酸ソーダ緩
衝液40dを混合した、40mの酵素液を得た。
Comparative Example A 40 m enzyme solution was obtained by mixing 5.3 x 10' units of the same Rondo L-glutamic acid decarboxylase used in Example 1 with 40 d of 0.5 M sodium citrate buffer.

これを実施例1で用いた円筒形反応槽に入れ、同−ta
度のL−グルタミン酸スラリーを同一速度、同一温度で
供給した。攪拌も実施例1と同条件で行った。pHは6
NNaOHを用いてpH4,5に自動調節した。反応槽
から溶出する液は1時間毎に収集し、分子濾過して低分
子画分を反応液として分析に供し、高分子画分を酵素液
と反応槽に戻した。
This was placed in the cylindrical reaction tank used in Example 1, and the same -ta
L-glutamic acid slurry was fed at the same rate and at the same temperature. Stirring was also performed under the same conditions as in Example 1. pH is 6
The pH was automatically adjusted to 4.5 using NNaOH. The liquid eluted from the reaction tank was collected every hour, subjected to molecular filtration, the low molecular weight fraction was used as a reaction liquid for analysis, and the high molecular weight fraction was returned to the reaction tank along with the enzyme solution.

20時間経過後の反応液中のγ−アミノ酪酸濃度を測定
した結果、モル反応収率は5.4%であった。
As a result of measuring the γ-aminobutyric acid concentration in the reaction solution after 20 hours, the molar reaction yield was 5.4%.

本反応液50m1を減圧濃縮し、純白の乾燥粉末11゜
3gを得た。本粉末にはグルタミン酸9.4g、ナトリ
ウムイオン1.5gを含む。純度は3.4%であった。
50 ml of this reaction solution was concentrated under reduced pressure to obtain 11.3 g of pure white dry powder. This powder contains 9.4 g of glutamic acid and 1.5 g of sodium ions. Purity was 3.4%.

実施例1と比較例との比較により明らかなように、本発
明により、中和剤や緩衝剤の使用なしに反応し、収率よ
く純度の高い目的生成物を得ることができる。
As is clear from the comparison between Example 1 and Comparative Example, according to the present invention, the reaction can be carried out without using a neutralizing agent or a buffer, and the target product can be obtained with high yield and high purity.

実施例5 大腸菌起源のジアミノピメリン酸脱炭酸酵素500単位
を含む水溶液5−を実施例1と同じ手法でアミノ化シリ
カゲル粒子に420単位固定した。本粒子を実施例1で
用いた反応槽を用い、同様の操作で、原料液としてジア
ミノピメリン酸10%スラリーを用いてpH6,0,3
8℃で反応させた。20時間後、生成物のし一リジンの
濃度は平衡に達した。
Example 5 An aqueous solution 5- containing 500 units of diaminopimelic acid decarboxylase originating from Escherichia coli was immobilized onto aminated silica gel particles in the same manner as in Example 1 in an amount of 420 units. Using the reaction tank used in Example 1, this particle was subjected to the same operation, and a 10% slurry of diaminopimelic acid was used as the raw material liquid to pH 6,0,3.
The reaction was carried out at 8°C. After 20 hours, the concentration of lysine in the product reached equilibrium.

反応収率は95%であった。The reaction yield was 95%.

本反応液を収集し、50rnlを10−に減圧濃縮した
The reaction solution was collected and 50 rnl was concentrated under reduced pressure to 10-ml.

生成するジアミノピメリン酸の結晶を濾別して、濃縮液
10m1を得た。本漬を減圧乾燥し、純白の乾燥粉末4
.2gを得た(モル収率84%)。純度は98%であっ
た。本粉末にはジアミノピメリン酸を2%含む。
The resulting crystals of diaminopimelic acid were filtered off to obtain 10 ml of a concentrated solution. Honzuke is dried under reduced pressure to produce pure white dry powder 4
.. 2 g was obtained (84% molar yield). Purity was 98%. This powder contains 2% diaminopimelic acid.

〔発明の効果〕〔Effect of the invention〕

T−アミノ酪酸等の有用なアミノ酸を高純度で、かつ、
中和剤やpH緩衝剤を使用せずに合成できる。
Useful amino acids such as T-aminobutyric acid with high purity and
It can be synthesized without using neutralizing agents or pH buffering agents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、固定化しないL−グルタミン酸脱炭酸酵素を
各L−グルタミン酸濃度で反応させた場合のT−アミノ
酪酸濃度とpHの時間経過を観測した図である。 第2図は、固定化したL−グルタミン酸脱炭酸酵素を各
L−グルタミン酸濃度で反応させた場合のγ−アミノ酪
酸濃度とpHの時間経過を観測しただ図である。 第3図は、固定化しないL−グルタミン酸脱炭酸酵素を
用いて、基質のL−グルタミン酸を段階的に添加した際
のT−アミノ酪酸濃度とpHの時間経過を観測した図で
ある。 第4図は、固定化したL−グルタミン酸脱炭酸酵素を用
いて、基質のL−グルタミン酸を単位時間当たり一定の
添加屋で連続的に添加した際のγ−アミノ醋酸濃度とp
Hの時間経過を観測したものである。 第5〜第7図は、本発明のアミノ酸脱炭酸生成物質製造
装置の概略図、及びそれによる本発明のプロセスフロー
を示す図である。 1・・・原料液、2・・・原料液貯槽、3・・・原料液
移送配管、4・・・原料液移送ポンプ、5・・・反応槽
、6・・・反応液、7・・・生成炭酸ガス排出用配管、
8・・・pH検出装置、9・・・pH自動調整装置、1
0・・・反応液移送配管、11・・・反応液:Iil縮
装蓋装置2・・・濃縮反応液移送配管、13・・・乾燥
装置、IA・・・乾燥生成物移送配管、15・・・乾燥
生成物、16・・・固液分離装置、17・・・未反応原
料結晶抜き出し配管、18・・・未反応原料結晶、19
・・・反応生成物濃縮液移送配管、20・・・冷却装置
、21・・・冷却濃縮液移送配管、22・・・反応生成
物濃縮冷却液移送配管
FIG. 1 is a diagram showing the time course of T-aminobutyric acid concentration and pH when reacting unimmobilized L-glutamic acid decarboxylase at various L-glutamic acid concentrations. FIG. 2 is a graph showing the time course of γ-aminobutyric acid concentration and pH when reacting immobilized L-glutamic acid decarboxylase at various L-glutamic acid concentrations. FIG. 3 is a graph showing the time course of T-aminobutyric acid concentration and pH when the substrate L-glutamic acid was added stepwise using unimmobilized L-glutamic acid decarboxylase. Figure 4 shows the concentration and p of γ-aminoacetic acid when the substrate L-glutamic acid was continuously added at a constant rate per unit time using immobilized L-glutamic acid decarboxylase.
This is an observation of the time course of H. 5 to 7 are diagrams showing a schematic diagram of an apparatus for producing an amino acid decarboxylation product of the present invention and a process flow of the present invention thereby. DESCRIPTION OF SYMBOLS 1... Raw material liquid, 2... Raw material liquid storage tank, 3... Raw material liquid transfer piping, 4... Raw material liquid transfer pump, 5... Reaction tank, 6... Reaction liquid, 7...・Piping for discharging generated carbon dioxide gas,
8... pH detection device, 9... pH automatic adjustment device, 1
0... Reaction liquid transfer piping, 11... Reaction liquid: Iil condensation lid device 2... Concentrated reaction liquid transfer piping, 13... Drying device, IA... Dry product transfer piping, 15. ... Dry product, 16... Solid-liquid separation device, 17... Unreacted raw material crystal extraction pipe, 18... Unreacted raw material crystal, 19
...Reaction product concentrate transfer piping, 20...Cooling device, 21...Cooled concentrate transfer pipe, 22...Reaction product concentrate coolant transfer pipe

Claims (1)

【特許請求の範囲】 1、原料アミノ酸に固定化アミノ酸デカルボキシラーゼ
を反応液中で作用させて前記アミノ酸の脱炭酸生成物質
を製造するに当たり、前記原料アミノ酸を、前記反応液
の反応pHが前記固定化アミノ酸デカルボキシラーゼの
好適作用pH域に保持されるように、前記反応液に過不
足なく供給することを特徴とするアミノ酸脱炭酸生成物
質の製造方法。 2、原料アミノ酸が2塩基性アミノ酸であり、アミノ酸
脱炭酸生成物質が1塩基性アミノ酸であることを特徴と
する特許請求の範囲第1項記載のアミノ酸脱炭酸生成物
質の製造方法。 3、固定化アミノ酸デカルボキシラーゼが、その好適作
用pH域がpH6.5以下である固定化2塩基性アミノ
酸デカルボキシラーゼであることを特徴とする特許請求
の範囲第1項又は第2項記載のアミノ酸脱炭酸生成物質
の製造方法。 4、反応pHの保持をpH緩衝液もしくは中和用アルカ
リの使用なしに原料アミノ酸の供給量の調整のみにより
行うことを特徴とする特許請求の範囲第1乃至第3項の
いずれかの項記載のアミノ酸脱炭酸生成物質の製造方法
。 5、原料アミノ酸がL−グルタミン酸であり、固定化ア
ミノ酸デカルボキシラーゼが固定化L−グルタミン酸デ
カルボキシラーゼであり、アミノ酸脱炭酸生成物質がγ
−アミノ酪酸であることを特徴とする特許請求の範囲第
2乃至第4項のいずれかの項記載のアミノ酸脱炭酸生成
物質の製造方法。 6、原料アミノ酸がL−アスパラギン酸であり、固定化
アミノ酸デカルボキシラーゼが固定化L−アスパラギン
酸デカルボキシラーゼであり、アミノ酸脱炭酸生成物質
がβ−アラニンであることを特徴とする特許請求の範囲
第2乃至第4項のいずれかの項記載のアミノ酸脱炭酸生
成物質の製造方法。 7、反応系中にpH電極を設置し、反応液中のpHが固
定化アミノ酸デカルボキシラーゼの好適作用pH域外と
なった際これを検出し、前記検出結果に基づいて原料ア
ミノ酸の所要量をpH自動調整装置と連動させた供給装
置から反応液に供給し、原料アミノ酸の供給により増加
した容積分だけ反応液を系外に抜き出すことを特徴とす
る特許請求の範囲第1項乃至第6項のいずれかの項記載
のアミノ酸脱炭酸生成物質の製造方法。 8、反応液中の原料アミノ酸及び反応生成物の合計濃度
を1%以上の高い濃度に保つことを特徴とする特許請求
の範囲第1乃至第7項のいずれかの項記載のアミノ酸脱
炭酸生成物質の製造方法。 9、反応槽内の反応液の混合機構と、前記反応槽内の反
応液のpHを検出するpH検出装置と、前記pH検出装
置に連動してpH設定ができるpH調整装置と、pH調
整装置と連動して前記反応槽へ所要量の原料アミノ酸を
供給する原料アミノ酸供給機構と、反応槽から固定化粒
子の流出を防止する粒子捕捉機構と、反応液のみを槽外
に抜き出す機構とを有することを特徴とするアミノ酸脱
炭酸生成物製造装置。 10、反応槽の下流に反応液濃縮装置、及び前記反応液
濃縮装置で濃縮された濃縮反応液を乾燥する乾燥装置を
順次連結したことを特徴する特許請求の範囲第9項記載
のアミノ酸脱炭酸生成物製造装置。 11、濃縮装置と乾燥装置の間に、反応液中に残存する
原料アミノ酸の結晶を除去する固液分離装置を有するこ
とを特徴とする特許請求の範囲第10項記載のアミノ酸
脱炭酸生成物製造装置。 12、固液分離装置が原料アミノ酸の晶析に適した温度
まで冷却する機構を有することを特徴とする特許請求の
範囲第11項記載のアミノ酸脱炭酸生成物製造装置。 13、排出された原料アミノ酸の結晶を反応槽もしくは
原料液貯槽に返送する機構を有することを特徴とする特
許請求の範囲第11項または12項記載のアミノ酸脱炭
酸生成物製造装置。 14、固液分離槽と乾燥装置との中間に原料アミノ酸を
選択的に吸着するイオン交換体充填塔を有することを特
徴とする特許請求の範囲第12項記載のアミノ酸脱炭酸
製造装置。
[Scope of Claims] 1. In producing a decarboxylated substance of the amino acid by causing immobilized amino acid decarboxylase to act on the raw material amino acid in a reaction solution, the raw material amino acid is treated with the reaction pH of the reaction solution set to the fixed value. 1. A method for producing an amino acid decarboxylation product, which comprises supplying the reaction solution in just the right amount so as to maintain the pH within the preferred action pH range of amino acid decarboxylase. 2. The method for producing an amino acid decarboxylation product according to claim 1, wherein the raw amino acid is a dibasic amino acid and the amino acid decarboxylation product is a monobasic amino acid. 3. The amino acid according to claim 1 or 2, wherein the immobilized amino acid decarboxylase is an immobilized dibasic amino acid decarboxylase whose preferred operating pH range is pH 6.5 or lower. A method for producing a decarboxylation product. 4. Claims 1 to 3, characterized in that the reaction pH is maintained only by adjusting the supply amount of raw material amino acids without using a pH buffer or a neutralizing alkali. A method for producing an amino acid decarboxylation product. 5. The raw amino acid is L-glutamic acid, the immobilized amino acid decarboxylase is immobilized L-glutamic acid decarboxylase, and the amino acid decarboxylation product is γ
-aminobutyric acid, the method for producing an amino acid decarboxylation product according to any one of claims 2 to 4. 6. Claim No. 6, characterized in that the raw amino acid is L-aspartic acid, the immobilized amino acid decarboxylase is immobilized L-aspartate decarboxylase, and the amino acid decarboxylation product is β-alanine. A method for producing an amino acid decarboxylation product according to any one of items 2 to 4. 7. Install a pH electrode in the reaction system to detect when the pH in the reaction solution is outside the preferred action pH range of the immobilized amino acid decarboxylase, and adjust the required amount of the raw material amino acid to the pH based on the detection result. Claims 1 to 6 are characterized in that the reaction solution is supplied from a supply device linked to an automatic adjustment device, and the reaction solution is drawn out of the system by the volume increased by the supply of the raw material amino acid. A method for producing an amino acid decarboxylation product according to any of the items. 8. Amino acid decarboxylation production according to any one of claims 1 to 7, characterized in that the total concentration of raw material amino acids and reaction products in the reaction solution is maintained at a high concentration of 1% or more. A method of manufacturing a substance. 9. A mixing mechanism for the reaction solution in the reaction tank, a pH detection device that detects the pH of the reaction solution in the reaction tank, a pH adjustment device that can set the pH in conjunction with the pH detection device, and a pH adjustment device. A raw material amino acid supply mechanism that supplies a required amount of raw material amino acids to the reaction tank in conjunction with the reaction tank, a particle trapping mechanism that prevents immobilized particles from flowing out from the reaction tank, and a mechanism that extracts only the reaction solution out of the tank. An apparatus for producing amino acid decarboxylation products characterized by the following. 10. Amino acid decarboxylation according to claim 9, characterized in that a reaction liquid concentration device and a drying device for drying the concentrated reaction liquid concentrated in the reaction liquid concentration device are successively connected downstream of the reaction tank. Product manufacturing equipment. 11. Production of an amino acid decarboxylated product according to claim 10, characterized in that a solid-liquid separation device is provided between the concentration device and the drying device to remove crystals of the raw material amino acid remaining in the reaction solution. Device. 12. The apparatus for producing an amino acid decarboxylated product according to claim 11, wherein the solid-liquid separator has a mechanism for cooling the raw material amino acid to a temperature suitable for crystallization. 13. The amino acid decarboxylation product production apparatus according to claim 11 or 12, characterized by having a mechanism for returning the discharged raw material amino acid crystals to a reaction tank or a raw material liquid storage tank. 14. The amino acid decarboxylation production apparatus according to claim 12, further comprising an ion exchanger packed column for selectively adsorbing raw material amino acids between the solid-liquid separation tank and the drying device.
JP4744787A 1987-03-04 1987-03-04 Production of amino acid decarboxylation product and apparatus therefor Granted JPS63214188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4744787A JPS63214188A (en) 1987-03-04 1987-03-04 Production of amino acid decarboxylation product and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4744787A JPS63214188A (en) 1987-03-04 1987-03-04 Production of amino acid decarboxylation product and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS63214188A true JPS63214188A (en) 1988-09-06
JPH0545236B2 JPH0545236B2 (en) 1993-07-08

Family

ID=12775399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4744787A Granted JPS63214188A (en) 1987-03-04 1987-03-04 Production of amino acid decarboxylation product and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS63214188A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023869A1 (en) * 1994-03-03 1995-09-08 Daicel Chemical Industries, Ltd. Process for producing (r)-2-amino-1-phenylethanol or halogenated derivative thereof, process for producing optically active phenylserine or halogenated derivative thereof, and novel compound 3-(3-chlorophenyl)serine
JP2009159840A (en) * 2007-12-28 2009-07-23 National Institute Of Advanced Industrial & Technology Method for synthesizing 2-pyrrolidone or polyamide 4, n-methyl-2-pyrrolidone, and polyvinylpyrrolidone from biomass
JP2012214496A (en) * 2012-07-20 2012-11-08 National Institute Of Advanced Industrial Science & Technology Method for synthesizing 2-pyrrolidone or polyamide-4,n-methyl-2-pyrrolidone, or polyvinyl pyrrolidone from biomass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132180A (en) * 1974-04-10 1975-10-20
JPS5635991A (en) * 1979-08-31 1981-04-08 Kyowa Hakko Kogyo Co Ltd Preparation of l-alanine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132180A (en) * 1974-04-10 1975-10-20
JPS5635991A (en) * 1979-08-31 1981-04-08 Kyowa Hakko Kogyo Co Ltd Preparation of l-alanine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023869A1 (en) * 1994-03-03 1995-09-08 Daicel Chemical Industries, Ltd. Process for producing (r)-2-amino-1-phenylethanol or halogenated derivative thereof, process for producing optically active phenylserine or halogenated derivative thereof, and novel compound 3-(3-chlorophenyl)serine
US5731175A (en) * 1994-03-03 1998-03-24 Daicel Chemical Industries, Ltd. Method of producing (R)-2-amino-1-phenylethanol and optically active phenylserine and their halogen substituted products using microbes
US5846792A (en) * 1994-03-03 1998-12-08 Daicel Chemical Industries, Ltd. Method of producing (R)-2-amino-1-phenylethanol and opticaly active phenylserine and their halogen substituted products using tyrosine decarboxylase
US5874613A (en) * 1994-03-03 1999-02-23 Daicel Chemical Industries, Ltd. 3-(3-chlorophenyl) serine
JP2009159840A (en) * 2007-12-28 2009-07-23 National Institute Of Advanced Industrial & Technology Method for synthesizing 2-pyrrolidone or polyamide 4, n-methyl-2-pyrrolidone, and polyvinylpyrrolidone from biomass
JP2012214496A (en) * 2012-07-20 2012-11-08 National Institute Of Advanced Industrial Science & Technology Method for synthesizing 2-pyrrolidone or polyamide-4,n-methyl-2-pyrrolidone, or polyvinyl pyrrolidone from biomass

Also Published As

Publication number Publication date
JPH0545236B2 (en) 1993-07-08

Similar Documents

Publication Publication Date Title
JP2599789B2 (en) Water-insoluble glucose isomerase crystal and method for producing the same
US4335209A (en) Process for preparation of L-tryptophan by enzyme
JPS63214188A (en) Production of amino acid decarboxylation product and apparatus therefor
FR2459285A1 (en) MICROBIOLOGICAL PROCESS FOR THE PRODUCTION OF AQUEOUS SOLUTION OF HIGHLY CONCENTRATED ACRYLAMIDE
NL8304496A (en) METHOD FOR INSULATING L-AMINO ACIDS
JPH0339491B2 (en)
FR2563234A1 (en) Prodn. of D-glucose and starch hydrolysis
CN111235192B (en) Process for producing, separating and purifying L-phenylalanine
Furui et al. A bioreactor-crystallizer for L-malic acid production
JPS60133893A (en) Production of l-phenylalanine
JP2520155B2 (en) Reaction method using biocatalyst and reaction apparatus thereof
JPS5930695B2 (en) Elle − Apple San Enno Seizou Hohou
EP0084975A2 (en) Process for producing physiologically active substance by multienzyme process and apparatus for the same
JPH01191692A (en) Production of l-tryptophan
JP2931623B2 (en) Method for producing L-phenylalanine
JPH067796B2 (en) Reaction method using immobilized biocatalyst
JPS63130555A (en) Production of l-malic acid
JPH01132394A (en) Heat treatment of immobilized cell
JPH0379990B2 (en)
SU1514780A1 (en) Method of continuous production of prednisolone
JP3415386B2 (en) Method for recovering diaminoalkylene-N, N&#39;-disuccinic acid
JPS62163698A (en) Production of gamma-l-glutamyl-l-alpha-amino-n-butyrylglycine
JPH0825972B2 (en) Purification method of aspartic acid
JPH0833492A (en) Production of l-aspartic acid
JPH0423996A (en) Continuous production of tripeptide derivative