JPH01132394A - Heat treatment of immobilized cell - Google Patents

Heat treatment of immobilized cell

Info

Publication number
JPH01132394A
JPH01132394A JP28926787A JP28926787A JPH01132394A JP H01132394 A JPH01132394 A JP H01132394A JP 28926787 A JP28926787 A JP 28926787A JP 28926787 A JP28926787 A JP 28926787A JP H01132394 A JPH01132394 A JP H01132394A
Authority
JP
Japan
Prior art keywords
enzyme
immobilized
tryptophan
bacterial cells
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28926787A
Other languages
Japanese (ja)
Inventor
Seiya Iguchi
征也 井口
Shinji Ogawa
伸二 小川
Takeshi Noguchi
武 野口
Kiyoshi Kaneko
清 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP28926787A priority Critical patent/JPH01132394A/en
Publication of JPH01132394A publication Critical patent/JPH01132394A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To improve initial activity of enzyme and to enable long-term preservation of an immobilized cell without lowering activity of enzyme, by heat-treating the immobilized cell containing a tryptophan synthase under a specific pH condition. CONSTITUTION:A tryptophan synthase producing L-tryptophan from indole and L-serine, such as tryptophan synthase produced by Escherichia coli MT-10232 is immobilized by a conventional procedure and the prepared immobilized cell is heat-treated at pH 6-9, preferably pH 6.5-8.0 at >=about 40 deg.C, preferably about 40-75 deg.C.

Description

【発明の詳細な説明】 産栗上■且■分国 本発明は、トリプトファン・シンターゼを含む固定化菌
体の熱処理方法に関する。更に詳しくは、インドール及
びL−セリンからL−トリプトファンを製造するに用い
る固定化菌体を、保存または酵素反応に用いるに際し、
該酵素を含む菌体を固定化した固定化菌体、或いは固定
化後培養した固定化菌体(以下、固定化菌体と称するこ
とがある)を熱処理して、酵素の初期活性を向上せしめ
ると共に、保存または酵素反応における酵素の活性を低
下させること無く長期間係たしめる為の、固定化菌体の
熱処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for heat treating immobilized bacterial cells containing tryptophan synthase. More specifically, when immobilized bacterial cells used to produce L-tryptophan from indole and L-serine are stored or used for enzymatic reactions,
Immobilized bacterial cells containing the enzyme, or immobilized bacterial cells cultured after immobilization (hereinafter sometimes referred to as immobilized bacterial cells) are heat-treated to improve the initial activity of the enzyme. The present invention also relates to a heat treatment method for immobilized microbial cells for long-term preservation or enzymatic reaction without reducing enzyme activity.

本発明は、所謂バイオリアクターの運転に用いられる酵
素を含む固定化菌体を保存または酵素反応に利用するに
際し、該酵素の初期活性を向上せしめると共に、酵素の
活性を低下させること無く長期間係たしめようとする場
合に利用される。
The present invention improves the initial activity of the enzyme and maintains it for a long period of time without reducing the activity of the enzyme, when immobilized bacterial cells containing an enzyme used in the operation of a so-called bioreactor are stored or used for an enzyme reaction. Used when trying to prove something.

従来の技術 トリプトファンは、輸液成分などの医薬品、睡眠誘発剤
などの健康食品として従来から利用されて来たが、近年
飼料添加物としての有効性が認められて需要が伸びつつ
あり、安価な製造法の開発が待たれているところである
。トリプトファンの製造方法としては、化学合成法、発
酵法、酵素法などが従来から知られている。
Conventional technology Tryptophan has traditionally been used in medicines such as infusion components and health foods such as sleep-inducing agents, but in recent years demand has been increasing as its effectiveness as a feed additive has been recognized, and it has become available for inexpensive production. The development of a law is awaited. Chemical synthesis methods, fermentation methods, enzymatic methods, and the like are conventionally known as methods for producing tryptophan.

化学合成法は合成経路が長く複雑であり、合成されたト
リプトファンは、L一体とD一体の等景況合物であるラ
セミ体であり光学分割を行って有効なし一体だけを分離
する必要がある。一方、発酵法または酵素法では有効な
し一体のみが生成されるので光学分割の必要も無く有利
である。
The chemical synthesis method has a long and complicated synthesis route, and the synthesized tryptophan is a racemic compound, which is an isochemical compound of L and D, and it is necessary to perform optical resolution to separate only the effective and non-active compounds. On the other hand, the fermentation method or the enzyme method is advantageous because only effective monomers are produced and there is no need for optical resolution.

しかしながら、発酵法においても、糖類などの培地成分
または微生物菌体と生成物であるトリプトファンが発酵
液中に混合して得られるので、目的のトリプトファンを
単離、精製することが非常に困難で効率が悪く、手間が
かかるなどの難点がある。
However, even in fermentation methods, the product tryptophan is obtained by mixing culture medium components such as sugars or microbial cells in the fermentation liquid, making it extremely difficult and efficient to isolate and purify the target tryptophan. There are disadvantages such as poor performance and time consuming.

酵素法で使用される酵素源としては、目的の酵素を生産
する菌体の培養液から遠心分離等で得られる休止菌体、
或いは菌体から抽出法などにより分離された酵素などが
用いられる。また近年は菌体または酵素をアルギン酸カ
ルシウムなどの天然高分子物質、或いは膜状成形物など
に固定化して用いる方法であるとか、溶液に懸濁した菌
体または酵素を逆浸透膜または限外ろ過膜などで系内に
閉じ込めて使用する方法なども報告されている。
Enzyme sources used in the enzyme method include resting bacterial cells obtained by centrifugation from the culture solution of bacterial cells that produce the desired enzyme;
Alternatively, an enzyme isolated from bacterial cells by an extraction method or the like may be used. In addition, in recent years, methods have been developed in which bacteria or enzymes are immobilized on natural polymeric substances such as calcium alginate, or film-like moldings, or bacteria or enzymes suspended in a solution are processed through reverse osmosis membranes or ultrafiltration. Other methods have also been reported, including using a membrane to confine the substance within the system.

特に固定化して用いる方法は、目的生産物と固定化した
菌体または酵素との分離が容易であるとか、或いは固定
化した菌体または酵素を繰り返し使用できるのでその使
用量が少なくてすむなどの利点がある為、近年特に注目
を集めている方法である。
In particular, the method of using immobilized cells is useful because it is easy to separate the target product from the immobilized cells or enzymes, or because the immobilized cells or enzymes can be used repeatedly, so the amount used can be reduced. This method has attracted particular attention in recent years because of its advantages.

Hが”しようとする。 占 しかしながら、固定化法においても、粗または精製酵素
を用いる場合には問題とならないが、菌体を酵素源とし
て使用しようとする場合には以下のような問題点がある
。即ち、固定化菌体を長期間保存する必要が有る場合、
或いは固定化菌体を反応に長期間使用したいとする場合
に、固定化菌体中の酵素の活性を実質的に低下させるこ
と無く長期間維持させることは極めて困難である。
However, with the immobilization method, there is no problem when using crude or purified enzymes, but when trying to use bacterial cells as an enzyme source, the following problems arise. In other words, if it is necessary to preserve immobilized bacterial cells for a long period of time,
Alternatively, when it is desired to use immobilized bacterial cells for a long period of time in a reaction, it is extremely difficult to maintain the activity of the enzyme in the immobilized bacterial cells for a long period of time without substantially reducing the activity.

固定化菌体を使用する有価物製造プロセスにおいては、
固定化菌体中の酵素の活性の寿命の長短がプロセス全体
の成否を決定すると言っても過言ではないので、反応の
場において酵素活性を長期間低下させることなく維持す
ることは極めて重要である。菌体中の酵素活性の低下の
原因については種々考えられるが、本発明に用いる酵素
の場合には、菌体中に含まれる蛋白分解酵素により目的
反応に有効な酵素が分解されてしまう事によるものと推
定される。
In the process of producing valuables using immobilized bacterial cells,
It is no exaggeration to say that the longevity of the enzyme activity in the immobilized bacterial cells determines the success or failure of the entire process, so it is extremely important to maintain the enzyme activity in the reaction field for a long period of time without decreasing it. . There are various possible causes for the decrease in enzyme activity in the bacterial cells, but in the case of the enzyme used in the present invention, it is due to the enzyme effective for the target reaction being degraded by the proteolytic enzymes contained in the bacterial cells. It is estimated that

さて、本発明者らは、固定化菌体を用いて酵素法により
インドール及びし−セリンからL−トリプトファンを製
造する方法を研究するに際し、固定化した菌体を、冷蔵
庫などの冷暗所に保存したり、或いは目的の反応に使用
すると短時間の内に酵素の活性が低下し使用に耐えなく
なってしまうという基本的で重大な問題に直面した。
Now, when the present inventors researched a method for producing L-tryptophan from indole and serine by an enzymatic method using immobilized bacterial cells, we stored the immobilized bacterial cells in a cool, dark place such as a refrigerator. They faced a basic and serious problem: when used in a desired reaction, the activity of the enzyme decreases within a short period of time, making it unusable.

5 占を7するための手 そこで本発明者らは、この問題点を解決すべ(鋭意研究
した結果、固定化菌体を熱処理することによって、長期
間酵素活性を低下させること無く維持させ、また酵素の
初期活性をも向上せしめる方法を見出し、本発明を完成
するに至った。
5 Techniques for increasing the fortune to 7 Therefore, the present inventors decided to solve this problem (as a result of intensive research, by heat-treating the immobilized bacterial cells, the enzyme activity could be maintained for a long period of time without decreasing, and We have discovered a method for improving the initial activity of enzymes, and have completed the present invention.

すなわち、本発明は、インドール及びL−セリンからL
−トリプトファンを生成させるトリプトファン・シンタ
ーゼを含む固定化菌体を、保存する場合、或いはこの固
定化菌体を目的の反応に使用しようとする場合に、固定
化した菌体をpH6〜9の条件下で40″C以上で熱処
理することを特徴とした固定化菌体の熱処理方法である
That is, the present invention provides L-serine from indole and L-serine.
- When storing immobilized bacterial cells containing tryptophan synthase that produces tryptophan, or when using the immobilized bacterial cells in a desired reaction, the immobilized bacterial cells should be stored under conditions of pH 6 to 9. This is a heat treatment method for immobilized bacterial cells, characterized by heat treatment at 40''C or higher.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明の方法に使用するトリプトファン・シンターゼの
生産菌としては、エシェリヒア・コリMT−10232
(FERM BP−19)、エシェリヒア・コリMT−
10242(FBI?M BP−20)、ノイスボ・ク
ラッサATCC−14692などを挙げることが出来る
As the tryptophan synthase producing bacteria used in the method of the present invention, Escherichia coli MT-10232
(FERM BP-19), Escherichia coli MT-
10242 (FBI?M BP-20), Neusbo Krassa ATCC-14692, etc.

熱処理に供する固定化菌体の形態としては、培養液から
遠心分離などにより集菌した菌体を固定化した固定化菌
体でも良いし、固定化した菌体を更に培養した状態のも
のでも良い。
The form of the immobilized microbial cells to be subjected to heat treatment may be immobilized microbial cells obtained by fixing microbial cells collected from a culture solution by centrifugation or the like, or it may be a state in which the immobilized microbial cells are further cultured. .

熱処理後、固定化菌体を保存またはL−トリプトファン
の合成反応に使用する。
After heat treatment, the immobilized bacterial cells are stored or used for L-tryptophan synthesis reaction.

菌体を固定化する方法としては特に制限は無いが、−殻
内に良(用いられている、アルギン酸カルシウム、カラ
ギーナン、アクリルアミド重合物、光架橋性樹脂などで
包括固定化する方法、ナイ  ・ロンのマイクロカプセ
ルに包括する方法、イオン交換樹脂、アミノ酸ポリマー
などに結合させる方法などが良い。また固定化する形態
としても特に制限は無いが、通常、球状、筒状、棒状、
或いは膜状に成形された形態のものが良い。
There are no particular restrictions on the method of immobilizing the bacterial cells, but - methods of comprehensive immobilization within the shell using calcium alginate, carrageenan, acrylamide polymer, photocrosslinkable resin, etc., nylon, etc. Good methods include enclosing it in microcapsules, bonding it to ion exchange resins, amino acid polymers, etc.Also, there are no particular restrictions on the form in which it is immobilized, but it is usually spherical, cylindrical, rod-shaped, etc.
Alternatively, it may be in the form of a film.

固定化した菌体を更に培養する方法としては、該菌体を
得る為の通常の培養法で良いが、固定化用担体の種類に
よっては、培地成分などに工夫が必要な場合も有る。
As a method for further culturing the immobilized microbial cells, the usual culture method for obtaining the microbial cells may be used, but depending on the type of immobilization carrier, it may be necessary to devise the medium components.

熱処理時の温度は、40℃以上、更に詳しくは40〜7
5℃の範囲である。酵素の活性劣化が温度に敏感に左右
されるので、熱処理温度は十分に管理する必要がある。
The temperature during heat treatment is 40°C or higher, more specifically 40~7°C.
It is in the range of 5°C. Since the deterioration of enzyme activity is sensitive to temperature, the heat treatment temperature must be adequately controlled.

本発明に係る酵素の場合は、30〜40℃に於いて最も
高い活性を示すが、熱処理温度が40未満であると目的
酵素以外の、例えば蛋白分解酵素などを失活させること
が出来ず、本発明の目的を達し得ない。また75℃を越
える温度では本来の酵素の活性が低下してしまうので好
ましくない。熱処理の温度は上記の温度範囲が好ましく
、担体の種類によっては高温での処理により担体が収縮
して反応時に基質、生成物の担体内での物質移動速度が
低下し、反応に悪影響を与える場合もあるので、適宜選
択する必要がある。
In the case of the enzyme according to the present invention, the highest activity is shown at 30 to 40°C, but if the heat treatment temperature is less than 40°C, other enzymes other than the target enzyme, such as proteolytic enzymes, cannot be inactivated. The purpose of the invention cannot be achieved. Furthermore, temperatures exceeding 75°C are undesirable because the original enzyme activity decreases. The temperature of the heat treatment is preferably within the above temperature range; depending on the type of carrier, treatment at high temperatures may cause the carrier to shrink, reducing the mass transfer rate of substrates and products within the carrier during the reaction, which may adversely affect the reaction. There are many, so you need to choose accordingly.

熱処理時のpHは6〜9の範囲が好ましく、更に好まし
くは、6.5〜8.0の範囲である。本発明で使用する
酵素は、pu 7.5〜8.5に於いて最も高い活性を
示し、熱処理時のpHも温度と同様に十分に上記範囲に
管理する必要がある。
The pH during heat treatment is preferably in the range of 6 to 9, more preferably in the range of 6.5 to 8.0. The enzyme used in the present invention exhibits the highest activity at a pu of 7.5 to 8.5, and the pH during heat treatment must be sufficiently controlled within the above range as well as the temperature.

puを調整する為の薬剤としては一般的に多用されてい
る、アンモニア、苛性ソーダ、苛性カリ、塩酸または硫
酸などが使用できる。
Commonly used agents for adjusting PU include ammonia, caustic soda, caustic potash, hydrochloric acid, and sulfuric acid.

また熱処理時間は、45℃程度の温度で熱処理するとき
は、10〜20分の範囲が最適であるが、目的酵素の活
性を低下させることなく熱処理の目的を達成させる為に
は、処理温度が高い場合には短時間で、処理温度が低い
場合には、より長い時間で処理することが好ましい。
In addition, the optimal heat treatment time is in the range of 10 to 20 minutes when heat treatment is performed at a temperature of about 45°C, but in order to achieve the purpose of heat treatment without reducing the activity of the target enzyme, the treatment temperature must be adjusted. When the temperature is high, it is preferable to perform the treatment for a short time, and when the treatment temperature is low, it is preferable to perform the treatment for a longer time.

上記のように熱処理を実施すると、固定化菌体中の酵素
の初期活性が、熱処理をしない場合に比較して、10〜
40χ向上するばかりでなく、固定化菌体を保存または
L−トリプトファンを製造する反応に使用すると、酵素
の活性が低下すること無く長期間維持される。
When the heat treatment is performed as described above, the initial activity of the enzyme in the immobilized bacterial cells is 10 to 10% higher than when no heat treatment is performed.
Not only is the enzyme improved by 40x, but when the immobilized bacterial cells are stored or used in a reaction to produce L-tryptophan, the enzyme activity is maintained for a long period of time without decreasing.

固定化菌体を保存する方法としては、合成樹脂またはス
テンレスなどの金属製密閉容器に該菌体を保存液に浸漬
、格納して冷蔵庫内に保管すれば良い。
As a method for preserving the immobilized microbial cells, the microbial cells may be immersed in a preservation solution and stored in a sealed container made of synthetic resin or metal such as stainless steel, and then stored in a refrigerator.

また酵素反応によりインドール及びL−セリンからL−
トリプトファンを製造するのに用いる方法としては、特
に制限は無いが例えば、該固定化菌体を反応仕込液中に
懸濁して用いる方法、また膜に固定化して用いる場合に
は、反応供給液を膜面上に流通させる方法などを挙げる
ことが出来る。
Also, by enzymatic reaction, indole and L-serine are converted to L-
There are no particular restrictions on the method used to produce tryptophan, but examples include a method in which the immobilized bacterial cells are suspended in a reaction preparation solution, and a method in which tryptophan is used after being immobilized on a membrane, in which a reaction supply solution is used. Examples include a method of flowing on the membrane surface.

光里■カ果 本発明の方法により熱処理した固定化菌体は、酵素の初
期活性が向上する上に、冷蔵庫などで酵素の活性を長期
間低下させること無く保存することが出来、また反応に
使用する場合にも長期間活性を維持させることが可能と
なり、固定化菌体を用いたL−トリプトファンの工業的
な製造が可能となったのである。
Immobilized bacterial cells heat-treated by the method of the present invention not only improve the initial activity of the enzyme, but also can be stored in a refrigerator for a long period of time without reducing the enzyme activity, and can be used for reactions. It has become possible to maintain the activity for a long period of time even in cases where L-tryptophan is used, and it has become possible to industrially produce L-tryptophan using immobilized bacterial cells.

実巖拠 以下、本発明を実施例によりさらに具体的に説明する。actual evidence Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 トリプトファン・シンターゼ生産菌であるエシェリヒア
・コリMT−10232(FERM BP−19)を5
00m lの坂ロフラスコ中の第1表に示す組成の培地
Loom I。
Example 1 Escherichia coli MT-10232 (FERM BP-19), which is a tryptophan synthase-producing bacterium, was
Medium Loom I with the composition shown in Table 1 in a 00 ml Sakaro flask.

に接種し、35℃で24時間培養した。この培養液20
0mjl! (フラスコ2本)を301 のジャーファ
ーメンタ−中の第2表に示す組成の培地151に接種し
、35°c、 pH6,8(28χアンモニア水で調整
)で30時間培養した。
and cultured at 35°C for 24 hours. This culture solution 20
0mjl! (2 flasks) was inoculated into medium 151 having the composition shown in Table 2 in a 301 jar fermenter, and cultured at 35°C and pH 6.8 (adjusted with 28x ammonia water) for 30 hours.

培養液を分取して、第3表に示した条件で熱処理後、遠
心集菌して酵素の活性を測定し、熱処理の効果及び熱処
理条件の比較を行った。
The culture solution was separated, heat-treated under the conditions shown in Table 3, and then centrifuged to collect the bacteria to measure enzyme activity, and the effects of heat treatment and heat treatment conditions were compared.

酵素の活性の測定は以下の通り行った。Enzyme activity was measured as follows.

インドール、L−セリン、ピリドキサール−5゛−リン
酸(PLP)及び菌体を乾燥菌体として0.2g#!含
む反応液を10m!調合し、振とう培養機で、35℃1
1時間振とうして反応を行い、生成したL−トリプトフ
ァンを高速液体クロマトグラフィーで分析した。
Indole, L-serine, pyridoxal-5'-phosphate (PLP) and bacterial cells as dried bacterial cells 0.2g #! 10m of reaction solution! Mix and incubate at 35℃1 in a shaking incubator.
The reaction was carried out by shaking for 1 hour, and the produced L-tryptophan was analyzed by high performance liquid chromatography.

第1表 培養培地の組成 NaC15g 蒸留水II!、に希釈して使用(pH6,8)第2表 
増殖培地の組成 蒸留水II!、に希釈して使用(pH6,8)(以下余
白) 第3表  熱処理の効果 実施例2 実施例1と同様に培養して、熱処理をしない菌体と熱処
理を行った菌体を得た。熱処理条件は、p117.0、
温度55℃l2O分である。これらの菌体を密封容器に
入れ3〜5 ”Cの冷蔵庫に保管して所定時間経過後の
活性を測定し、その結果を第4表に示した。
Table 1 Composition of culture medium NaC 15g Distilled water II! (pH 6, 8) Table 2
Composition of growth medium Distilled water II! Table 3: Effect of heat treatment Example 2 Cultured in the same manner as in Example 1 to obtain cells without heat treatment and cells with heat treatment. The heat treatment conditions were p117.0,
The temperature was 55°C and 120 minutes. These bacterial cells were placed in a sealed container and stored in a refrigerator at 3-5''C, and the activity was measured after a predetermined period of time.The results are shown in Table 4.

第4表  菌体の保存結果 保存後の活性は、初期の活性に対する相対値で示した。Table 4: Storage results of bacterial cells The activity after storage was expressed as a relative value to the initial activity.

実施例3 実施例1と同様にして得た、熱処理をしない菌体と、p
Hを変えて熱処理を実施した菌体を用いて、固定化酵素
を作成し、インドールとL−セリンからL−トリプトフ
ァンを合成する反応を実施して8、酵素活性の寿命を見
た。インドールを基準としたL−トリプトファンの収率
が50χに落ちるまでの時間を酵素の寿命としその結果
を第5表に示した。
Example 3 Bacterial cells obtained in the same manner as in Example 1 without heat treatment and p.
An immobilized enzyme was prepared using bacterial cells that had been heat-treated with different amounts of H, and a reaction was carried out to synthesize L-tryptophan from indole and L-serine8, and the lifetime of the enzyme activity was examined. The time required for the yield of L-tryptophan to fall to 50x based on indole was defined as the life of the enzyme, and the results are shown in Table 5.

固定化酵素の作成は以下の要領で行った。The immobilized enzyme was prepared as follows.

遠心集菌した湿菌体1部と生理食塩液1部とを撹はん混
合した。一方蒸留水7.76部と、アルギン酸ナトリウ
ム(記文フードケミファ社製N5PLL )0.24部
とを撹はん混合しpHを8.5に苛性カリで調整した。
One part of wet bacterial cells collected by centrifugation and one part of physiological saline were mixed by stirring. On the other hand, 7.76 parts of distilled water and 0.24 parts of sodium alginate (N5PLL manufactured by Kibun Food Chemifa) were mixed with stirring, and the pH was adjusted to 8.5 with caustic potassium.

菌体の懸濁液2部と、上記のアルギン酸ナトリウムの溶
解液8部を撹はん混合し、注射器に充填、内径が0.5
〜0.8mm程度の注射針の先端より、ゲル化液に滴下
した。ゲル化液は、0.5モル濃度の塩化カルシウムニ
水塩水溶液を6規定苛性カリ水溶液でpHを8.5に調
整し、10℃に保った液を50部使用した。ゲル化液に
滴下されて生成した粒子は液中で約1時間撹はん熟成後
、液中より取り出し固定化酵素源として使用した。
Stir and mix 2 parts of the suspension of bacterial cells and 8 parts of the above sodium alginate solution, and fill it into a syringe with an inner diameter of 0.5.
It was dropped into the gelatinized liquid from the tip of an approximately 0.8 mm injection needle. The gelling solution used was 50 parts of a 0.5 molar calcium chloride dihydrate aqueous solution whose pH was adjusted to 8.5 with a 6N caustic potassium aqueous solution and kept at 10°C. The particles produced by dropping into the gelling solution were stirred and aged in the solution for about 1 hour, and then taken out from the solution and used as an immobilized enzyme source.

また上記で作成した固定化酵素を用いてL−1−リプト
ファンを合成して酵素活性の寿命を見る反応試験は以下
の要領で実施した。
Further, a reaction test was conducted in the following manner to synthesize L-1-lyptophan using the immobilized enzyme prepared above and to determine the life span of the enzyme activity.

500m 12の撹はん機付ガラス製反応器に第6表に
示した組成からインドールだけを除いた溶液100II
llと固定化酵素50m Qを装入し、この反応器を温
水浴中に保持して温度を常に30℃に保った。次に第6
表で示した組成の反応供給液を、内容を撹はんしている
反応器に毎時50m1の速度で連続的に供給し、一方反
応器からも同速度で連続的に抜液を行い、一定時間毎の
サンプルをとり生成したL−トリプトファン濃度及び残
存インドール、L−セリン濃度を液体クロマトグラフ法
により求めた。反応の結果は、供給したインドール量を
基準として生成したL−トリプトファンの収率を求め、
この収率が良好に維持される時間の長さで検討した。こ
の収率が100χである場合とは、反応器から抜液した
液中のL−トリプトファン濃度が4.36g/βに達す
る場合である。
In a 500 m 12 glass reactor equipped with a stirrer, add a solution 100II containing only indole from the composition shown in Table 6.
11 of immobilized enzyme and 50 mQ of immobilized enzyme were charged, and the reactor was kept in a hot water bath to keep the temperature constantly at 30°C. Next, the sixth
The reaction feed liquid having the composition shown in the table is continuously supplied to the reactor whose contents are being stirred at a rate of 50 ml/hour, while the reactor is also continuously drained at the same rate to maintain a constant Samples were taken every hour and the concentration of L-tryptophan produced and the concentrations of residual indole and L-serine were determined by liquid chromatography. The reaction results are determined by determining the yield of L-tryptophan produced based on the amount of indole supplied, and
The length of time during which this yield was maintained satisfactorily was investigated. The case where the yield is 100χ is the case where the L-tryptophan concentration in the liquid drained from the reactor reaches 4.36 g/β.

第5表 固定化酵素の寿命 酵素の寿命:インドールに対する収率が50χに低下す
るまでの時間 熱処理条件:温度55℃1時間20分 第6表 反応供給液の組成 pH8,5 実施例4 熱処理条件をpH7,5、温度55℃1時間20分とし
て処理して得た菌体を、第6表に示した組成の液からイ
ンドール及び塩化カルシウムを除いた組成の反応液50
1に乾燥菌体としてLog/ Ilの濃度で仕込み、ジ
ャケット及び撹はん機付ステンレス製反応器内で撹はん
しなから35℃に保った。この反応器に第6表で示した
組成の液から塩化カルシウムを除いた組成の反応液を、
毎時1842の速度で供給し、L−トリプトファンの合
成反応を行なわしめた。同時に反応液の一部を連続的に
抜き出して、限外ろ過装置に供給して液中に生成したL
−トリプトファンを限外ろ過膜の透過液側に透過せしめ
、菌体を非透過液側に残した。限外ろ過装置はDDS社
製GR81PP膜を0.36m2セツトし、供給液量8
1/分、35℃15Kg/cm2の条件で使用した。透
過液中に溶解しているL4リプトファンはイオン交換樹
脂吸着法などの常法により分離回収した。また菌体を含
んだ非透過液はそのまま反応器に循環してL−トリプト
ファンの合成反応に供した。反応器、限外ろ過装置は連
続運転を行い、インドールに対するL−トリプトファン
の収率が50χに低下するまで120時間の運転を継続
することができた。
Table 5 Lifespan of immobilized enzyme Enzyme lifespan: Time until yield decreases to 50χ Heat treatment conditions: Temperature 55°C 1 hour 20 minutes Table 6 Composition of reaction feed solution pH 8.5 Example 4 Heat treatment conditions The bacterial cells obtained by treating the cells at pH 7.5 and temperature 55°C for 1 hour and 20 minutes were added to a reaction solution 50% having the composition shown in Table 6 except indole and calcium chloride.
1 at a concentration of Log/Il and maintained at 35°C without stirring in a stainless steel reactor equipped with a jacket and a stirrer. A reaction solution having the composition shown in Table 6 except calcium chloride was added to this reactor.
The L-tryptophan synthesis reaction was carried out by feeding at a rate of 1842 kg/hr. At the same time, a part of the reaction solution is continuously extracted and supplied to the ultrafiltration device to generate L produced in the solution.
- Tryptophan was allowed to permeate into the permeate side of the ultrafiltration membrane, and bacterial cells were left on the non-permeate side. The ultrafiltration device is equipped with a 0.36 m2 GR81PP membrane made by DDS, and the amount of liquid supplied is 8.
It was used under the conditions of 1/min, 35°C and 15Kg/cm2. L4 liptophan dissolved in the permeate was separated and recovered by a conventional method such as an ion exchange resin adsorption method. Further, the non-permeated liquid containing bacterial cells was directly circulated to the reactor and subjected to the synthesis reaction of L-tryptophan. The reactor and ultrafiltration device were operated continuously, and the operation could be continued for 120 hours until the yield of L-tryptophan based on indole decreased to 50χ.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)インドール及びL−セリンからL−トリプトファン
を製造するに用いるトリプトファン・シンターゼを含む
固定化菌体を、pH6〜9の条件下で40℃以上で加熱
処理することを特徴とする固定化菌体の熱処理方法。
1) An immobilized bacterial cell containing tryptophan synthase used for producing L-tryptophan from indole and L-serine, which is heat-treated at 40°C or higher under conditions of pH 6 to 9. heat treatment method.
JP28926787A 1987-11-18 1987-11-18 Heat treatment of immobilized cell Pending JPH01132394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28926787A JPH01132394A (en) 1987-11-18 1987-11-18 Heat treatment of immobilized cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28926787A JPH01132394A (en) 1987-11-18 1987-11-18 Heat treatment of immobilized cell

Publications (1)

Publication Number Publication Date
JPH01132394A true JPH01132394A (en) 1989-05-24

Family

ID=17740948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28926787A Pending JPH01132394A (en) 1987-11-18 1987-11-18 Heat treatment of immobilized cell

Country Status (1)

Country Link
JP (1) JPH01132394A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287783A (en) * 1992-03-02 1994-02-22 Carl Manufacturing Co., Ltd. Paper cutter
US5671647A (en) * 1993-03-16 1997-09-30 Carl Manufacturing Co., Ltd. Paper cutter
WO2011108473A1 (en) * 2010-03-01 2011-09-09 三井化学株式会社 Method for producing 1,5-pentamethylene diamine, 1,5-pentamethylene diamine, 1,5-pentamethylene diisocyanate, method for producing 1,5-pentamethylene diisocyanate, polyisocyanate composition, and polyurethane resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287783A (en) * 1992-03-02 1994-02-22 Carl Manufacturing Co., Ltd. Paper cutter
US5671647A (en) * 1993-03-16 1997-09-30 Carl Manufacturing Co., Ltd. Paper cutter
WO2011108473A1 (en) * 2010-03-01 2011-09-09 三井化学株式会社 Method for producing 1,5-pentamethylene diamine, 1,5-pentamethylene diamine, 1,5-pentamethylene diisocyanate, method for producing 1,5-pentamethylene diisocyanate, polyisocyanate composition, and polyurethane resin
JP5700575B2 (en) * 2010-03-01 2015-04-15 三井化学株式会社 Process for producing 1,5-pentamethylene diisocyanate
US9404132B2 (en) 2010-03-01 2016-08-02 Mitsui Chemicals, Inc. Method for producing 1,5-pentamethylenediamine, 1,5-pentamethylenediamine, 1,5-pentamethylene diisocyanate, method for producing 1,5-pentamethylene diisocyanate, polyisocyanate composition, and polyurethane resin

Similar Documents

Publication Publication Date Title
CN109735559B (en) Biological preparation method of gamma-aminobutyric acid
WO2016123745A1 (en) Immobilized cell and preparation method thereof
JPH01132394A (en) Heat treatment of immobilized cell
CN106636294B (en) Process for producing unnatural amino acid product by immobilized double-enzyme coupling reaction
JPH01132380A (en) Heat treatment of cell
GB2152503A (en) Process for producing L-phenylalanine
RU2174558C1 (en) Method of l-aspartic acid producing
EP0421477B1 (en) Enzymatic process for the preparation of L-serine
AU666720B2 (en) Method for the preparation of D-aminoacids or D-aminoacids derivatives
CN114164238B (en) Enzymatic synthesis method of L-tyrosine
JPS6349091A (en) Production of tryptophan
JP2774594B2 (en) Immobilized yeast cells
RU2143002C1 (en) METHOD OF γ-AMINOBUTYRIC ACID PRODUCING
JPS615789A (en) Process for reaction by immobilized biocatalyst
RU2420581C1 (en) Method of producing biocatalyst exhibiting cephalosporin acid synthesis activity
KR950013858B1 (en) Process for producing l-tryptophane
JPH0195780A (en) Method for preserving immobilized enzyme
JPS62163698A (en) Production of gamma-l-glutamyl-l-alpha-amino-n-butyrylglycine
JP3688159B2 (en) Method for preserving and / or transporting L-aspartate
Sumitha A PRELIMINARY STUDY ON UPSCALE THROUGH BIOMASS PREPARATION AND IMMOBILISATION OF BREVIBACTERIUM HELVOLUM FOR LABORATORY SET UP OF BIO-DECAFFEINATION.
JPH0525479B2 (en)
JPH03266994A (en) Production of l-tyrosine
JPS6287088A (en) Production of l-alanine and d-aspartic acid
JPH0591895A (en) Production of d-serine
JPS60126092A (en) Production of l-aspartic acid