JPS63213206A - Self-fusing insulated wire - Google Patents

Self-fusing insulated wire

Info

Publication number
JPS63213206A
JPS63213206A JP4497687A JP4497687A JPS63213206A JP S63213206 A JPS63213206 A JP S63213206A JP 4497687 A JP4497687 A JP 4497687A JP 4497687 A JP4497687 A JP 4497687A JP S63213206 A JPS63213206 A JP S63213206A
Authority
JP
Japan
Prior art keywords
weight
self
resin
parts
insulated wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4497687A
Other languages
Japanese (ja)
Inventor
佐野 文一
目崎 正和
範行 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4497687A priority Critical patent/JPS63213206A/en
Publication of JPS63213206A publication Critical patent/JPS63213206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Paints Or Removers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自己融着性絶縁電線に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a self-bonding insulated wire.

〔従来の技術とその問題点〕[Conventional technology and its problems]

自己融着性絶縁′r!1線は近時そのコイル加工工程の
合理化、省力化に伴い急、速にその使用が伸びており、
またその用途も拡大されつつある。この自己融着性絶縁
電線の融着樹脂層としては従来、フェノキシ樹脂、ポリ
ビニルブチラール樹脂、ポリアミド樹脂等の熱可塑性樹
脂が多く使用されてきた。
Self-bonding insulation'r! In recent years, the use of single wire has been rapidly increasing due to the rationalization and labor saving of the coil processing process.
Also, its uses are being expanded. Conventionally, thermoplastic resins such as phenoxy resin, polyvinyl butyral resin, and polyamide resin have often been used as the fusion resin layer of this self-bonding insulated wire.

しかしながらこうした自己融着性絶縁電線の用途が急速
に拡大されるにしたがって汎用用途のみでなく、トラン
ス、電動機等の振動がかかり、かつ高温で使用されるよ
うな機器への応用が試みられている。このような用途に
対しては従来のような熱可塑性樹脂を融着層に使用する
と振動、高温によりコイルがバラケる等の問題があり、
また本質的な耐熱性が低いため機器全体の耐熱性を低下
せしめるという問題があり、またエナメル線の用途の一
大分野である冷凍機等のハーメチックモーターへの使用
についても耐冷媒性に劣る為使用できなかったのが実情
であった。こうした用途に適する自己融着性絶縁電線が
数多く検討、研究され提案されている。こうした提案の
うち最も多く使われている方法が融着樹脂層の硬化を半
硬化いわゆるBステージにとどめコイル成型時の加熱に
より融着せしめるとともに硬化せしめるものであり例え
ばフェノキシ樹脂にフェノール樹脂、メラミン樹脂を添
加したもの、ポリヒドロキシポリエーテル樹脂にチタン
化合物を配合したものが提案されている。しかしこうし
たBステージに硬化をとどめる手法は皮膜の可撓性に劣
り、特に最近の高速自動巻線機に適用することはできず
、また電線のシェルフライフが非常に短いため、実質的
にはその使用は大巾に制限されている。
However, as the applications of these self-bonding insulated wires are rapidly expanding, attempts are being made to apply them not only to general-purpose applications but also to devices that are subject to vibration and are used at high temperatures, such as transformers and electric motors. . For such applications, if conventional thermoplastic resin is used for the adhesive layer, there are problems such as the coil coming apart due to vibration and high temperature.
In addition, there is a problem that the heat resistance of the entire device is reduced due to its inherently low heat resistance, and it also has poor refrigerant resistance when used in hermetic motors such as refrigerators, which is a major application field of enameled wire. The reality was that it could not be used. Many self-bonding insulated wires suitable for such uses have been studied, researched, and proposed. Among these proposals, the most commonly used method is to keep the curing of the fusion resin layer at the semi-cured so-called B stage and fuse and harden it by heating during coil molding.For example, phenoxy resin, phenol resin, melamine resin, etc. , and a titanium compound blended with polyhydroxypolyether resin have been proposed. However, this method of curing at the B stage has poor film flexibility and cannot be applied to modern high-speed automatic winding machines, and the shelf life of wire is very short, so it is practically impossible to apply it. Use is limited to large cloth.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の問題点を解決すべく鋭意研究の結果なさ
れたもので、導体上に他の絶縁物を介して融着樹脂層を
設けてなる自己融着性絶縁電線において、該融着樹脂層
が低分枝ポリヒダントイン樹脂100重量部、4.4′
−ジフェニルメタンジイソシアネートの安定化物5〜4
0重量部、分子量10000以上のポリヒドロキシポリ
エーテル樹脂10〜100重量部をフェノール類あるい
はフェノール類と芳香族炭化水素との混合からなる溶媒
中に溶解した溶液を塗布しこれを焼付けて形成された5
〜20%重量%の残存フェノール頻溶媒を有するもので
あることを特徴とするものである。
The present invention was made as a result of intensive research to solve the above problems, and is a self-bonding insulated wire in which a fusion resin layer is provided on a conductor via another insulator. The layer is 100 parts by weight of low branched polyhydantoin resin, 4.4'
- Stabilized products of diphenylmethane diisocyanate 5 to 4
0 parts by weight, and 10 to 100 parts by weight of polyhydroxy polyether resin with a molecular weight of 10,000 or more dissolved in a solvent consisting of phenols or a mixture of phenols and aromatic hydrocarbons. 5
It is characterized by having a residual phenol-rich solvent of ~20% by weight.

まず、本発明で用いる低分枝ポリヒダントインは溶液の
状態でポリヒダントイン酸または一部閉環してポリヒダ
ントイン環を形成しているものであり、通常グリシン誘
導体及びイソシアネート、アミン等の反応により得られ
るものである。またポリヒダントイン樹脂溶液の詳細な
製造方法としては例えば特公昭44−20115号に記
載されている。
First, the low-branched polyhydantoin used in the present invention is polyhydantoin acid in a solution state or partially ring-closed to form a polyhydantoin ring, and is usually obtained by reaction of glycine derivatives, isocyanates, amines, etc. It is something. Further, a detailed method for producing a polyhydantoin resin solution is described, for example, in Japanese Patent Publication No. 44-20115.

また分技度は本発明の場合、低い方が好適であり、独国
バイエル社商品名PH20が市販品として適用し得る。
Further, in the case of the present invention, a lower degree of separation is preferable, and PH20, a product of Bayer AG, Germany, can be applied as a commercial product.

次に本発明で用いる4、4′−ジフェニルメタンジイソ
シアネートの安定化物とは4.4′−ジフェニルメタン
ジイソシアネートをフェノール、クレゾール、キシレノ
ール等でマスキングしたもので次の構造式(1)を有す
るものである。
Next, the stabilized product of 4,4'-diphenylmethane diisocyanate used in the present invention is a product obtained by masking 4,4'-diphenylmethane diisocyanate with phenol, cresol, xylenol, etc., and has the following structural formula (1).

なおこの4,4′−ジフェニルメタンジイソシアネート
の安定化に際しては触媒が使用され、オクチル酸亜鉛等
が好適に使用され得る。また安定化物としては日本ポリ
ウレタン社製商品名MS−50がある。
Note that a catalyst is used to stabilize this 4,4'-diphenylmethane diisocyanate, and zinc octylate or the like can be suitably used. Further, as a stabilized product, there is a product name MS-50 manufactured by Nippon Polyurethane Co., Ltd.

次に本発明で用いる分子量10000以上のポリヒドロ
キシポリエーテル樹脂とは次の構造式(2)、(3)%
式% (n、mは正の整数、Rは脂肪族または芳香族残基を示
す) これらポリヒドロキシポリエーテル樹脂の分子量は平均
で10000以上を必要とする。 10000未満であ
ると得られた自己融着性絶縁電線の可撓性が不足するた
めである。ポリヒドロキシポリエーテル樹脂として市販
されているものにYP−50(東部化成社製商品名) 
、I(157、H353(大日本インキ社製商品名)が
ある。
Next, the polyhydroxy polyether resin with a molecular weight of 10,000 or more used in the present invention has the following structural formula (2), (3)%
Formula % (n, m are positive integers, R represents an aliphatic or aromatic residue) The molecular weight of these polyhydroxy polyether resins needs to be 10,000 or more on average. This is because if it is less than 10,000, the resulting self-bonding insulated wire will lack flexibility. YP-50 (trade name manufactured by Tobu Kasei Co., Ltd.) is a commercially available polyhydroxy polyether resin.
, I (157, H353 (trade name, manufactured by Dainippon Ink Co., Ltd.).

本発明では低分枝ポリヒダントイン樹脂100重量部に
対して、4.4’−ジフェニルメタンジイソシアネート
の安定化物の配合量を5〜40重量部に限定したがその
理由は該安定化剤の配合量が5重量部未満では低分枝ポ
リヒダントイン樹脂、ポリヒドロキシ余りエーテル樹脂
を架橋硬化する効果に乏しく、かつ得られる皮膜の耐熱
性、耐冷媒性が不足する。また配合量が40重量部を超
えると可撓性が不足するためである。ポリヒドロキシポ
リエーテル樹脂の配合量を低分枝ポリヒダントイン樹脂
100重量部に対して10〜100重量部と限定した理
由は該樹脂の配合量が10重量部未満では電線の可撓性
に劣り、また接着に要する温度が高くなり過ぎ実用上好
ましくないためであり、また100重量部を超えると皮
膜全体の耐熱性が低下するとともに耐冷媒性も低下する
ためである。
In the present invention, the amount of the stabilizer of 4,4'-diphenylmethane diisocyanate was limited to 5 to 40 parts by weight per 100 parts by weight of the low-branched polyhydantoin resin. If the amount is less than 5 parts by weight, the effect of crosslinking and curing the low-branched polyhydantoin resin and polyhydroxy-excess ether resin will be poor, and the resulting film will lack heat resistance and refrigerant resistance. This is also because if the blending amount exceeds 40 parts by weight, flexibility will be insufficient. The reason why the amount of the polyhydroxy polyether resin is limited to 10 to 100 parts by weight per 100 parts by weight of the low-branched polyhydantoin resin is that if the amount of the resin is less than 10 parts by weight, the flexibility of the electric wire will be poor; This is also because the temperature required for adhesion becomes too high, which is not desirable in practice, and if the amount exceeds 100 parts by weight, the heat resistance of the entire film decreases, as well as the refrigerant resistance.

以上の配合の他に本発明の効果を損わない程度に他の成
分例えばフェノール樹脂、メラミン樹脂、安定化イソシ
アネート等を少量配合することも可能であり、これらも
発明に含まれるものであるが、これらの配合は最小量に
とどめるべきである。
In addition to the above formulations, it is also possible to include small amounts of other components such as phenol resins, melamine resins, stabilized isocyanates, etc., to the extent that they do not impair the effects of the present invention, and these are also included in the invention. , their inclusion should be kept to a minimum.

本発明で得られた自己融着性絶縁電線の特性を発現する
ためには形成された融着樹脂層中に溶媒として使用する
フェノール、クレゾール、キシレノール等のフェノール
系溶媒が5〜20重量%残存させることが必要である。
In order to exhibit the characteristics of the self-bonding insulated wire obtained in the present invention, 5 to 20% by weight of a phenolic solvent such as phenol, cresol, xylenol, etc., used as a solvent must remain in the formed fusion resin layer. It is necessary to do so.

溶媒残存量が5重量%未満では融着温度が200°Cを
超え実用上使用できず、20重量%を超えると皮膜の可
撓性が劣るようになるとともに多量の溶媒が融着後も残
存することになるため好ましくない。
If the residual amount of solvent is less than 5% by weight, the fusion temperature will exceed 200°C and it cannot be used for practical purposes, and if it exceeds 20% by weight, the flexibility of the film will be poor and a large amount of solvent will remain even after fusion. This is not desirable because it means doing so.

〔実施例1〕 以下本発明の詳細な説明する。実施例1は低分枝ポリヒ
ダントイン樹脂溶液(独国バイエル社製商品名PI42
0、固型分30%)100重量部、4゜4′−ジフェニ
ルメタンジイソシアネートの安定化物(日本ボリウレク
ン工業社製商品名MS50)の30%クレゾール/ナフ
サ溶液15重量部、ポリヒドロキシポリエーテル樹脂(
東部化成社製商品名YP50)の30%クレゾールノナ
フサ溶液100重量をフラスコに仕込み、120°Cで
3時間加熱撹拌し、自己融着性塗料を得た。この自己融
着性塗料を直径1.0mmのエステルイミド絶縁銅線上
に塗布焼付(炉長3m、炉温300”C,線速10m/
分)を3回繰返して行ない本発明の自己融着性絶縁電線
を得た。得られた絶縁電線の融着層のフェノール類の合
計の溶媒残存率を熱分解ガスクロマトグラフで測定した
ところ12.5%であった。
[Example 1] The present invention will be described in detail below. Example 1 is a low-branched polyhydantoin resin solution (product name: PI42, manufactured by Bayer AG, Germany).
0, solid content 30%) 100 parts by weight, 15 parts by weight of a 30% cresol/naphtha solution of a stabilized product of 4゜4'-diphenylmethane diisocyanate (trade name MS50, manufactured by Nippon Polyurekun Kogyo Co., Ltd.), polyhydroxypolyether resin (
100 weight of a 30% cresol nonaphtha solution (trade name: YP50) manufactured by Tobu Kasei Co., Ltd. was charged into a flask and heated and stirred at 120°C for 3 hours to obtain a self-fusing paint. This self-adhesive paint is applied and baked onto an esterimide insulated copper wire with a diameter of 1.0 mm (furnace length: 3 m, furnace temperature: 300"C, line speed: 10 m/s).
) was repeated three times to obtain a self-bonding insulated wire of the present invention. The total solvent residual rate of phenols in the fused layer of the obtained insulated wire was measured using a pyrolysis gas chromatograph and found to be 12.5%.

次にこの絶縁電線の性能を見るために接着強度試験、可
撓性試験、冷媒抽出試験を行なって第1表に併記した。
Next, in order to examine the performance of this insulated wire, an adhesive strength test, a flexibility test, and a refrigerant extraction test were conducted and the results are also listed in Table 1.

なお接着強度試験は直径6.5mmの丸棒に試料を密に
巻き付けて長さ80amのヘリカルコイルを作成し、こ
れを150’Ct’1時間加熱し7ASTM  D−2
519に準じて常温及び120″C中での接着強度を測
定した。可撓性試験は試料を自己径(1,O圓)に10
ターン巻き付けて皮膜のキレツ発生数を調べた。冷媒抽
出試験は試料をその全皮膜層重量が2gになるように取
り、フレオンR−113で洗浄した後、150°Cで1
時間加熱し、これを内容積450ccのオートクレーブ
にフレオンR−22200gと共に封入し、120°C
で72時間加熱させた後オートクレーブを冷却しフレオ
ンを蒸発させて抽出物の重量を測定し、抽出率を計算し
た。但し、〔実施例2〜5] 第1表に示す組成と製造条件で実施例1と同様に自己融
着性絶縁電線を作製し、実施例1と同様の試験を行なっ
てその結果を第1表に併記した。
For the adhesive strength test, a helical coil with a length of 80 am was created by tightly wrapping the sample around a round bar with a diameter of 6.5 mm, and this was heated at 150'Ct' for 1 hour to obtain a 7ASTM D-2 test.
The adhesive strength was measured at room temperature and at 120"C according to the standard No. 519. For the flexibility test, the sample was
The number of cracks in the film was examined by winding the film in turns. For the refrigerant extraction test, a sample was taken so that the total weight of the film layer was 2 g, washed with Freon R-113, and then heated at 150°C for 1 hour.
This was heated for an hour, then sealed in an autoclave with an internal volume of 450 cc along with 2200 g of Freon R-22, and heated to 120°C.
After heating for 72 hours, the autoclave was cooled to evaporate Freon, the weight of the extract was measured, and the extraction rate was calculated. However, [Examples 2 to 5] Self-bonding insulated wires were produced in the same manner as in Example 1 using the composition and manufacturing conditions shown in Table 1, and the same tests as in Example 1 were conducted. Also listed in the table.

〔比較例1〜4〕 第1表に示す組成と製造条件で実施例1と同様に自己融
着性絶縁電線を作製し、実施例1と同様の試験を行なっ
て結果を第1表に併記した。
[Comparative Examples 1 to 4] Self-bonding insulated wires were produced in the same manner as in Example 1 using the composition and manufacturing conditions shown in Table 1, and the same tests as in Example 1 were conducted, and the results are also listed in Table 1. did.

〔比較例5〕 直径1.0mのエステルイミド絶縁銅線を直径6.5閤
の丸棒に密に巻き付けて長さ80mmのヘリカルコイル
を作成し、エポキシフェノール含浸フェス(米国(P、
D、George社製商品名PD923)を含侵し、1
60”Cで3時間加熱硬化させた。
[Comparative Example 5] An esterimide insulated copper wire with a diameter of 1.0 m was tightly wound around a round bar with a diameter of 6.5 mm to create a helical coil with a length of 80 mm.
D, impregnated with George's product name PD923), 1
It was heat cured at 60"C for 3 hours.

次にこの電線の性能を見るために接着強度試験、冷媒抽
出試験を実施例1と同様に行なって第1表に併記した。
Next, in order to examine the performance of this electric wire, an adhesive strength test and a refrigerant extraction test were conducted in the same manner as in Example 1, and the results are also listed in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上第1表から明らかなように本発明の自己融着性絶縁
電線は可撓性、耐熱性、耐冷媒性に優れているため、ト
ランス、電動機等の振動がかかり、かつ高温で使用され
るような機器へ応用することができる。
As is clear from Table 1 above, the self-bonding insulated wire of the present invention has excellent flexibility, heat resistance, and refrigerant resistance, so it can be used at high temperatures and subjected to vibrations from transformers, electric motors, etc. It can be applied to such devices.

Claims (1)

【特許請求の範囲】[Claims]  導体上に他の絶縁物を介して融着樹脂層を設けてなる
自己融着性絶縁電線において、該融着樹脂層が低分枝ポ
リヒダントイン樹脂100重量部、4、4′−ジフェニ
ルメタンジイソシアネートの安定化物5〜40重量部、
平均分子量10000以上のポリヒドロキシポリエーテ
ル樹脂10〜100重量部をフェノール類あるいはフェ
ノール類と芳香族炭化水素との混合物からなる溶媒中に
溶解した溶液を塗布しこれを焼付けて形成された5〜2
0重量%の残存フェノール類溶媒を有するものであるこ
とを特徴とする自己融着性絶縁電線。
In a self-bonding insulated wire in which a fusion resin layer is provided on a conductor via another insulator, the fusion resin layer is made of 100 parts by weight of a low-branched polyhydantoin resin and 4,4'-diphenylmethane diisocyanate. 5 to 40 parts by weight of stabilizer,
5-2 formed by applying a solution of 10 to 100 parts by weight of a polyhydroxy polyether resin having an average molecular weight of 10,000 or more dissolved in a solvent consisting of phenols or a mixture of phenols and aromatic hydrocarbons and baking the solution.
A self-bonding insulated wire having 0% by weight of residual phenolic solvent.
JP4497687A 1987-02-27 1987-02-27 Self-fusing insulated wire Pending JPS63213206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4497687A JPS63213206A (en) 1987-02-27 1987-02-27 Self-fusing insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4497687A JPS63213206A (en) 1987-02-27 1987-02-27 Self-fusing insulated wire

Publications (1)

Publication Number Publication Date
JPS63213206A true JPS63213206A (en) 1988-09-06

Family

ID=12706500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4497687A Pending JPS63213206A (en) 1987-02-27 1987-02-27 Self-fusing insulated wire

Country Status (1)

Country Link
JP (1) JPS63213206A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527386A (en) * 1978-06-21 1980-02-27 Schweizerische Isolawerke Thermosetting and thermocoupling laquer * production and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527386A (en) * 1978-06-21 1980-02-27 Schweizerische Isolawerke Thermosetting and thermocoupling laquer * production and use

Similar Documents

Publication Publication Date Title
US3022200A (en) Magnet wire and method of making same
JPH0336247B2 (en)
JPS63213206A (en) Self-fusing insulated wire
JP3525060B2 (en) Self-fusing insulating paint and self-fusing insulated wire using the same
US6899917B2 (en) Powdered epoxy composition
JPH02199709A (en) Self-fusing insulation cable
JP2890280B2 (en) Self-fusing insulated wire with excellent crazing properties and low-temperature adhesion
JPS63193406A (en) Self-melting insulated wire
JPH02207409A (en) Self-welding insulated wire
JPS5999617A (en) Soldable self-fusible polyesterimide insulated wire
US3063955A (en) Aqueous polyspirane resinous compositions containing half esters of polycarboxylic anhydride and method of making same
JP2890279B2 (en) Self-fusing insulated wire with excellent crazing properties and low-temperature adhesion
JPH01144505A (en) Self-fusion adhesive insulated cable
JP2571816B2 (en) Resin composition for electrical insulation for refrigerator motor
JPH02192614A (en) Insulated wire of self fused type
JPS60223868A (en) Self-welding enameled wire
JPH02223107A (en) Self-fusion insulated electric wire
JPS60223866A (en) Self-welding insulated wire
JPS59119613A (en) Self-adhesive insulated wire
JPH01294307A (en) Self-welded insulated wire
WO2004094500A1 (en) Powdered epoxy composition
JPS6147169B2 (en)
US20060009581A1 (en) Self-bonding insulated wire
JPH03246816A (en) Self-fusing insulation cable
JPH01292704A (en) Self-fusion type insulated wire