JPH02207409A - Self-welding insulated wire - Google Patents
Self-welding insulated wireInfo
- Publication number
- JPH02207409A JPH02207409A JP2592689A JP2592689A JPH02207409A JP H02207409 A JPH02207409 A JP H02207409A JP 2592689 A JP2592689 A JP 2592689A JP 2592689 A JP2592689 A JP 2592689A JP H02207409 A JPH02207409 A JP H02207409A
- Authority
- JP
- Japan
- Prior art keywords
- self
- weight
- resin
- parts
- insulated wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title abstract 3
- 229920005989 resin Polymers 0.000 claims abstract description 47
- 239000011347 resin Substances 0.000 claims abstract description 47
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000003973 paint Substances 0.000 claims abstract description 15
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims abstract description 7
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000004020 conductor Substances 0.000 claims abstract description 4
- 239000004697 Polyetherimide Substances 0.000 claims description 12
- 229920001601 polyetherimide Polymers 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims 1
- 239000003507 refrigerant Substances 0.000 abstract description 17
- 238000005452 bending Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract 2
- 229930185605 Bisphenol Natural products 0.000 abstract 1
- 238000005057 refrigeration Methods 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 14
- 239000010410 layer Substances 0.000 description 12
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 11
- 229930003836 cresol Natural products 0.000 description 11
- 238000000605 extraction Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 239000004840 adhesive resin Substances 0.000 description 8
- 229920006223 adhesive resin Polymers 0.000 description 8
- 238000007718 adhesive strength test Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229920004738 ULTEM® Polymers 0.000 description 7
- 235000011187 glycerol Nutrition 0.000 description 7
- 229920003055 poly(ester-imide) Polymers 0.000 description 7
- 239000011247 coating layer Substances 0.000 description 6
- CHJMFFKHPHCQIJ-UHFFFAOYSA-L zinc;octanoate Chemical compound [Zn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O CHJMFFKHPHCQIJ-UHFFFAOYSA-L 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 5
- 238000003756 stirring Methods 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical class CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、自己融着性絶縁電線に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a self-bonding insulated wire.
[従来の技術とその課題]
近年、自己融着性絶縁電線は、コイル巻工程後の固着が
簡単なため、コイル加工工程の合理化、省力化に伴って
需要が増大している。しかして、自己融着性絶縁電線の
用途は、小型トランス、小型モーター等だけでなく、大
型トランスや電動機等のような振動が加わり、しかも高
温にさらされて使用される機器にも拡大されている。[Prior Art and its Problems] In recent years, demand for self-bonding insulated wires has increased as the coil processing process becomes more rational and labor-saving because it is easy to fix after the coil winding process. Therefore, the use of self-bonding insulated wires has expanded not only to small transformers and small motors, but also to devices such as large transformers and motors that are subject to vibration and are exposed to high temperatures. There is.
しかしながら、従来の自己融着性絶縁電線は、融着樹脂
絶縁層にフェノキシ樹脂、ポリビニルブチラール樹脂、
ポリアミド樹脂等の熱可塑性樹脂を使用している。特に
、これらの熱可塑性樹脂のみで融着樹脂絶縁層を形成し
た絶縁電線を電動機等に使用すると、振動と高温によっ
て樹脂が破壊され、コイルがばらける問題を生じた。し
たがって、従来の自己融着性絶縁電線の用途は、使用す
る熱可塑性樹脂の耐熱温度を越えない温度で作動する機
器に限定されていた。更に、従来の自己融着性絶縁電線
を冷凍機等のハーメチックモーターに使用する場合も、
熱可塑性樹脂の耐冷媒性が悪いために使用できない問題
があった。However, conventional self-fusing insulated wires include phenoxy resin, polyvinyl butyral resin, etc. in the fusing resin insulation layer.
Thermoplastic resin such as polyamide resin is used. In particular, when an insulated wire with a fused resin insulating layer formed only of these thermoplastic resins is used in an electric motor or the like, the resin is destroyed by vibration and high temperature, causing the problem that the coil comes apart. Therefore, the use of conventional self-bonding insulated wires has been limited to equipment that operates at temperatures that do not exceed the heat resistance temperature of the thermoplastic resin used. Furthermore, when using conventional self-bonding insulated wires for hermetic motors such as refrigerators,
There was a problem that the thermoplastic resin could not be used because of its poor refrigerant resistance.
この問題に対して、被覆した融着樹脂絶縁層を半硬化さ
せた、即ちBステージ状態にして、コイル成形時の加熱
によって融着層を融着と完全に硬化させる自己融着性絶
縁電線が提案されている。To solve this problem, we have developed a self-bonding insulated wire in which the coated fusion resin insulating layer is semi-cured, that is, in a B stage state, and the fusion layer is fused and completely cured by heating during coil forming. Proposed.
しかじな−がら、この自己融着性絶縁電線は、可撓性、
巻線性、シェルフ寿命に劣る欠点を有していた。However, this self-bonding insulated wire has flexibility,
It had the disadvantage of poor windability and shelf life.
本発明は、かかる点に鑑みてなされたものであり、耐冷
媒性に優れ、しかも、可撓性、耐熱性に優れた自己融着
性絶縁電線を提供するものである。The present invention has been made in view of these points, and provides a self-bonding insulated wire that has excellent refrigerant resistance, flexibility, and heat resistance.
[課題を解決するための手段]
本発明は、下記−数式で示されるポリエーテルイミド樹
脂100重量部に対して、ウレタンプレポリマーを5な
いし40重量部、テトラブロムビスフェノールA及びビ
スフェノールAとエピクロルヒドリンより合成された平
均分子量が10000以上のポリヒドロキシエーテル樹
脂を20ないし200重量部を配合した塗料の塗布焼付
からなる融着性絶縁層を導体上に直接又は他の絶縁物層
を介して設けてなることを特徴とする自己融着性絶縁電
線である。[Means for Solving the Problems] The present invention provides 5 to 40 parts by weight of a urethane prepolymer, tetrabromobisphenol A, bisphenol A, and epichlorohydrin to 100 parts by weight of a polyetherimide resin represented by the following formula. A fusible insulating layer formed by coating and baking a paint containing 20 to 200 parts by weight of a synthesized polyhydroxyether resin with an average molecular weight of 10,000 or more is provided directly on the conductor or via another insulating layer. This is a self-bonding insulated wire characterized by the following.
一般式
ここで、本発明の融着性絶縁層に使用する第1の構成成
分であるポリエーテルイミド樹脂とは、下記の構造式で
示されるものであり、米国GE社から商品名「ウルテム
」として市販されている。General Formula Here, the polyetherimide resin that is the first component used in the fusible insulating layer of the present invention is represented by the following structural formula, and is manufactured by GE Corporation in the United States under the trade name "Ultem". It is commercially available as.
構造式
構造式
また、第2の構成成分であるウレタンプレポリマーは、
下記の構造式で示されるものであり、多価イソシアネー
トと多価アルコールとを反応させて得るオリゴマーであ
る。これは、例えば、MS−50(日本ポリウレタン社
製、商品名)とグリセリンとを触媒としてオクチル酸亜
鉛の存在下で加熱反応させて得ることができる。具体的
には、4.4’ −ジフェニルメタンジイソシアネート
とグリセリンからなるウレタンポリマーが好ましいが、
その他の種々の組合わせによるプレポリマーも使用する
ことができる。Structural formula Structural formula In addition, the second component, the urethane prepolymer, is
It is shown by the following structural formula, and is an oligomer obtained by reacting a polyvalent isocyanate and a polyhydric alcohol. This can be obtained, for example, by heating MS-50 (manufactured by Nippon Polyurethane Co., Ltd., trade name) and glycerin as a catalyst in the presence of zinc octylate. Specifically, a urethane polymer consisting of 4,4'-diphenylmethane diisocyanate and glycerin is preferred;
Other various combinations of prepolymers can also be used.
また、第3の構成成分であるテトラブロムビスフェノー
ルAと、ビスフェノールAと、エピクロルヒドリンとか
ら合成されるポリヒドロキシエーテル樹脂は、下記の構
造式に示す平均分子量10000以上のものである。こ
れには、例えば、市販品としてYP843C(東部化成
社製商品名)がある。Further, the polyhydroxyether resin synthesized from the third component, tetrabromobisphenol A, bisphenol A, and epichlorohydrin, has an average molecular weight of 10,000 or more as shown in the following structural formula. For example, YP843C (trade name, manufactured by Tobu Kasei Co., Ltd.) is a commercially available product.
構造式
(式中、fl、rは正の整釦
なお、このヒドロキシエーテル樹脂を平均分子量を10
000以上としたのは、10000未満のものを使用し
た場合には、得られた自己融着性絶縁電線の可撓性が充
分でないからである。また、式中のNorの比は1:5
〜1:1の範囲で任意に選定することができる。Structural formula (where fl and r are positive buttons) This hydroxyether resin has an average molecular weight of 10
000 or more is because if less than 10,000 is used, the resulting self-bonding insulated wire will not have sufficient flexibility. Also, the ratio of Nor in the formula is 1:5
It can be arbitrarily selected within the range of ~1:1.
本発明において、ウレタンプレポリマーの配合量をポリ
エーテルイミド樹脂100重量部に対して5ないし40
重量部としたのは、ウレタンプレポリマーの配合量が5
重量部未満の場合には、ポリエーテルイミド樹脂及びポ
リヒドロキシエーテル樹脂を架橋硬化が充分に行われず
、且つ得られた融着性絶縁層が充分な耐熱性及び耐冷媒
性を発揮せず、40重量部を超えて多量に配合した場合
には、得られた融着性絶縁層が充分な可撓性を発揮しな
いからである。In the present invention, the blending amount of the urethane prepolymer is 5 to 40 parts by weight per 100 parts by weight of the polyetherimide resin.
The weight part is based on the amount of urethane prepolymer added to 5.
If the amount is less than 40 parts by weight, the polyetherimide resin and polyhydroxyether resin will not be sufficiently crosslinked and cured, and the resulting fusible insulating layer will not exhibit sufficient heat resistance and refrigerant resistance. This is because if the amount exceeds 1 part by weight, the resulting fusible insulating layer will not exhibit sufficient flexibility.
また、ポリヒドロキシエーテル樹脂の配合量をポリエー
テルイミド樹脂100重量部に対して20ないし200
重量部としたのは、ポリヒドロキシエーテル樹脂の配合
量が20重量部未満の場合には、得られた融着性絶縁層
が充分な可撓性を発揮せず、且つ接着に要する温度が高
すぎて実用上好ましくなく、200重量部を超えて多量
に配合した場合には、得られた融着性絶縁層が充分な耐
熱性及び耐冷媒性を発揮しないからである。In addition, the amount of polyhydroxyether resin blended is 20 to 200 parts by weight per 100 parts by weight of polyetherimide resin.
This is because if the amount of polyhydroxyether resin blended is less than 20 parts by weight, the resulting fusible insulating layer will not exhibit sufficient flexibility and the temperature required for adhesion will be high. This is undesirable from a practical standpoint, and if the amount exceeds 200 parts by weight, the resulting fusible insulating layer will not exhibit sufficient heat resistance and refrigerant resistance.
[作用]
本発明の自己融着性絶縁電線によれば、融着性絶縁層を
、優れた耐熱性及び耐冷媒性を有するウレタンプレポリ
マーと優れた可撓性を有するポリヒドロキシエーテル樹
脂をポリエーテルイミド樹脂と適度に架橋させたものに
している。このため、熱及び冷媒に対しては、ウレタン
プレポリマ一部の特性を発揮し、曲げ等の応力に対して
は、ポリヒドロキシエーテル樹脂部の特性を発揮させる
ことができる。[Function] According to the self-bonding insulated wire of the present invention, the fusible insulating layer is made of a urethane prepolymer having excellent heat resistance and refrigerant resistance, and a polyhydroxy ether resin having excellent flexibility. It is moderately crosslinked with etherimide resin. Therefore, it is possible to exhibit the properties of a part of the urethane prepolymer against heat and coolant, and to exhibit the properties of the polyhydroxyether resin part against stress such as bending.
[実施例] 次に、本発明を実施例を挙げて具体的に説明する。[Example] Next, the present invention will be specifically explained with reference to Examples.
実施例1
ポリエーテルイミド樹脂としてウルテム(米国GE社製
、商品名)の30%クレゾール溶液を100ffiff
i部と、ウレタンプレポリマーとしてMS−50(日本
ポリウレタン工業社製、商品名)の30%クレゾール溶
液を5重量部と、ポリヒドロキシエーテル樹脂としてY
P843C(東部化成社製、商品名、固型分30%)の
溶液を20重量部とをフラスコに入れ、80℃で30分
間、加熱しながら撹拌して、自己融着性樹脂塗料を得た
。Example 1 100ffiff of a 30% cresol solution of Ultem (manufactured by GE, USA, trade name) as a polyetherimide resin.
Part i, 5 parts by weight of a 30% cresol solution of MS-50 (manufactured by Nippon Polyurethane Industries Co., Ltd., trade name) as a urethane prepolymer, and Y as a polyhydroxyether resin.
20 parts by weight of a solution of P843C (manufactured by Tobu Kasei Co., Ltd., trade name, solid content 30%) was placed in a flask and stirred while heating at 80°C for 30 minutes to obtain a self-fusing resin paint. .
なお、ウレタンプレポリマーは、キシレノールを溶媒と
して、MS−50を100重量部とグリセリン12重量
部とを触媒としてオクチル酸亜鉛と共にフラスコに入れ
、120℃で4時間、加熱しながら撹拌して、予め調整
した。The urethane prepolymer was prepared in advance by placing xylenol as a solvent, 100 parts by weight of MS-50, and 12 parts by weight of glycerin as catalysts together with zinc octylate in a flask, and heating and stirring at 120°C for 4 hours. It was adjusted.
次に、予め軟銅線上にポリエステルイミド樹脂を被覆し
た直径0.65mmの絶縁銅線上に得られた自己融着性
樹脂塗料を塗布し、焼付けた。なお、焼付けは、長さ3
m、炉内温度300’Cの炉内に線速12m/分で通し
て行った。この工程を3回繰り返して本発明の自己融着
性絶縁電線(実施例1)を得た。Next, the obtained self-adhesive resin paint was applied onto an insulated copper wire having a diameter of 0.65 mm, which had been coated with a polyesterimide resin on an annealed copper wire, and baked. In addition, the length of baking is 3
The sample was passed through a furnace with a furnace temperature of 300'C and a linear velocity of 12 m/min. This process was repeated three times to obtain a self-bonding insulated wire (Example 1) of the present invention.
この自己融着性絶縁電線に対して、接着強度試験、可撓
性試験、及び冷媒抽出試験を行った。その結果を下記第
1表に示す。This self-bonding insulated wire was subjected to an adhesive strength test, a flexibility test, and a refrigerant extraction test. The results are shown in Table 1 below.
なお、接着強度試験は、直径5.0m+sの金属丸棒に
試験に供する絶縁電線を密に巻付けて、長さ80 mm
のヘリカルコイルを作成し、これを180℃で1時間加
熱した後にASTMD2159に準じて常温及び120
℃における接着強度を測定して行なった。In addition, in the adhesive strength test, the insulated wire to be tested was tightly wound around a metal round bar with a diameter of 5.0 m + s, and the length was 80 mm.
A helical coil of
The adhesive strength at ℃ was measured.
また、可撓性試験は、試験に供する絶縁電線を自己径(
0,65m+s)に10ターン巻付けて被覆層に発生し
た亀裂の数を調べて行った。In addition, in the flexibility test, the insulated wire to be tested is
The number of cracks generated in the coating layer was determined by winding the coating layer for 10 turns (0.65 m+s).
また、冷媒抽出試験は、以下のように行った。Moreover, the refrigerant extraction test was conducted as follows.
まず、試験に倶する絶縁電線の被覆層を2g採取し、こ
れをフレオンR−113で洗浄し、その後、採取した被
覆層を150℃で1時間加熱する。これを内容積450
ccのオートクレーブ中に200gのフレオンR−22
と共に封入し、120℃で72時間加熱し、その後、オ
ートクレーブを冷却させてフレオンを蒸発させて抽出す
る。First, 2 g of the coating layer of the insulated wire to be tested is taken, washed with Freon R-113, and then the collected coating layer is heated at 150° C. for 1 hour. This has an internal volume of 450
200g Freon R-22 in a cc autoclave
The autoclave is then cooled to evaporate and extract Freon.
この後に被覆層の重量を測定し、下式により抽出率を算
出する。After that, the weight of the coating layer is measured, and the extraction rate is calculated using the following formula.
抽出率−抽出後の被覆層の重量(g ) X 100/
2実施例2
ポリエーテルイミド樹脂としてウルテムの30%クレゾ
ール溶液を100重量部と、ウレタンプレポリマーとし
てMS−50の30%クレゾール溶液を5重量部と、ポ
リヒドロキシエーテル樹脂としてYP843Cの溶液を
50重量部とをフラスコに入れ、80℃で30分間、加
熱しながら撹拌して、自己融着性樹脂塗料を得た。なお
、ウレタンプレポリマーは、キシレノールを溶媒として
、MS−50を100重量部とグリセリン12重量部と
を触媒としてオクチル酸亜鉛と共にフラスコに入れ、1
20℃で4時間、加熱しながら撹拌して、予め調整した
。Extraction rate - weight of coating layer after extraction (g) x 100/
2 Example 2 100 parts by weight of a 30% cresol solution of Ultem as a polyetherimide resin, 5 parts by weight of a 30% cresol solution of MS-50 as a urethane prepolymer, and 50 parts by weight of a solution of YP843C as a polyhydroxyether resin. The mixture was placed in a flask and stirred while heating at 80° C. for 30 minutes to obtain a self-adhesive resin coating. The urethane prepolymer was prepared by placing it in a flask together with zinc octylate using xylenol as a solvent, 100 parts by weight of MS-50 and 12 parts by weight of glycerin as a catalyst.
The mixture was prepared in advance by stirring at 20° C. for 4 hours while heating.
次に、予め軟銅線上にポリエステルイミド樹脂を被覆し
である直径0.65mmの絶縁銅線上に得られた自己融
着性樹脂塗料を塗布し、焼付けた。Next, the obtained self-adhesive resin paint was applied onto an insulated copper wire having a diameter of 0.65 mm, which had been prepared by coating an annealed copper wire with a polyesterimide resin, and baked.
なお、焼付けは、長さ3 m s炉内温度300℃の炉
内に線速12m/分で通して行った。この工程を3回繰
り返して本発明の自己融着性絶縁電線(実施例2)を得
た。The baking was performed by passing the film through a furnace having a length of 3 m s and an internal temperature of 300° C. at a linear speed of 12 m/min. This process was repeated three times to obtain a self-bonding insulated wire (Example 2) of the present invention.
この自己融着性絶縁電線に対して、実施例1と同様にし
て接着強度試験、可撓性試験、及び冷媒抽出試験を行っ
た。その結果を第1表に併記する。This self-bonding insulated wire was subjected to an adhesive strength test, a flexibility test, and a refrigerant extraction test in the same manner as in Example 1. The results are also listed in Table 1.
実施例3
ポリエーテルイミド樹脂としてウルテムの30%クレゾ
ール溶液を100重量部と、ウレタンプレポリマーとし
てMS−50の30%クレゾール溶液を15重量部と、
ポリヒドロキシエーテル樹脂としてYPB43Cの溶液
を100重量部とをフラスコに入れ、80℃で30分間
、加熱しながら撹拌して、自己融着性樹脂塗料を得た。Example 3 100 parts by weight of a 30% cresol solution of Ultem as a polyetherimide resin, 15 parts by weight of a 30% cresol solution of MS-50 as a urethane prepolymer,
100 parts by weight of a solution of YPB43C as a polyhydroxyether resin was placed in a flask and stirred while heating at 80°C for 30 minutes to obtain a self-fusing resin paint.
なお、ウレタンプレポリマーは、キシレノールを溶媒と
して、MS−50を100重量部とグリセリン12ff
i量部とを触媒としてオクチル酸亜鉛と共にフラスコに
入れ、120℃で4時間、加熱しながら撹拌して、予め
調整した。The urethane prepolymer was made by using xylenol as a solvent, 100 parts by weight of MS-50, and 12 ff of glycerin.
i parts were placed in a flask together with zinc octylate as a catalyst, and stirred while heating at 120°C for 4 hours to prepare in advance.
次に、予め軟銅線上にポリエステルイミド樹脂を被覆し
である直径0.65mmの絶縁銅線上に得られた自己融
着性樹脂塗料を塗布し、焼付けた。Next, the obtained self-adhesive resin paint was applied onto an insulated copper wire having a diameter of 0.65 mm, which had been prepared by coating an annealed copper wire with a polyesterimide resin, and baked.
なお、焼付けは、長さ3 m s炉内温度300℃の炉
内に線速10m/分で通して行った。この工程を3回繰
り返して本発明の自己融着性絶縁電線(実施例3)を得
た。The baking was performed by passing the film through a furnace having a length of 3 ms and an internal temperature of 300° C. at a linear speed of 10 m/min. This process was repeated three times to obtain a self-bonding insulated wire (Example 3) of the present invention.
この自己融着性絶縁電線に対して、実施例1と同様にし
て接着強度試験、可撓性試験、及び冷媒抽出試験を行っ
た。その結果を第1表に併記する。This self-bonding insulated wire was subjected to an adhesive strength test, a flexibility test, and a refrigerant extraction test in the same manner as in Example 1. The results are also listed in Table 1.
実施例4
ポリエーテルイミド樹脂としてウルテムの30%クレゾ
ール溶液を100重量部と、ウレタンプレポリマーとし
てMS−50の30%クレゾール溶液を35重量部と、
ポリヒドロキシエーテル樹脂としてYP843Cの溶液
を200重量部とをフラスコに入れ、80℃で30分間
1、加熱しながら撹拌して、自己融着性樹脂塗料を得た
。なお、ウレタンプレポリマーは、キシレノールを溶媒
として、MS−50を100重量部とグリセリン12f
fij1部とを触媒としてオクチル酸亜鉛と共にフラス
コに入れ、120℃で4時間、加熱しながら撹拌して、
予め調整した。Example 4 100 parts by weight of a 30% cresol solution of Ultem as a polyetherimide resin, 35 parts by weight of a 30% cresol solution of MS-50 as a urethane prepolymer,
200 parts by weight of a solution of YP843C as a polyhydroxyether resin was placed in a flask and stirred while heating at 80° C. for 30 minutes to obtain a self-fusing resin paint. The urethane prepolymer was made by using xylenol as a solvent, 100 parts by weight of MS-50, and 12f glycerin.
1 part of fij was placed in a flask together with zinc octylate as a catalyst, and stirred while heating at 120°C for 4 hours.
Adjusted in advance.
次に、予め軟銅線上にポリエステルイミド樹脂を被覆し
である直径0.65mmの絶縁銅線上に得られた自己融
着性樹脂塗料を塗布し、焼付けた。Next, the obtained self-adhesive resin paint was applied onto an insulated copper wire having a diameter of 0.65 mm, which had been prepared by coating an annealed copper wire with a polyesterimide resin, and baked.
なお、焼付けは、長さ3 m s炉内温度300℃の炉
内に線速12m/分で通して行った。この工程を3回繰
り返して本発明の自己融着性絶縁電線(実施例4)を得
た。The baking was performed by passing the film through a furnace having a length of 3 m s and an internal temperature of 300° C. at a linear speed of 12 m/min. This process was repeated three times to obtain a self-bonding insulated wire (Example 4) of the present invention.
この自己融着性絶縁電線に対して、実施例1と同様にし
て接着強度試験、可撓性試験、及び冷媒抽出試験を行っ
た。その結果を第1表に併記する。This self-bonding insulated wire was subjected to an adhesive strength test, a flexibility test, and a refrigerant extraction test in the same manner as in Example 1. The results are also listed in Table 1.
比較例1
ポリエーテルイミド樹脂としてウルテムの30%クレゾ
ール溶液を100重量部と、ポリヒドロキシエーテル樹
脂としてYP843Cの溶液を100重量部とをフラス
コに入れ、80℃で30分間、加熱しながら撹拌して、
自己融着性樹脂塗料を得た。Comparative Example 1 100 parts by weight of a 30% cresol solution of Ultem as a polyetherimide resin and 100 parts by weight of a solution of YP843C as a polyhydroxyether resin were placed in a flask and stirred while heating at 80°C for 30 minutes. ,
A self-fusing resin paint was obtained.
次に、予め軟銅線上にポリエステルイミド樹脂を被覆し
である直径0.65龍の絶縁銅線上に得られた自己融着
性樹脂塗料を塗布し、焼付けた。Next, the obtained self-adhesive resin paint was applied onto an insulated copper wire having a diameter of 0.65 mm, which was prepared by coating an annealed copper wire with a polyesterimide resin, and baked.
なお、焼付けは、長さ3 m s炉内温度300℃の炉
内に線速12m/分で通して行った。この工程を3回繰
り返して自己融着性絶縁電線(比較例1)を得た。The baking was performed by passing the film through a furnace having a length of 3 m s and an internal temperature of 300° C. at a linear speed of 12 m/min. This process was repeated three times to obtain a self-bonding insulated wire (Comparative Example 1).
この自己融着性絶縁電線に対して、実施例1と同様にし
て接着強度試験、可撓性試験、及び冷媒抽出試験を行っ
た。その結果を第1表に併記する。This self-bonding insulated wire was subjected to an adhesive strength test, a flexibility test, and a refrigerant extraction test in the same manner as in Example 1. The results are also listed in Table 1.
比較例2
ポリエーテルイミド樹脂としてウルテムの30%クレゾ
ール溶液を100重量部と、ウレタンプレポリマーとし
てMS−50の30%クレゾール溶液を50重量部と、
ポリヒドロキシエーテル樹脂としてYP843Gの溶液
を14重量部とをフラスコに入れ、80℃で30分間、
加熱しながら撹拌して、自己融着性樹脂塗料を得た。な
お、ウレタンプレポリマーは、キシレノールを溶媒とし
て、MS−50を100重量部とグリセリン12重量部
とを触媒としてオクチル酸亜鉛と共にフラスコに入れ、
120℃で4時間、加熱しながら撹拌して、予め調整し
た。Comparative Example 2 100 parts by weight of a 30% cresol solution of Ultem as a polyetherimide resin, 50 parts by weight of a 30% cresol solution of MS-50 as a urethane prepolymer,
14 parts by weight of a solution of YP843G as a polyhydroxyether resin was placed in a flask and heated at 80°C for 30 minutes.
A self-adhesive resin paint was obtained by stirring while heating. The urethane prepolymer was prepared by putting xylenol as a solvent, 100 parts by weight of MS-50 and 12 parts by weight of glycerin in a flask together with zinc octylate, and
The mixture was prepared in advance by stirring at 120° C. for 4 hours while heating.
次に、予め軟銅線上にポリエステルイミド樹脂を被覆し
である直径0.65mmの絶縁銅線上に得られた自己融
着性樹脂塗料を塗布し、焼付けた。Next, the obtained self-adhesive resin paint was applied onto an insulated copper wire having a diameter of 0.65 mm, which had been prepared by coating an annealed copper wire with a polyesterimide resin, and baked.
なお、焼付けは、長さ3 m s炉内温度300℃の炉
内に線速14m/分で通して行った。この工程を3回繰
り返して自己融着性絶縁電線(比較例2)を得た。The baking was performed by passing the film through a furnace having a length of 3 m s and an internal temperature of 300° C. at a linear speed of 14 m/min. This process was repeated three times to obtain a self-bonding insulated wire (Comparative Example 2).
この自己融着性絶縁電線に対して、実施例1と同様にし
て接着強度試験、可撓性試験、及び冷媒抽出試験を行っ
た。その結果を第1表に併記する。This self-bonding insulated wire was subjected to an adhesive strength test, a flexibility test, and a refrigerant extraction test in the same manner as in Example 1. The results are also listed in Table 1.
比較例3
予め軟銅線上にポリエステルイミド樹脂を被覆しである
直径0.65關の絶縁銅線を直径5.01の金属製丸棒
に密に巻付け、長さ80!+111のヘリカルコイルを
作成した。その後、それをエポキシフェノール含浸ワニ
スPD923 (米国P、D、George社製、商品
名)中に含浸させて、160℃で3時間加熱硬化して絶
縁電線(比較例3)を得た。Comparative Example 3 An insulated copper wire with a diameter of 0.65mm, which was prepared by coating polyesterimide resin on an annealed copper wire, was tightly wound around a metal round bar with a diameter of 5.0mm, and the length was 80mm! I created a +111 helical coil. Thereafter, it was impregnated into epoxyphenol-impregnated varnish PD923 (manufactured by George, Inc., P, D, USA, trade name) and cured by heating at 160° C. for 3 hours to obtain an insulated wire (Comparative Example 3).
この絶縁電線に対して、実施例1と同様にして接着強度
試験、可撓性試験、及び冷媒抽出試験を行った。その結
果を第1表に併記する。This insulated wire was subjected to an adhesive strength test, a flexibility test, and a refrigerant extraction test in the same manner as in Example 1. The results are also listed in Table 1.
第1表から明らかなように、実施例1〜4の本発明の自
己融着性絶縁電線は、高温での接着強度、可撓性、耐冷
媒性に優れていた。これに対して、ウレタンプレポリマ
ーを含有しない自己融着性絶縁電線(比較例1)は、高
温での接着強度が弱く、本発明の範囲を超える量のウレ
タンプレポリマーを含有する自己融着性絶縁電線(比較
例2)は、可撓性が悪く、本発明の構成成分のいずれも
含有しない絶縁電線(比較例3)は、高温での接着強度
が弱く、しかも耐冷媒性が悪いことが分った。As is clear from Table 1, the self-bonding insulated wires of Examples 1 to 4 of the present invention were excellent in adhesive strength, flexibility, and refrigerant resistance at high temperatures. On the other hand, the self-bonding insulated wire that does not contain urethane prepolymer (Comparative Example 1) has weak adhesive strength at high temperatures, and the self-bonding insulated wire that contains an amount of urethane prepolymer that exceeds the scope of the present invention has weak adhesive strength at high temperatures. The insulated wire (Comparative Example 2) has poor flexibility, and the insulated wire (Comparative Example 3) that does not contain any of the components of the present invention has weak adhesive strength at high temperatures and poor refrigerant resistance. I understand.
[発明の効果]
以上説明した如く、本発明の自己融着性絶縁電線は、耐
冷媒性に優れ、しかも、可撓性、耐熱性にも優れる等の
顕著な効果を有するものである。[Effects of the Invention] As explained above, the self-bonding insulated wire of the present invention has remarkable effects such as excellent refrigerant resistance, flexibility, and heat resistance.
出願人代理人 弁理士 鈴江武彦Applicant's agent: Patent attorney Takehiko Suzue
Claims (1)
量部に対して、ウレタンプレポリマーを5ないし40重
量部、テトラブロムビスフェノールA及びビスフェノー
ルAとエピクロルヒドリンより合成された平均分子量が
10000以上のポリヒドロキシエーテル樹脂を20な
いし200重量部を配合した塗料の塗布焼付からなる融
着性絶縁層を導体上に直接又は他の絶縁物層を介して設
けてなることを特徴とする自己融着性絶縁電線。 一般式 ▲数式、化学式、表等があります▼ (式中nは10〜100の整数)[Scope of Claims] Synthesized from 5 to 40 parts by weight of urethane prepolymer, tetrabromobisphenol A, bisphenol A, and epichlorohydrin, with respect to 100 parts by weight of polyetherimide resin represented by the following general formula, and has an average molecular weight of 10,000. A self-fusing insulating layer formed by coating and baking a paint containing 20 to 200 parts by weight of the above polyhydroxyether resin is provided on the conductor directly or via another insulating layer. Adhesive insulated wire. General formula▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, n is an integer from 10 to 100)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2592689A JPH02207409A (en) | 1989-02-06 | 1989-02-06 | Self-welding insulated wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2592689A JPH02207409A (en) | 1989-02-06 | 1989-02-06 | Self-welding insulated wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02207409A true JPH02207409A (en) | 1990-08-17 |
Family
ID=12179381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2592689A Pending JPH02207409A (en) | 1989-02-06 | 1989-02-06 | Self-welding insulated wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02207409A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03134915A (en) * | 1989-10-20 | 1991-06-07 | Totoku Electric Co Ltd | Self-fusing magnet wire |
-
1989
- 1989-02-06 JP JP2592689A patent/JPH02207409A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03134915A (en) * | 1989-10-20 | 1991-06-07 | Totoku Electric Co Ltd | Self-fusing magnet wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3555113A (en) | Blends of polymeric amide-imide-ester wire enamels and conductors insulated therewith | |
US3321548A (en) | Amine-modified epoxy resin blended with a blocked polyisocyanate | |
EP0120606B1 (en) | Self-bonding enameled wire and hermetic compressor motor using the same | |
JPH02207409A (en) | Self-welding insulated wire | |
JPS5817534B2 (en) | flexible epoxy resin composition | |
US4480007A (en) | Enamel having improved coatability and insulated electrical articles produced therefrom | |
JPH0368490B2 (en) | ||
JPH02199709A (en) | Self-fusing insulation cable | |
US4404331A (en) | Enamel having improved coatability and insulated electrical articles produced therefrom | |
JPS5830003A (en) | Self-fusion-adhesive insulated wire | |
JP3525060B2 (en) | Self-fusing insulating paint and self-fusing insulated wire using the same | |
US4485127A (en) | Enamel having improved coatability and insulated electrical articles produced therefrom | |
JPH02223107A (en) | Self-fusion insulated electric wire | |
JPS633401B2 (en) | ||
JP2890280B2 (en) | Self-fusing insulated wire with excellent crazing properties and low-temperature adhesion | |
JP4794719B2 (en) | Self-bonding insulated wire | |
JPH03241608A (en) | Self-fusing insulated wire | |
JPH01144505A (en) | Self-fusion adhesive insulated cable | |
JPS60223868A (en) | Self-welding enameled wire | |
JPH0473242B2 (en) | ||
JPH02192614A (en) | Insulated wire of self fused type | |
JPH0721972B2 (en) | Self-bonding insulated wire | |
JPH0477540B2 (en) | ||
CA1186839A (en) | Enamel having improved coatability comprising a polyesterimide resin and a nylon polymer | |
JPH07123007B2 (en) | Self-bonding insulated wire |