JPS63212918A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPS63212918A
JPS63212918A JP4406787A JP4406787A JPS63212918A JP S63212918 A JPS63212918 A JP S63212918A JP 4406787 A JP4406787 A JP 4406787A JP 4406787 A JP4406787 A JP 4406787A JP S63212918 A JPS63212918 A JP S63212918A
Authority
JP
Japan
Prior art keywords
liquid crystal
polarizing plate
substrate
electrode
external side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4406787A
Other languages
Japanese (ja)
Inventor
Akio Yoshida
明雄 吉田
Kenji Shinjo
健司 新庄
Toshiharu Uchiumi
俊治 内海
Masahiro Terada
匡宏 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4406787A priority Critical patent/JPS63212918A/en
Publication of JPS63212918A publication Critical patent/JPS63212918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To reduce the influence of static electricity and to improve the stability and durability of an active matrix type cell by treating an external side surface of a glass substrate supporting a liquid crystal to have electroconductivity. CONSTITUTION:A liquid crystal 12 is sealed tightly between glass substrates 1, 2, and a polarizing plate 10 is provided to the external side surface of each substrate. Also, a picture element electrode 3 is formed on the substrate 2, and electric charge is transferred from a signal line 5 to the picture element electrode 3 through a semiconductor layer 6 and a drain electrode 4. The semiconductor layer 6 turns the charge transfer ON-OFF by a gate electrode 8 arranged through an insulating film 7. Further, a counter electrode 11 is provided to the substrate 1. If the polarizing plate 10 is not provided, transparent electroconductive films are formed on the external side surface of the substrate 1, 2. If the polarizing plate 10 is provided, transparent electroconductive films are formed on the external side surface of the polarizing plate 10. Since, such electroconductive films are formed, misoperation of an element due to static electricity from the outside of the element or deterioration of liquid crystal is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、薄膜トランジスタ方式の液晶素子に関し、特
に、液晶セル外部からの静電気による電界を除去するた
めの静電気対策を施した液晶素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to a thin film transistor type liquid crystal element, and particularly relates to a liquid crystal element that has taken anti-static measures to remove an electric field due to static electricity from outside the liquid crystal cell. be.

【開示の概要] 本明細書及び図面は、薄膜トランジスタ方式の液晶素手
において、液晶セル外側に配置されたガラス基板等の表
面に導電性処理を施すことにより、静電気を除去し、液
晶セルの誤動作を防止する技術を開示するものである。
[Summary of the Disclosure] This specification and drawings describe the purpose of removing static electricity and preventing malfunction of a liquid crystal cell in a thin-film transistor type liquid crystal bare hand by applying conductive treatment to the surface of a glass substrate, etc. placed outside the liquid crystal cell. This article discloses a technology to prevent this.

[従来の技術] 第1図は、薄膜トランジスタ(以下TFTとし1う)を
備えた一般的な液晶素子の説明図である。
[Prior Art] FIG. 1 is an explanatory diagram of a general liquid crystal element equipped with a thin film transistor (hereinafter referred to as TFT).

図において、2枚のガラス基板1.2の上にはそれぞれ
画素電極3.対向電極11が形成されて−する0画素電
極3には@1線5から半導体層6及びドレイン電極4を
通して電荷の移動が行われる、半導体層6はゲート絶縁
膜7を通して配置されているゲート電極8によって上記
電荷移動のオン、オフを制御している。
In the figure, pixel electrodes 3.2 are placed on two glass substrates 1.2, respectively. Charge is transferred from the @1 line 5 to the 0 pixel electrode 3 on which the counter electrode 11 is formed through the semiconductor layer 6 and the drain electrode 4. The semiconductor layer 6 is a gate electrode disposed through the gate insulating film 7. 8 controls on/off of the charge transfer.

[発明が解決しようとする問題点j ここで、第1図の偏光板10の表面(偏光板を用いない
場合にはガラス基板1.2の表面)に静電気が印加され
た場合、偏光板10の表面は帯電し、静電荷による電気
力線は液晶層を貫通することになる0通常、液晶素子は
正の誘電異方性を有するネマチック液晶を基板に水平に
配向させて使うため、画素電極3と対向電極11の間に
電界がかからなくても、この静電気によって液晶が動作
してしまうという問題が生じる。
[Problem to be Solved by the Invention j Here, when static electricity is applied to the surface of the polarizing plate 10 in FIG. 1 (the surface of the glass substrate 1.2 when a polarizing plate is not used), The surface of the is charged, and lines of electric force due to static charges penetrate the liquid crystal layer.Normally, liquid crystal elements use nematic liquid crystal with positive dielectric anisotropy aligned horizontally on the substrate, so the pixel electrode Even if no electric field is applied between the electrode 3 and the counter electrode 11, a problem arises in that the liquid crystal operates due to this static electricity.

以下、第2図と共に定量的に説明する。第2図は、画素
電極3と対向電極11の上下電極間が/\イインピーダ
ンスになっている場合の等価回路を示したものである。
A quantitative explanation will be given below with reference to FIG. FIG. 2 shows an equivalent circuit when the upper and lower electrodes of the pixel electrode 3 and the counter electrode 11 have an impedance of /\.

今、ガラス基板上にl0KVの静電気が瞬間的に乗った
場合、ガラス厚1.11腸、ガラスの誘電率2.5、配
向膜厚1000A、配向膜の誘電率3、液晶層厚10終
■、液晶の誘電率10とすると、液晶12にかかる電圧
VLCは次式で求められる。
Now, if a static electricity of 10 KV is momentarily placed on the glass substrate, the glass thickness is 1.11 mm, the dielectric constant of the glass is 2.5, the alignment film thickness is 1000 A, the dielectric constant of the alignment film is 3, and the liquid crystal layer thickness is 10 mm. , the dielectric constant of the liquid crystal is 10, then the voltage VLC applied to the liquid crystal 12 is obtained by the following equation.

ここで +”+   C’鵬 1.OPF/cm2よって 1.0 Vtc = t、o +885X 10 KV = 1
1.2 Vただし C9:  ガラスのコンデンサ容量 Cド 配向膜のコンデンサ容量 CEc :液晶のコンデンサ容量 RLC:液晶の電気抵抗 すなわち、液晶部分には約11V程度の直流電界が印加
されることになり、素子の誤動作ばかりではなく、性能
的にも悪影響を与えるおそれがある。
Here +"+ C'Peng 1. OPF/cm2 = 1.0 Vtc = t, o +885X 10 KV = 1
1.2 V However, C9: Glass capacitor capacitance C; Alignment film capacitor capacitance CEc: Liquid crystal capacitor RLC: Electrical resistance of the liquid crystal. In other words, a DC electric field of about 11 V will be applied to the liquid crystal part. This may not only cause malfunction of the element, but may also have an adverse effect on performance.

この静電気による電界は、第2図のI?tcすなわち液
晶中の正負イオンの泳動によって消失するため、液晶は
電界がない状態に戻るが、液晶の電気抵抗が高くなると
、この泳動の元となっているイオン性物質の量が減少す
るために、長時間電界が保持されたままになり、液晶が
動作状態を保ちつづけることになる。また、 TPT駆
動の場合、液晶層にかかった電界はドレイン電極にもか
かり、ゲート電極と対向している部分にも電界を生ずる
6通常の液晶TVなどでは画素電極にかける電圧がせい
ぜい±3〜6v程度であるため、約11vもの電圧が画
素電極部に生じると、対向している部分の絶縁破壊を引
き起こす可能性もある。
The electric field due to this static electricity is I? in Figure 2. tc, that is, positive and negative ions in the liquid crystal disappear through migration, and the liquid crystal returns to a state where there is no electric field. However, as the electrical resistance of the liquid crystal increases, the amount of ionic substances that are the source of this migration decreases. , the electric field remains maintained for a long time, and the liquid crystal continues to operate. In addition, in the case of TPT drive, the electric field applied to the liquid crystal layer is also applied to the drain electrode, and an electric field is also generated in the part facing the gate electrode. 6 In ordinary liquid crystal TVs, the voltage applied to the pixel electrode is at most ±3 to Since the voltage is approximately 6V, if a voltage of approximately 11V is generated in the pixel electrode portion, there is a possibility that dielectric breakdown of the opposing portion may occur.

次に、強誘電性液晶を使用した場合の問題点について述
べる。
Next, problems when using ferroelectric liquid crystal will be described.

クラーク(C1ark)とラガウォル(Lagarwa
ll)により提案された強誘電性液晶素子(υ5PNo
、 4367924)は、液晶分子の自発分極が直流電
界方向にそろう、第3図は、強誘電性液晶動作原理を示
す図である0図において、ガラス基板31.32上には
画素電極33及び対向電極34が形成され、それぞれ外
部電源36に接続されている。また、両基板間には強誘
電性液晶(図示せず)が封入され、37はその液晶分子
の自発分極方向を示す。
Clark (C1ark) and Lagarwa (Lagarwa)
Ferroelectric liquid crystal device (υ5PNo) proposed by
, 4367924), the spontaneous polarization of the liquid crystal molecules is aligned in the direction of the DC electric field. Figure 3 is a diagram showing the principle of operation of a ferroelectric liquid crystal. In Figure 0, there are pixel electrodes 33 and opposing Electrodes 34 are formed, each connected to an external power source 36. Further, a ferroelectric liquid crystal (not shown) is sealed between both substrates, and numeral 37 indicates the direction of spontaneous polarization of the liquid crystal molecules.

今、ガラス基板上に10KVの静電気が乗ったときに、
液晶にかかる電圧VLCは次のようにして求められる。
Now, when 10KV of static electricity is placed on the glass substrate,
The voltage VLC applied to the liquid crystal is determined as follows.

ただし、液晶層厚1.5pm、液晶の誘電率4.0  
(100KHz時)とし、他の条件は前述した場合と同
様とする。
However, the liquid crystal layer thickness is 1.5 pm, and the dielectric constant of liquid crystal is 4.0.
(at 100 KHz), and other conditions are the same as those described above.

8.85X 1G−+4 X 4.0 CLc =   1.5x 10−4    = 23
60pF/cm21.0 Vtc = 1.o +、、36oX 104 V =
 4.2 V第3図において、外部電源36から直流電
界が与えられると、液晶セル30には、外部電源から与
えられた電界Eoutと、静電荷35による電界Esが
存在する。液晶分子の自発分極は、単純に電界方向に一
致するため、EoutとEsに共に影響される。したが
って、先に計算した4、2v程の大きな電界が印加され
ると当然に誤動作の原因になる。また液晶セルの作成過
程において、強誘電性液晶は加熱により等方性液体状態
でセルに注入され、その後徐冷される。この時、カイラ
ルスメクチックC(Sacつ状態になるまでは外部電場
などの外的刺激を受けることは好ましくなく、配向が均
一でなくなるという不都合を生ずる。このように、静電
荷による電界は誤動作だけでなく配向の均一性の点から
も好ましくない。
8.85X 1G-+4 X 4.0 CLc = 1.5x 10-4 = 23
60pF/cm21.0 Vtc = 1. o+,,36oX 104V=
4.2 V In FIG. 3, when a DC electric field is applied from the external power supply 36, an electric field Eout applied from the external power supply and an electric field Es due to the static charge 35 are present in the liquid crystal cell 30. Since the spontaneous polarization of liquid crystal molecules simply coincides with the direction of the electric field, it is affected by both Eout and Es. Therefore, if an electric field as large as the 4.2 V calculated above is applied, it will naturally cause malfunction. Further, in the process of manufacturing a liquid crystal cell, ferroelectric liquid crystal is heated and injected into the cell in an isotropic liquid state, and then slowly cooled. At this time, it is undesirable to receive external stimulation such as an external electric field until the chiral smectic C (Sac) state is reached, which causes the inconvenience that the orientation becomes non-uniform.In this way, the electric field due to static charge is caused only by malfunction. This is not preferable from the viewpoint of uniformity of orientation.

本発明は、静電気の影響を少なくし、セルの安定性、耐
久性の向上を図ることを目的とするものである。
The present invention aims to reduce the influence of static electricity and improve the stability and durability of cells.

[問題点を解決するための手段]及び[作用]本発明は
、液晶を挟持するガラス基板の外側面に、静電気を逃が
すための導電性処理を施したことを特徴とするものであ
る。ガラス基板の外側に偏光板を配置したときには、こ
の偏光板の外側に導電性処理を施すことにより、同等の
機能を得ることができる。導電性処理としては、 NE
SA膜。
[Means for Solving the Problems] and [Operations] The present invention is characterized in that the outer surfaces of the glass substrates that sandwich the liquid crystal are subjected to conductive treatment for dissipating static electricity. When a polarizing plate is placed outside the glass substrate, the same function can be obtained by subjecting the outside of the polarizing plate to conductive treatment. For conductive treatment, NE
SA membrane.

ITO膜等の金属酸化物よりなる透明電極膜を用いるこ
とができる。
A transparent electrode film made of a metal oxide such as an ITO film can be used.

このような導電性処理を施すことによって、セルの最外
面に帯電した静電荷を外部に逃がすこと、F3 ができ、直流電界に影響をなくすことができ△ る。
By performing such a conductive treatment, the electrostatic charge accumulated on the outermost surface of the cell can be released to the outside, F3, and the effect on the DC electric field can be eliminated.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。なお
、本実施例に使用した液晶セルは、第1図に示すものと
同一構造を有するものであり、便宜上、第1図を用いて
説明する。
[Example] Hereinafter, an example of the present invention will be described based on the drawings. Note that the liquid crystal cell used in this example has the same structure as that shown in FIG. 1, and will be explained using FIG. 1 for convenience.

実施例1 第1図に示す液晶セルにネマチック液晶としてメルク社
製、 ZLI 111i94を封入してセルを作成した
。また、偏光板10を使用せず、ガラス基板!及び2の
外側面に、あらかじめ酸化インジウムからなる透明電極
膜(図示せず)を5OA形成し、導線を介して接地した
0以上の処理を施した液晶セルを駆動したところ、静電
気による異常点灯の発生しないことが判明した。
Example 1 A nematic liquid crystal, ZLI 111i94 manufactured by Merck & Co., was sealed in the liquid crystal cell shown in FIG. 1 to prepare a cell. Also, without using the polarizing plate 10, use a glass substrate! A transparent electrode film (not shown) made of indium oxide (5OA) was formed in advance on the outer surface of 2 and 2, and when a liquid crystal cell treated with 0 or more was grounded via a conductive wire and was driven, abnormal lighting caused by static electricity was detected. It turns out that this does not occur.

透明導電膜の厚みは、50〜too A程度が好ましい
が、膜厚を余り薄くすると膜厚ムラにより、高抵抗の部
分ができてしまうので、最低でも50A程度とすること
が望ましい、この場合1表面でのシート抵抗はlO数に
Ωになり、静電気の発生を防止することができる。
The thickness of the transparent conductive film is preferably about 50 to 10A, but if the film thickness is made too thin, there will be areas with high resistance due to uneven film thickness, so it is desirable that the thickness is at least about 50A. The sheet resistance at the surface is 1O to Ω, making it possible to prevent the generation of static electricity.

実施例2 第1図の液晶セルにおいて、液晶配向膜9にPVA  
(ポリビニルアルコール)系樹脂配向処理を施し、内部
に強誘電性液晶としてチッソ−製。
Example 2 In the liquid crystal cell shown in FIG. 1, PVA was used as the liquid crystal alignment film 9.
(Polyvinyl alcohol) based resin alignment treatment and a ferroelectric liquid crystal inside made by Chisso.

09−1014を封入してセル厚1.51L層に作成し
た。
09-1014 was sealed to form a cell layer with a cell thickness of 1.51L.

さらに、このセルのガラス基板の両面に偏光板10を貼
着すると共に、偏光板lGの外側に透明導電膜を50A
形成した。
Furthermore, polarizing plates 10 are pasted on both sides of the glass substrate of this cell, and a transparent conductive film of 50A is coated on the outside of the polarizing plate 1G.
Formed.

上記処理を施した液晶セルを駆動したところ、静電対策
を施す前と比較して、液晶分子の配向もきれいになり、
動作状態も安定することが確認された。
When we drove a liquid crystal cell that had undergone the above treatment, the alignment of the liquid crystal molecules became clearer than before the electrostatic countermeasures were applied.
It was confirmed that the operating condition was stable.

[発明の効果] 以上説明したように、本発明によれば、素子外部からの
静電気による素子の誤動作を防止することができるうえ
、高い電位を有する直流電界の印加を除去することがで
きるため、液晶の劣化防止を図ることができる。特に1
強誘電性液晶素子に適用した場合には、初期配向の均一
性を向上させることができる。
[Effects of the Invention] As explained above, according to the present invention, malfunction of the device due to static electricity from outside the device can be prevented, and the application of a DC electric field having a high potential can be eliminated. It is possible to prevent deterioration of the liquid crystal. Especially 1
When applied to a ferroelectric liquid crystal element, the uniformity of initial alignment can be improved.

また、副次的な効果として、偏光板貼着時などに発生す
る静電気が排除でき、ゴミ等の静電付着を防ぐことがで
きる。
Furthermore, as a secondary effect, static electricity generated when attaching a polarizing plate can be eliminated, and electrostatic adhesion of dust and the like can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTFT液晶素子の説明図、第2図は上下電極間
の等価回路図、第3図は強誘電性液、晶の動作原理を示
す図である。 1.2・・・基板、3・・・画素電極、4・・・ドレイ
ン電極、5・・・信号線。 6・・・半導体層、7・・・ゲート絶縁膜。 8・・・ゲート電極、9・・・液晶配向膜、10・・・
偏光板、11・・・対向電極、12・・・液晶。
FIG. 1 is an explanatory diagram of a TFT liquid crystal element, FIG. 2 is an equivalent circuit diagram between upper and lower electrodes, and FIG. 3 is a diagram showing the operating principle of a ferroelectric liquid and crystal. 1.2...Substrate, 3...Pixel electrode, 4...Drain electrode, 5...Signal line. 6... Semiconductor layer, 7... Gate insulating film. 8... Gate electrode, 9... Liquid crystal alignment film, 10...
Polarizing plate, 11... counter electrode, 12... liquid crystal.

Claims (5)

【特許請求の範囲】[Claims] (1)液晶セルの各画素に薄膜トランジスタを備えたア
クティブ・マトリクス方式の液晶素子において、液晶を
挟持するガラス基板の外側面に、導電性処理を施したこ
とを特徴とする液晶素子。
(1) A liquid crystal element of an active matrix type in which each pixel of a liquid crystal cell is equipped with a thin film transistor, characterized in that an electrically conductive treatment is applied to the outer surface of a glass substrate that sandwiches a liquid crystal.
(2)前記ガラス基板の外側に偏光板を配置し、該偏光
板の外側面に導電性処理を施したことを特徴とする特許
請求の範囲第1項に記載の液晶素子。
(2) The liquid crystal element according to claim 1, characterized in that a polarizing plate is disposed outside the glass substrate, and the outer surface of the polarizing plate is subjected to conductive treatment.
(3)前記導電性処理が透明導電膜であることを特徴と
する特許請求の範囲第1項または第2項に記載の液晶素
子。
(3) The liquid crystal element according to claim 1 or 2, wherein the conductive treatment is a transparent conductive film.
(4)前記液晶がネマチック液晶であることを特徴とす
る特許請求の範囲第1、2または3項に記載の液晶素子
(4) The liquid crystal element according to claim 1, 2 or 3, wherein the liquid crystal is a nematic liquid crystal.
(5)前記液晶が強誘電性液晶であることを特徴とする
特許請求の範囲第1、2または3項に記載の液晶素子。
(5) The liquid crystal element according to claim 1, 2 or 3, wherein the liquid crystal is a ferroelectric liquid crystal.
JP4406787A 1987-02-28 1987-02-28 Liquid crystal element Pending JPS63212918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4406787A JPS63212918A (en) 1987-02-28 1987-02-28 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4406787A JPS63212918A (en) 1987-02-28 1987-02-28 Liquid crystal element

Publications (1)

Publication Number Publication Date
JPS63212918A true JPS63212918A (en) 1988-09-05

Family

ID=12681283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4406787A Pending JPS63212918A (en) 1987-02-28 1987-02-28 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPS63212918A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130526A (en) * 1988-11-10 1990-05-18 Matsushita Electric Ind Co Ltd Liquid crystal display element and projection type display device
US5610738A (en) * 1990-10-17 1997-03-11 Hitachi, Ltd. Method for making LCD device in which gate insulator of TFT is formed after the pixel electrode but before the video signal line
KR100336896B1 (en) * 1998-12-30 2003-06-12 주식회사 현대 디스플레이 테크놀로지 LCD
JP2009246093A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Thin film transistor substrate, manufacturing method thereof, and display apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028741B2 (en) * 1975-12-24 1985-07-06 イリノイ・ツ−ル・ワ−クス・インコ−ポレイテツド plastic rotary cap
JPS60158421A (en) * 1984-01-28 1985-08-19 Seiko Instr & Electronics Ltd Matrix liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028741B2 (en) * 1975-12-24 1985-07-06 イリノイ・ツ−ル・ワ−クス・インコ−ポレイテツド plastic rotary cap
JPS60158421A (en) * 1984-01-28 1985-08-19 Seiko Instr & Electronics Ltd Matrix liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130526A (en) * 1988-11-10 1990-05-18 Matsushita Electric Ind Co Ltd Liquid crystal display element and projection type display device
US5610738A (en) * 1990-10-17 1997-03-11 Hitachi, Ltd. Method for making LCD device in which gate insulator of TFT is formed after the pixel electrode but before the video signal line
KR100336896B1 (en) * 1998-12-30 2003-06-12 주식회사 현대 디스플레이 테크놀로지 LCD
JP2009246093A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Thin film transistor substrate, manufacturing method thereof, and display apparatus

Similar Documents

Publication Publication Date Title
KR940008180B1 (en) Liquid crystal electro-optical device
US5060036A (en) Thin film transistor of active matrix liquid crystal display
JPS63212918A (en) Liquid crystal element
JPS6356625A (en) Liquid crystal device
KR100269054B1 (en) Lcd display
JP2000208594A (en) Attraction holding method for glass substrate
KR20010015145A (en) substrate for thin film transistor and Liguid crystal display
JPS6267515A (en) Liquid crystal display element
JP2616976B2 (en) Active matrix and its manufacturing method
JP3119233B2 (en) Liquid crystal display device and method of manufacturing the same
JPH07112069B2 (en) Display device
JPH06139844A (en) Ito conducting film and its manufacture
JP3210443B2 (en) Liquid crystal display
KR0140118Y1 (en) The structure of lcd
JP2720612B2 (en) Method of manufacturing thin film transistor array substrate
JP3086142B2 (en) Liquid crystal display
KR960014651B1 (en) Making method of liquid crystal display element
JP2004341127A (en) Method for manufacturing wiring substrate material, method for removing short circuit connection line of wiring substrate material, and wiring substrate material
JPH07146490A (en) Liquid crystal display device
JP3244563B2 (en) Manufacturing method of nematic liquid crystal panel
JPH10275775A (en) Semiconductor manufacturing method and method for manufacturing liquid crystal display element
JPH07120770A (en) Liquid crystal display device
JP2761581B2 (en) Liquid crystal device
JPS6459323A (en) Active device
JPS62189431A (en) Liquid crystal device