JPS63210705A - Light receiver for through hole measurement - Google Patents

Light receiver for through hole measurement

Info

Publication number
JPS63210705A
JPS63210705A JP4468187A JP4468187A JPS63210705A JP S63210705 A JPS63210705 A JP S63210705A JP 4468187 A JP4468187 A JP 4468187A JP 4468187 A JP4468187 A JP 4468187A JP S63210705 A JPS63210705 A JP S63210705A
Authority
JP
Japan
Prior art keywords
hole
light
measured
image
background
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4468187A
Other languages
Japanese (ja)
Inventor
Yasutoshi Kon
近 泰俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Co Ltd
Original Assignee
Central Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Co Ltd filed Critical Central Motor Co Ltd
Priority to JP4468187A priority Critical patent/JPS63210705A/en
Publication of JPS63210705A publication Critical patent/JPS63210705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To accurately measure the shape and contour of a through hole bored in a work by adding a lens which is shallow in depth of field and has its focus on the surface of the body to be measured to a light receiving part, and reducing the quantity of light received from the background. CONSTITUTION:Light from a light source 18 for measurement is projected on the through hole 13 of the body 11 to be measured and its periphery, and direct light which is incident on the background 17 is cut off by a light shielding plate 16. Further, the light receiving part 19 has a telephoto lens 19 which has shallow depth of field and decreases in the quantity of light extremely where an image is out of focus and the focus of the lens 19a is set on the surface of the through hole 13. Consequently, the lightness difference between the periphery of the through hole 13 and background 17 is emphasized and detected and the contour of an image of the through hole 13 is clear; and light information from the CCD camera of the light receiving part 19 is sent to a display part 21 through an image processing part 20 and displayed as the through hole image A. Then a judgement part 22 receives the through hole information and compares it with the shape, etc., of a reference through hole information signal to judge whether or not the information is within a permissible range, thereby displaying the judgement result on the display part.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、貫通孔を形成した被加工物の貫通孔の適否
を判断するに当たり、貫通孔を含む貫通孔付近の被測定
物表面に光源からの光を投光し、反射光を受光部で光情
報として受光し、反射光の有無によって得られる明暗差
により貫通孔像を得、さらには貫通孔像と所望の基準貫
通孔との比較により貫通孔の適否を判断可能な貫通孔測
定装置に使用可能な受光装置に係る。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field This invention provides a method for determining the suitability of a through-hole in a workpiece in which a through-hole is formed, by checking the surface of the workpiece near the through-hole, including the through-hole. Light is emitted from a light source, the reflected light is received as optical information by the light receiving section, a through-hole image is obtained from the difference in brightness obtained depending on the presence or absence of the reflected light, and furthermore, the through-hole image and the desired reference through-hole are The present invention relates to a light receiving device that can be used in a through hole measuring device that can determine the suitability of a through hole through comparison.

(ロ)従来の技術 被加工物に貫通孔を穿設し、得られた貫通孔が所望の基
孕貫通孔形状にあるか否かを測定する装置としては、光
源からの光を貫通孔を貫通させ、透過光として得られる
光情報を貫通孔周囲との明暗差として感知することで貫
通孔像を得、この貫通孔像と所望の基準貫通孔形状とを
比較することで貫通孔加工の適否の判断をおこなう、貫
通孔測定装置が知られている。
(b) Conventional technology A device for drilling a through hole in a workpiece and measuring whether or not the obtained through hole has the desired basic through hole shape is capable of transmitting light from a light source to the through hole. A through-hole image is obtained by sensing the light information obtained as transmitted light as the difference in brightness and darkness around the through-hole, and by comparing this through-hole image with the desired standard through-hole shape, the through-hole processing can be determined. A through-hole measuring device for determining suitability is known.

従来例の測定装置の概略を第6図にしたがって説明する
。(101)は、鉄板等板状体からなる被測定物である
被加工物であり、貫通孔(102)を穿設加工しである
An outline of a conventional measuring device will be explained with reference to FIG. (101) is a workpiece, which is a measured object made of a plate-shaped body such as an iron plate, and has a through hole (102) formed therein.

(103)は測定用光源、(104)は光を感知する受
光部であり、貫通孔(102)を挟んで対向させて設置
する。受光部(104)は、この従来例ではCCDカメ
ラからなる。受光部(104)で得た光情報は画像処理
部(105)をへて、CRT画面からなる表示部(10
6)に画像処理して貫通孔像(a)を表示する。即ちこ
の従来例では、貫通孔(102)を貫通して受光部(1
04)で感知される透過光感知部分と、それ以外の部分
は明暗差として受光部(104)で感知され、感知され
た光情報信号は画像処理部(105)に伝送され、画像
処理部(105)で画像処理された画像信号は表示部(
106)で受けて画像表示するとともに、判断部(10
7)へ伝送される。他方、基準信号発生部(10g)に
記憶された基準貫通孔の重心位置、形状、面積等の情報
信号も判断部(107)に伝送される。そして、画像処
理部(105)で得られた貫通孔(102)像の情報は
、基準信号発生部(108)に記憶された基準貫通孔情
報と形状、面積、あるいは貫通孔像の重心位置等とを比
較し、貫通孔か基準貫通孔の形状、面積、貫通孔像の重
心位置が誤差範囲内かを判断し、貫通孔像(a)ととも
に適否を表示部(10B)に表示する。適否の表示にし
たがい被加工物の選別をおこなう。
(103) is a light source for measurement, and (104) is a light receiving section that senses light, which are installed facing each other with the through hole (102) in between. In this conventional example, the light receiving section (104) is composed of a CCD camera. The optical information obtained by the light receiving section (104) passes through the image processing section (105) and is displayed on the display section (10) consisting of a CRT screen.
6), image processing is performed to display the through-hole image (a). That is, in this conventional example, the light receiving portion (102) is inserted through the through hole (102).
The transmitted light sensing portion (04) and the other portions are sensed by the light receiving portion (104) as differences in brightness, and the sensed optical information signal is transmitted to the image processing portion (105). The image signal processed in step 105) is displayed on the display section (
106) and displays the image, and the judgment unit (106) receives the image and displays the image.
7). On the other hand, information signals such as the center of gravity position, shape, area, etc. of the reference through hole stored in the reference signal generating section (10g) are also transmitted to the determining section (107). The information on the through-hole (102) image obtained by the image processing unit (105) is then combined with the reference through-hole information stored in the reference signal generation unit (108), such as the shape, area, or center of gravity position of the through-hole image. It is determined whether the shape, area, and center of gravity position of the through-hole image of the through-hole or the reference through-hole are within the error range, and whether or not the through-hole image (a) is suitable is displayed on the display unit (10B). Workpieces are sorted according to the indication of suitability.

従来の貫通孔測定装置では、測定用光源(103)と受
光部(104)とは、被加工物(1(11)を挾んで対
向させて設置する必要がある。しかしながら、受光部(
104)に対向させて被加工物(101)の反対側に測
定用光源(103)を設置する余裕のない場合は、従来
の測定装置の使用は困難である。例えば被加工物(10
1)がモノコックからなる自動車ボデーからなり、貫通
孔を自動車ボデー側面に形成し、受光部(104)は、
自動車組立ライン側部に設置する場合は、光源の設置は
自動車ボデー内部とする必要が生ずることとなるが、そ
のような光源の設置は一般に困難である。
In the conventional through-hole measuring device, the measurement light source (103) and the light receiving section (104) must be installed facing each other with the workpiece (1 (11) in between).
If there is no room to install the measuring light source (103) on the opposite side of the workpiece (101), it is difficult to use the conventional measuring device. For example, the workpiece (10
1) consists of a monocoque automobile body, a through hole is formed on the side surface of the automobile body, and the light receiving part (104) is
When installed on the side of an automobile assembly line, the light source must be installed inside the automobile body, but it is generally difficult to install such a light source.

測定用光源およびCCDカメラを対向させずに設置して
用いる他の貫通孔測定装置としては、貫通孔の透過光を
感知するかわりに、反射光を感知する装置が考えられる
。即ち、この装置では被測定物表面の貫通孔およびその
周囲に投光する測定用光源の貫通孔周囲の反射光を、被
測定物に対して測定用光源と同一側に位置する受光部で
感知する。この反射光利用の測定装置では、被加工物の
一方側に受光部と測定用光源とを設置し、被測定物の反
対側は相対的に暗くすることで、反射光を生ずる貫通孔
周囲と相対的に暗い背景として表わされる貫通孔とを明
暗差として表示することが可能であり、この明暗差を受
光部で感知し、感知された貫通孔像と、所望の基準貫通
孔像とを、形状、像の重心位置、あるいは面積において
比較し、許容範囲内かを判断する。
Another possible through-hole measuring device that uses a measurement light source and a CCD camera installed without facing each other is a device that senses reflected light instead of sensing the transmitted light of the through-hole. In other words, this device detects the reflected light around the through-hole of the measurement light source that emits light into the through-hole on the surface of the object to be measured and its surroundings by the light receiving section located on the same side of the object as the measurement light source. do. In this measuring device that uses reflected light, a light receiving section and a measurement light source are installed on one side of the workpiece, and the opposite side of the workpiece is made relatively dark, so that the surroundings of the through hole that generates the reflected light are It is possible to display the through-hole, which is represented as a relatively dark background, as a difference in brightness and darkness, and this difference in brightness and darkness is sensed by the light receiving section, and the sensed through-hole image and the desired reference through-hole image are displayed. Compare the shape, center of gravity position, or area of the image to determine whether it is within the allowable range.

(ハ)発明が解決しようとする問題点 しかし反射光利用の測定装置では、被測定物設置環境に
おける貫通孔の背景がよほど暗い環境下でない限り貫通
孔背景と反射面である貫通孔周辺部との明暗差を大きく
する必要がある。明暗差を大きくする1つの方法として
は反射面の明度を上げる方法がある。即ち、明暗差を大
きくし鮮明な画像を得るために、測定用光源の光量を大
きくし、例えば500Wの集光型ハロゲン燈を用い、被
測定面である被加工物表面では300012Xとなる程
度に照度を上げる装置である。
(c) Problems to be Solved by the Invention However, in a measuring device that uses reflected light, unless the background of the through hole in the environment in which the object to be measured is installed is very dark, the background of the through hole and the area around the through hole that is the reflective surface are different. It is necessary to increase the difference in brightness. One way to increase the difference in brightness is to increase the brightness of the reflective surface. That is, in order to increase the difference in brightness and obtain a clear image, the light intensity of the measurement light source is increased, for example, a 500W condensing halogen lamp is used, and the surface of the workpiece to be measured is 300012X. This is a device that increases the illuminance.

しかし、この装置の場合貫通孔周辺部が鋼板面のような
高輝度面からなると、貫通孔周囲部表面の作業ミスや不
慣れな作業者のために生ずる傷やへこみ、溶接スパッタ
や油の付着、メッキ材か、未メッキ材かによる反射光の
違い、あるいは被加工物のセット不良建付不良等に伴う
貫通孔周囲部表面の測定用光源、受光部に対する面傾斜
の発生、測定用光源の照射角度の微妙な変化等により、
貫通孔周辺部の輝度変化が敏感に生じ、受像は不安定と
なる問題点を有した。
However, in the case of this device, if the area around the through hole is made of a high brightness surface such as a steel plate surface, scratches and dents, welding spatter and oil adhesion may occur on the surface around the through hole due to work errors or inexperienced operators. Differences in reflected light depending on whether the material is plated or unplated, or the measurement light source on the surface around the through hole due to poor setting or construction of the workpiece, occurrence of surface inclination to the light receiving part, irradiation of the measurement light source Due to slight changes in angle, etc.
There was a problem in that brightness changes were sensitive around the through hole, making image reception unstable.

貫通孔と貫通孔周囲部との明暗差を強調する他の方法と
しては、貫通孔の背景の明度を低下させる方法がある。
Another method for emphasizing the difference in brightness between the through hole and the surrounding area of the through hole is to reduce the brightness of the background of the through hole.

しかし、被加工物の測定作業を暗室内でおこなっている
場合を除き、一般の自然光を採光している工場環境内で
は、測“定箇所の背景のみを充分に暗くすることは予想
外に困難を伴う問題点を有する。
However, unless the workpiece is being measured in a darkroom, it is unexpectedly difficult to sufficiently darken only the background of the measurement location in a factory environment that receives general natural light. There are problems with this.

(ニ)問題点を解決するだめの手段 この発明は、被測定物表面に投光する測定用光源と、貫
通孔を形成された被測定物を設置したとき測定用光源に
対し被測定物を挟んだ反対側に位置するとともに被測定
物表面で測定用光源からの光を反射する反射光に比し相
対的に暗い背景と、被加工物表面で反射する反射光を感
知する受光部とからなる貫通孔測定用受光装置において
、受光部には被写界深度が浅くかつ被測定物表面に焦点
を合わせたレンズを付設するとともに、被測定物表面と
背景間には、レンズの焦点が合わないために背景からの
受光量が被測定物表面に比し低下する距離を設けること
を特徴とする貫通孔測定用受光装置を提供することで、
測定用光源の設置場所の問題を解決するととらに従来の
反射形貫通孔測定装置の有する問題点を解決する。
(d) Means for solving the problem This invention provides a measurement light source that emits light onto the surface of an object to be measured, and a measurement object that has a through hole formed therein. The light from the measurement light source is located on the opposite side, and the background is relatively dark compared to the reflected light that reflects the light from the measurement light source on the surface of the workpiece. In this light-receiving device for through-hole measurement, a lens with a shallow depth of field and focused on the surface of the object to be measured is attached to the light-receiving section, and a lens that is focused between the surface of the object to be measured and the background is attached. By providing a light-receiving device for through-hole measurement, which is characterized by providing a distance at which the amount of light received from the background is lower than that from the surface of the object to be measured.
This solves the problem of the installation location of the measurement light source, and also solves the problems of the conventional reflective through-hole measuring device.

(ホ)作 用 被測定物表面に、測定用光源を投光する。(e) Production A measurement light source is projected onto the surface of the object to be measured.

すると、被測定物表面における貫通孔形成部分以外では
反射光を生じ、貫通孔部分は背景の暗部として表わされ
、受光部では貫通孔と貫通孔周囲は明暗差として感知さ
れる。このとき、受光部には被写界深度が浅くかつ被測
定物表面に焦点を合わせたレンズを付設して°コおり、
かつ被測定物表面と背景とはレンズの焦点が合わないた
め背景からの受光量が被測定物表面に比し低下する距離
を設けているため、受光部で感知される貫通孔と貫通孔
周囲の明暗差は強調され、両者の輪郭は明瞭となる。
Then, reflected light is generated on the surface of the object other than the area where the through hole is formed, and the through hole area is represented as a dark part of the background, and the light receiving section senses the difference in brightness between the through hole and the area around the through hole. At this time, a lens with a shallow depth of field and focused on the surface of the object to be measured is attached to the light receiving section.
In addition, since the lens does not focus on the surface of the object to be measured and the background, the amount of light received from the background is lower than that of the surface of the object to be measured. The difference in brightness between the two is emphasized, and the outline between the two becomes clear.

(へ)実施例 この発明の実施例を表わす第1図、同使用状態を表わす
第2図に従って説明する。
(F) Embodiment An explanation will be given with reference to FIG. 1 showing an embodiment of the present invention and FIG. 2 showing the state of use thereof.

(11)は被測定物である。被S定物(II)は、この
実施例では自動車組立ライン(12)上の未塗装の鋼板
を加工してなる自動車モノコックボデーからなる。
(11) is the object to be measured. In this embodiment, the object (II) is an automobile monocoque body formed by processing unpainted steel plates on an automobile assembly line (12).

被測定物(11)には、貫通孔測定の前工程で他部品取
付けのため穿設した貫通孔(13)を設ける。
The object to be measured (11) is provided with a through hole (13) that is drilled for attaching other parts in a process prior to through hole measurement.

(14)は自動車組立ライン(12)を内部に設ける工
場施設、(15)は工場施設に設ける採光窓である。(
16)は遮光板であり、被測定物(11)の背景(17
)へ直接照射する自然光を遮光する。
(14) is a factory facility in which an automobile assembly line (12) is installed, and (15) is a lighting window installed in the factory facility. (
16) is a light shielding plate, and the background (17) of the object to be measured (11) is
) to block natural light that shines directly on the area.

増量(17)は、この実施例では自動車ボデーの反対側
側面内側からなる。
The extension (17) in this example consists of the inner side of the opposite side of the vehicle body.

(18)は測定用光源である。測定用光源としてはこの
実施例では、集光度の高いスポット照明を使用し75W
、、被測定面で1000(2にとなるへロゲン燈、タン
グステン燈等を使用する。
(18) is a measurement light source. In this example, a highly condensed spot light is used as the light source for measurement, and the light source is 75W.
,, Use a herogen lamp, tungsten lamp, etc. with a value of 1000 (2) on the surface to be measured.

測定用光源(18)としては光量が安定していることが
のぞましい。
It is desirable that the measurement light source (18) has a stable light amount.

(19)は受光部である。受光部(19)は被測定物(
11)に対して測定用光源と同一側に設置し、人力して
きた光情報を電気信号に変換する。
(19) is a light receiving section. The light receiving part (19) is connected to the object to be measured (
11) is installed on the same side as the measurement light source, and converts the manually input optical information into electrical signals.

受光部(19)はこの実施例ではCCDカメラからなる
。受光部(19)の被測定物(11)側には、300m
mf4程度の望遠レンズ(19)aを固定する。
In this embodiment, the light receiving section (19) consists of a CCD camera. There is a distance of 300 m on the side of the object to be measured (11) of the light receiving part (19).
A telephoto lens (19) a of about MF4 is fixed.

望遠レンズ(19)aを付設することで、受光部(19
)は被写界深度が浅くなり焦点の合っていない部分では
受光量は極端に低下する。
By attaching the telephoto lens (19)a, the light receiving section (19)
), the depth of field becomes shallow and the amount of light received is extremely low in out-of-focus areas.

この実施例では被測定物(11)表面と、背景(17)
とは被写界深度の0 、75mm以上離れていればよい
In this example, the surface of the object to be measured (11) and the background (17)
This means that the depth of field is 0, as long as the distance is 75 mm or more.

背景(17)、測定用光源(18)、受光部(19)、
望遠レンズ(19)aで受光装置(1)を構成する。
Background (17), measurement light source (18), light receiving section (19),
A telephoto lens (19)a constitutes a light receiving device (1).

(20)は画像処理部であり、受光部(19)から入力
する信号を受けて画像処理しCRT画面からなる表示部
(21)に貫通孔像(A)を表示する。
(20) is an image processing section which receives a signal input from the light receiving section (19), performs image processing, and displays a through hole image (A) on a display section (21) consisting of a CRT screen.

(22)は、表示部(21)同様に画像処理部(20)
からの信号を受ける判断部である。判断部(22)は画
像処理信号と同様に、所望の基準貫通孔の形状、面積、
あるいは貫通孔像(A)の重心位置等を記憶する基準信
号発生部(23)からの基準信号も受ける。
(22) is an image processing unit (20) similar to the display unit (21).
This is a judgment unit that receives signals from the Similar to the image processing signal, the determining unit (22) determines the shape, area, and shape of the desired reference through hole.
Alternatively, it also receives a reference signal from a reference signal generator (23) that stores the center of gravity position of the through-hole image (A).

この実施例の作用について説明すると、まず、被測定物
(11)の貫通孔(13)形成箇所およびその周囲に測
定用光a (1g)から投光する。
To explain the operation of this embodiment, first, measurement light a (1g) is projected onto the area where the through hole (13) of the object to be measured (11) is formed and its surroundings.

光量は被測定面でも1,000νX程度と従来の3.0
OOfl!xに比し低いため、被加工物が鋼板等高輝度
の物質からなる場合であっても、又反射光は表面の傷、
へこみ、変形、面傾斜が存在しても、それ等に起因する
過敏な変化は少なくなる。
The light intensity is about 1,000νX even on the surface to be measured, compared to the conventional 3.0
OOfl! Because it is low compared to
Even if there are dents, deformations, and surface inclinations, sensitive changes caused by these will be reduced.

測定用光源(18)の光量は従来例に比し下げられ、他
方被測定物(11)の背景側は自然光のうち背景(17
)に入光する直接光のみを遮光板(16)によって遮光
したにすぎない。そのため、受光部(19)位置からは
測定用光源(18)を反射する貫通孔周囲と、背景がそ
のまま現れるため、暗く表われる貫通孔(13)部分と
の明暗差は従来例に比し小なくなる。
The light intensity of the measurement light source (18) is lowered compared to the conventional example, and on the other hand, the background side of the object to be measured (11) is exposed to the background (17) of natural light.
) is simply blocked by the light blocking plate (16). Therefore, from the light receiving part (19) position, the area around the through hole that reflects the measurement light source (18) and the background appear as they are, so the difference in brightness between the dark part of the through hole (13) is smaller than in the conventional example. It disappears.

しかし、受光部(19)には、被写界深度が浅く、焦点
の合っていない部分では受光量が極端に低下する望遠レ
ンズ(19)aを有しており、かつ、背景(17)と被
測定物(11)表面間は被測定物(11)表面に焦点が
合った場合、背景(17)部分からの受光量が極端に低
下する被写界深度以上の距離を置いてあり、望遠レンズ
のピントは、被測定物(11)の貫通孔(13)表面に
合っている。そのため、被測定物(11)の貫通孔(1
3)周囲と貫通孔(13)を通した背景(17)との明
度差は標準レンズを使用した場合に比し強調して受光部
(19)では感知する。また被写界深度が浅いため、背
景(17)と被測定物(11)との間で受光部(19)
に直射光が入る場合を除き、自然光が若干入ったとして
も、とらえる画像に影響は少ない。
However, the light receiving section (19) has a telephoto lens (19)a that has a shallow depth of field and the amount of light received is extremely low in out-of-focus areas. The distance between the surfaces of the object to be measured (11) is greater than the depth of field at which the amount of light received from the background (17) is extremely reduced when the surface of the object to be measured (11) is focused. The focus of the lens is on the surface of the through hole (13) of the object to be measured (11). Therefore, the through hole (1
3) The difference in brightness between the surroundings and the background (17) through the through hole (13) is sensed by the light receiving unit (19) in a more emphasized manner than when using a standard lens. Also, since the depth of field is shallow, the light receiving part (19) is located between the background (17) and the object to be measured (11).
Even if a small amount of natural light enters the camera, it will have little effect on the image captured, except when direct light enters the camera.

そのため貫通孔(13)の輪郭はくっきりした形で即ち
、貫通孔(13)の画像の輪郭が明瞭な形で受光される
Therefore, the light is received with a clear outline of the through hole (13), that is, with a clear outline of the image of the through hole (13).

受光部(19)のCCDカメラで受領された光情報は電
気信号に変換され、画像処理部(20)に送られる。画
像処理部(20)で受けた信号は画像処理して画像信号
として表示部(21)に伝送され貫通孔像(A)として
表示する。
Optical information received by the CCD camera of the light receiving section (19) is converted into an electrical signal and sent to the image processing section (20). The signal received by the image processing section (20) undergoes image processing and is transmitted as an image signal to the display section (21), where it is displayed as a through-hole image (A).

画像処理部(20)からの信号は、同時に判断部(22
)でも受ける。
The signal from the image processing section (20) is simultaneously transmitted to the judgment section (22).
) But I accept it.

受領された貫通孔像情報は、被測定物(11)から受光
部(19)までの距離のため生ずる反射光の拡散の誤差
を修正した上で基準信号発生部(23)から伝送される
所望の基準貫通孔情報信号と形状、面積、貫通孔像の重
心位置、この実施例では重心位置を比較し、許容範囲内
カJ否かを判断し、貫通孔の適否を表示部に適否表示(
B)として表示する。貫通孔像の重心位置の比較によっ
て、形成された貫通孔の適否を判断する場合は、第3図
に示すように、所望の基準貫通孔像(A)′の重心O′
と、測定された貫通孔像(A)の重心0との位置のずれ
が、誤差範囲内か否かを判断しておこなう。
The received through-hole image information is transmitted from the reference signal generating section (23) after correcting the error in the diffusion of reflected light caused by the distance from the object to be measured (11) to the light receiving section (19). The shape, area, and center of gravity position of the through hole image (in this embodiment, the center of gravity position) are compared with the reference through hole information signal of , and it is determined whether the power is within the allowable range or not, and the suitability of the through hole is displayed on the display (
B). When determining the suitability of a formed through hole by comparing the positions of the centers of gravity of through hole images, as shown in FIG.
This is done by determining whether the positional deviation between the measured through-hole image (A) and the center of gravity 0 is within the error range.

適否表示にしたがい、否状態の被加工物は除かれる。According to the suitability display, workpieces in a disqualified state are removed.

比  較  例 25mmr1.8広角レンズ、50mmf1.4標準レ
ンズ、300mmf4望遠レンズを各々CCDカメラ先
端に固定し、モニタ(表示部)上首法、倍率、分解能(
δ)、被写界深度(D)を比較した。
Comparison Example 2 A 5mm f1.8 wide-angle lens, a 50mm f1.4 standard lens, and a 300mm f4 telephoto lens were each fixed to the tip of a CCD camera, and the monitor (display section) upper neck method, magnification, resolution (
δ) and depth of field (D).

■ 倍率、分解能を幾何学的撮像寸法算出方法により求
める。
■ Calculate magnification and resolution using the geometric imaging dimension calculation method.

第4図において X ; 実寸法 x  :  CCDカメラで感知する撮像寸法L : 
被写体距離 F : 焦点距離 このとき X=FX/L の関係が成立する。
In Fig. 4, X; Actual size x: Imaging dimension L detected by CCD camera:
Subject distance F: Focal length At this time, the relationship X=FX/L holds true.

機器による補正をおこなった上でモニタ(表示部)上に
表示される物体の大きさくX′)とその倍率は、以下の
ように求められる。
The size (X') of the object displayed on the monitor (display unit) and its magnification after correction by the equipment are determined as follows.

X′−(撮像寸法:X)X(補正値)/(有効画寸法)
 (mm) 倍率=x’/X 分解能(δ)は以下のように求められる。
X' - (Image size: X) X (Correction value) / (Effective image size)
(mm) Magnification = x'/X Resolution (δ) is determined as follows.

δ=1/((倍率)×(モニタ画素数)/(モニタ寸法
))(mff+/画素) ■ 被写界深度の算出 第5図において dl コ後方被写界深度 d、:前方被写界深度 d3:焦点深度 L :被写体距離 δ :許容錯乱円 である。
δ=1/((magnification) x (number of monitor pixels)/(monitor dimensions)) (mff+/pixels) ■ Calculation of depth of field In Figure 5, dl Backward depth of field d: Front field Depth d3: Depth of focus L: Subject distance δ: Allowable circle of confusion.

F :焦点距離 r :絞り値 とすると、D :被写界深度は以下の式で求められる。F: Focal length r: Aperture value Then, D: depth of field is determined by the following formula.

D=d、−d。D=d, -d.

= F ”L/(F ’−(L −P)δf)−F 2
L/(F2+(L−F)δf)(mm) 被写体間距離L = 700mm 被写体実寸法X=6.5φ とすると、 300mmf4の望遠レンズ(δ= 0.03)では、
被写界深度=Dは以下の用に求められる。
= F''L/(F'-(L-P)δf)-F2
L/(F2+(L-F)δf)(mm) Assuming that the distance between objects L = 700mm and the actual size of the object X = 6.5φ, with a 300mm f4 telephoto lens (δ = 0.03),
Depth of field=D is determined as follows.

D = 3Of)’X 700/(3(IQ’−(70
0−3(10)X Q、Q3X 4)−3[10” x
 700/ (300” + (700−300) x
 O,034×4) 勺0.75mm ■ 広角レンズ標準レンズについても同様に計算してま
とめて以下に示す。
D = 3Of)'X 700/(3(IQ'-(70
0-3(10)X Q,Q3X 4)-3[10”x
700/ (300” + (700-300) x
0.034×4) 0.75mm ■ Wide-angle lens Standard lenses are calculated in the same way and summarized below.

ズが望ましい。preferred.

(ト)発明の効果 したがって、この発明では、測定用光源と測定用光源の
反射光を受光する受光部とを被加工物に対して同一側に
設置しているにもかかわらず、被測定物表面をとりわけ
明るくする必要がないので、高輝度の被加工物に穿設す
る貫通孔の形状、輪郭を正確に測定できる効果を有する
とともに、背景をとりわけ暗くすることおよび明暗差を
大きくする必要もないので測定時の貫通孔背景部分の遮
光を完全に行なう必要はないという効果も有する。
(G) Effects of the Invention Therefore, in this invention, although the measurement light source and the light receiving part that receives the reflected light of the measurement light source are installed on the same side with respect to the workpiece, Since there is no need to make the surface particularly bright, it is effective in accurately measuring the shape and outline of a through hole drilled in a high-brightness workpiece, and it also eliminates the need to make the background particularly dark and to increase the difference in brightness. Therefore, there is also the effect that it is not necessary to completely shield the background portion of the through hole during measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明図、第2図は同使用状聾
図、第3図、第4図、第5図は実施例図、第6図は従来
例図である。 (1)・・・・・・受光装置、(11)・・川・被測定
物、(工3)・・・・・・貫通孔、(17)・川・・背
景、(18)・・川・測定用光源、(19)・・・・・
・受光部、(19)a・・・・・・望遠レンズ。 特許出願人 セントラル自動車株式会社代理人弁理士 
 安  原  正  2同           安 
  原   正   義第3図 第4図 第5図 第6図 ’W+ q
FIG. 1 is a detailed explanatory diagram of the present invention, FIG. 2 is a diagram of the same in use for a deaf person, FIGS. 3, 4, and 5 are diagrams of an embodiment, and FIG. 6 is a diagram of a conventional example. (1)...Light receiving device, (11)...River/object to be measured, (Work 3)...Through hole, (17)...River...Background, (18)... River/measurement light source, (19)...
- Light receiving section, (19) a...Telephoto lens. Patent applicant Central Jidosha Co., Ltd. Representative Patent Attorney
Tadashi Yasuhara 2nd Yasuhara
Masayoshi Hara Figure 3 Figure 4 Figure 5 Figure 6 'W+ q

Claims (3)

【特許請求の範囲】[Claims] (1)被測定物表面に投光する測定用光源と、貫通孔を
形成された被測定物を設置したとき測定用光源に対し被
測定物を挟んだ反対側に位置するとともに被測定物表面
で測定用光源からの光を反射する反射光に比し相対的に
暗い背景と、被加工物表面で反射する反射光を感知する
受光部とからなる貫通孔測定用受光装置において、受光
部には被写界深度が浅くかつ被測定物表面に焦点を合わ
せたレンズを付設するとともに、被測定物表面と背景間
には、レンズの焦点が合わないために背景からの受光量
が被測定物表面に比し低下する距離を設けることを特徴
とする貫通孔測定用受光装置。
(1) When a measurement light source that emits light onto the surface of the object to be measured and an object to be measured that has a through hole are installed, the measurement light source is located on the opposite side of the object to be measured, and the surface of the object is located on the opposite side of the object. In the light-receiving device for through-hole measurement, which consists of a background that is relatively dark compared to the reflected light that reflects light from the measurement light source, and a light-receiving section that detects the reflected light that is reflected on the surface of the workpiece, the light-receiving section is is equipped with a lens that has a shallow depth of field and focuses on the surface of the object to be measured, and since the lens cannot focus between the surface of the object and the background, the amount of light received from the background is smaller than that of the object to be measured. A light-receiving device for through-hole measurement, characterized by providing a distance that is lower than the surface.
(2)受光部がCCDカメラである特許請求の範囲第1
項記載の貫通孔測定用受光装置。
(2) Claim 1 in which the light receiving section is a CCD camera
A light receiving device for through-hole measurement as described in 1.
(3)レンズが望遠レンズである特許請求の範囲第1項
又は第2項記載の貫通孔測定用受光装置。
(3) The light receiving device for through hole measurement according to claim 1 or 2, wherein the lens is a telephoto lens.
JP4468187A 1987-02-27 1987-02-27 Light receiver for through hole measurement Pending JPS63210705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4468187A JPS63210705A (en) 1987-02-27 1987-02-27 Light receiver for through hole measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4468187A JPS63210705A (en) 1987-02-27 1987-02-27 Light receiver for through hole measurement

Publications (1)

Publication Number Publication Date
JPS63210705A true JPS63210705A (en) 1988-09-01

Family

ID=12698176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4468187A Pending JPS63210705A (en) 1987-02-27 1987-02-27 Light receiver for through hole measurement

Country Status (1)

Country Link
JP (1) JPS63210705A (en)

Similar Documents

Publication Publication Date Title
US5566244A (en) Method of inspecting a workpiece surface including a picturing system with a shortened focal plane
CN101344491B (en) Inspection apparatus and method
US5168322A (en) Surface inspection using retro-reflective light field
JP2000002518A (en) Three dimensional input device
US4225771A (en) Method and apparatus for monitoring arc welding
JPH0426423B2 (en)
JP2000263266A (en) Laser irradiation point detection device and seam position detection device in laser beam welding machine
JPH05185228A (en) Automatic welding device using welding head for welding parameter measurement and this welding head
JPS63210705A (en) Light receiver for through hole measurement
GB2365525A (en) Setting the position of the measurement object in the measurement of layer thickness by X-ray fluorescence
JP2519183B2 (en) Through-hole three-dimensional position measuring device
JP2844348B2 (en) Method for determining solder amount by image processing
JP2519187B2 (en) Through-hole three-dimensional position measuring device
JPH052923B2 (en)
GB2095505A (en) Automatic focusing
JPH01214118A (en) Semiconductor manufacturing apparatus
JPH06105212B2 (en) Headlight main optical axis inspection method
JPS6313446Y2 (en)
KR900004371B1 (en) Method of coordination of optical axis
JP3336888B2 (en) Method and apparatus for measuring color tone of metal plate
JPH0285597A (en) Universal head
JPH0789044B2 (en) Through-hole measuring light-receiving device, through-hole measuring light-receiving method, through-hole three-dimensional position measuring device, through-hole three-dimensional position measuring method, multiple through-hole three-dimensional position measuring device, and multiple through-hole three-dimensional position measuring device Method
JPS6030578A (en) Device for detecting sectional shape of shoulder part of welding groove and central position of groove
JPS6293093A (en) Weld line detecting device
JPH0968462A (en) Device for measuring reflection coefficient