JP2519187B2 - Through-hole three-dimensional position measuring device - Google Patents

Through-hole three-dimensional position measuring device

Info

Publication number
JP2519187B2
JP2519187B2 JP62311758A JP31175887A JP2519187B2 JP 2519187 B2 JP2519187 B2 JP 2519187B2 JP 62311758 A JP62311758 A JP 62311758A JP 31175887 A JP31175887 A JP 31175887A JP 2519187 B2 JP2519187 B2 JP 2519187B2
Authority
JP
Japan
Prior art keywords
hole
light receiving
receiving means
measured
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62311758A
Other languages
Japanese (ja)
Other versions
JPH01152301A (en
Inventor
泰俊 近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Co Ltd
Original Assignee
Central Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Co Ltd filed Critical Central Motor Co Ltd
Priority to JP62311758A priority Critical patent/JP2519187B2/en
Publication of JPH01152301A publication Critical patent/JPH01152301A/en
Application granted granted Critical
Publication of JP2519187B2 publication Critical patent/JP2519187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、空間上に位置する測定箇所、例えば被測
定物である鋼板に穿設する測定箇所である貫通孔の測定
位置からの三次元位置を測定する測定装置に係る。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a measurement point located in a space, for example, a tertiary position from a measurement point of a through hole which is a measurement point to be punched in a steel plate which is an object to be measured. This relates to a measuring device that measures the original position.

更に詳細には、組立ライン中に測定位置を予め設定す
るとともに、予め測定位置と測定装置との三次元的位置
関係を求め、組立ライン等を移動中の鋼板、自動車ボデ
ー等被測定物に穿設した孔等測定箇所の測定装置に対す
る三次元的位置を被測定物から離れた場所から測定する
ことで被測定物における測定箇所の適否の判断をする三
次元位置測定装置に係る。
More specifically, the measurement position is set in advance in the assembly line, the three-dimensional positional relationship between the measurement position and the measuring device is obtained in advance, and the assembly line or the like is drilled on a moving steel plate, an automobile body, or another object to be measured. The present invention relates to a three-dimensional position measuring device that determines the suitability of a measuring point on an object to be measured by measuring the three-dimensional position of the measuring point such as an established hole with respect to the measuring device from a location distant from the object to be measured.

(ロ)従来の技術 従来、鋼板等の被測定物に設けた被測定箇所の適否を
判断するための三次元位置を測定する三次元位置装置と
しては、第6図に図示する測定装置が知られている。
(B) Conventional Technology Conventionally, a measuring device shown in FIG. 6 is known as a three-dimensional position device for measuring a three-dimensional position for determining suitability of a measured portion provided on a measured object such as a steel plate. Has been.

この従来例では、鋼板(101)に穿設された貫通孔(1
02)の、三次元位置をX軸方向を計測するX軸ピン(10
3)a、Y軸方向を計測するY軸ピン(103)b、Z軸方
向を計測するZ軸ピン(103)cと、貫通孔(102)に挿
入する可動ピン(104)とからなる。
In this conventional example, a through hole (1
02), X-axis pin (10
3) a, a Y-axis pin (103) b for measuring the Y-axis direction, a Z-axis pin (103) c for measuring the Z-axis direction, and a movable pin (104) inserted into the through hole (102).

即ち、予め可動ピン(104)を、所望の基準貫通孔位
置に設置し、X軸ピン(103)a、Y軸ピン(103)b、
Z軸ピン(103)cのピン先端を、可動ピン(104)表面
に接触させる。この状態を各軸ピンにおける0位置とす
る。ついで可動ピン(104)を貫通孔(102)に挿入す
る。すると、貫通孔(102)の設置位置によって可動ピ
ン(104)は移動されるが、各軸ピンからなる接触セン
サー(105)a、(105)b、(105)cでプラス方向ま
たはマイナス方向の移動方向、および移動量とて感知さ
れ、感知された情報を信号として伝達する。移動方向、
移動量の信号を受けた各判断部(106)a、(106)b、
(106)cでは、各軸方向に関する所望の関係基準貫通
孔位置の情報信号を伝達する基準信号発生部(107)
a、(107)b、(107)cからの基準信号をも受ける。
That is, the movable pin (104) is previously set at a desired reference through hole position, and the X-axis pin (103) a, the Y-axis pin (103) b,
The tip of the Z-axis pin (103) c is brought into contact with the surface of the movable pin (104). This state is defined as the 0 position on each axis pin. Then, the movable pin (104) is inserted into the through hole (102). Then, although the movable pin (104) is moved depending on the installation position of the through hole (102), the contact sensor (105) a, (105) b, (105) c composed of the respective axial pins moves in the positive or negative direction. The information sensed as a moving direction and a moving amount is transmitted as a signal. Direction of movement,
Each of the determination units (106) a, (106) b, which have received the movement amount signal,
In (106) c, a reference signal generating section (107) for transmitting an information signal of a desired relational reference through hole position in each axial direction.
It also receives the reference signals from a, (107) b, and (107) c.

判断部(106)a、(106)b、(106)cでは各々両
信号を比較し移動量が基準貫通孔の誤差の範囲内か否か
を判断し、表示部(108)にその適否を表示する。この
とき、測定装置と被測定物の測定位置との三次元的関係
は予め求められているため、表示される適否は、被測定
物に形成する貫通孔(102)の位置の適否を表示するこ
ととなる。
Judgment units (106) a, (106) b, (106) c respectively compare the two signals to judge whether or not the movement amount is within the error range of the reference through hole, and the display unit (108) indicates whether or not it is appropriate. indicate. At this time, since the three-dimensional relationship between the measuring device and the measurement position of the object to be measured is obtained in advance, the displayed suitability indicates the suitability of the position of the through hole (102) formed in the object to be measured. It will be.

(ハ)発明が解決しようとする問題点 しかし従来の測定装置では、4本のピンによる接触式
であったため孔形状、ピン摩耗等の現象により精度の低
下を生ずる問題点を有した。更に、接触式のため、ライ
ン上を移動する被測定物の計測にあたっては、被測定物
の移動を停止させ接触するため停止時間が長くなる問題
点を有した。
(C) Problems to be Solved by the Invention However, the conventional measuring device has a problem in that the accuracy is deteriorated due to a phenomenon such as hole shape and pin wear because it is a contact type with four pins. Further, since it is a contact type, when measuring an object to be measured moving on a line, there is a problem that the stop time becomes long because the object to be measured is stopped from moving to make contact.

(ニ)問題点を解決するための手段 この発明は、被測定物表面に投光する照明手段と、貫
通孔を形成された被測定物を測定位置に設置したとき照
明手段に対し被測定物を挟んだ反対側に位置するととも
に被測定物表面で照明手段からの照明を反射する反射光
に比し相対的に暗い背景と、貫通孔面に向けて設置され
被加工物表面が反射する反射光を感知し感知する明暗に
応じて信号を発生する受光手段と、受光手段とは貫通孔
に対し角度をもたせて設置され被加工物表面で反射する
反射光を感知するとともに感知する明暗に応じて信号を
発生する補助受光手段と、反射光を発生せず貫通孔を通
した背景の暗部として受光手段で感知される貫通孔像と
所望の基準貫通孔像を比較する二次元判別手段と、受光
手段および補助受光手段で暗部として感知される貫通孔
像を比較して差異を演算する演算手段と、演算手段で演
算された両貫通孔像の差異と所望の基準貫通孔像を測定
した場合における両受光手段で得られる貫通孔像の差異
を比較することで、所望の基準貫通孔と受光手段間の距
離と、貫通孔と受光手段間の距離との差異を求める一次
元判別手段とからなることを特徴とする貫通孔の三次元
位置測定装置、を提供することで、ピン使用の測定装置
の要する被測定物停止時間を短くし、また、測定精度向
上を図る (ホ)作用 被測定物表面に、照明手段から投光する。すると、被
測定物表面における貫通孔形成部分以外では反射光を生
じ、貫通孔部分は背景の暗部として表され、受光手段で
は貫通孔と貫通孔周囲は明暗差として感知される。
(D) Means for Solving Problems The present invention relates to an illumination means for projecting light onto the surface of an object to be measured, and an object to be measured with respect to the illumination means when the object to be measured having a through hole is installed at a measurement position. Reflection that is located on the opposite side across the background and is relatively dark compared to the reflected light that reflects the illumination from the illumination means on the surface of the object to be measured and the surface of the object to be processed that is installed toward the through hole surface The light receiving means for detecting light and generating a signal according to the light and darkness to be sensed, and the light receiving means are installed at an angle with respect to the through hole and sense the reflected light reflected on the surface of the workpiece and respond to the light and darkness to be sensed. An auxiliary light receiving means for generating a signal, a two-dimensional discriminating means for comparing a desired reference through hole image with a through hole image sensed by the light receiving means as a dark part of the background passing through the through hole without generating reflected light, Sensing as a dark area by the light receiving means and auxiliary light receiving means Computation means for computing a difference by comparing known through-hole images, and through-holes obtained by both light-receiving means when a difference between both through-hole images computed by the computing means and a desired reference through-hole image are measured A through-hole characterized by comprising a one-dimensional discriminating means for obtaining a difference between a desired distance between the reference through-hole and the light-receiving means and a distance between the through-hole and the light-receiving means by comparing image differences. By providing a three-dimensional position measuring device, the measuring time required for the pin-based measuring device is shortened and the measurement accuracy is improved. (E) Function The illumination means projects light onto the surface of the measured object. To do. Then, reflected light is generated in a portion other than the portion where the through hole is formed on the surface of the object to be measured, the through hole portion is represented as a dark portion of the background, and the light receiving means perceives the through hole and the periphery of the through hole as a difference in brightness.

受光手段で感知された明暗差は信号として二次元判別
手段に伝送されるが、受光手段で感知された暗部は貫通
孔像を表わすことになり、二次元判別手段では、貫通孔
像を表わす信号を受けることとなる。二次元判別手段で
は、所望の基準貫通孔からの情報を受光手段で感知した
場合の基準貫通孔像情報を記憶する基準信号発生手段か
らの基準信号も受ける。実際に計測されている二次元上
の貫通孔像を表わす信号と、二次元の基準貫通孔情報を
表わす基準信号とを二次元判別手段で比較する。
The brightness difference detected by the light receiving means is transmitted to the two-dimensional discrimination means as a signal, but the dark portion detected by the light receiving means represents a through-hole image, and the two-dimensional discrimination means indicates a through-hole image. Will be received. The two-dimensional discriminating means also receives the reference signal from the reference signal generating means for storing the reference through-hole image information when the information from the desired reference through-hole is sensed by the light receiving means. The two-dimensional discriminating means compares the signal representing the actually measured two-dimensional through-hole image with the reference signal representing the two-dimensional reference through-hole information.

貫通孔と測定装置の距離は、補助受光手段を設けた場
合は、次のように求める。即ち、受光手段と補助受光手
段とは、貫通孔に対して角度をもって設置されている。
そのため、各受光手段で感知される貫通孔の暗部即ち貫
通孔像は、各受光手段と貫通孔間のなす角度分だけ貫通
孔像の重心位置あるいは面積等の入力される情報が異な
ったものとして感知される。
When the auxiliary light receiving means is provided, the distance between the through hole and the measuring device is calculated as follows. That is, the light receiving means and the auxiliary light receiving means are installed at an angle to the through hole.
Therefore, it is assumed that the dark portion of the through hole, that is, the through hole image, sensed by each light receiving means has different input information such as the position of the center of gravity or the area of the through hole image by the angle formed between each light receiving means and the through hole. Is perceived.

受光手段と補助受光手段との距離が一定していれば、
受光手段と貫通孔の位置が変化すると、受光手段と貫通
孔と補助受光手段のなす角度は変化する。この角度が変
化すれば、各受光手段で感知される貫通孔像の内径・面
積等の形状に変化を生じる。そこで、受光手段および補
助受光手段で暗部として感知される各貫通孔像を受け、
演算手段で面積差あるいは貫通孔像の内径の差を演算し
貫通孔穿設面と受光手段重心との水平距離を算出する。
面積、あるいは内径と、所望の基準貫通孔を形成した場
合の両受光手段で感知される貫通孔像により求められる
貫通孔穿設面と受光手段との水平基準距離を比較する。
If the distance between the light receiving means and the auxiliary light receiving means is constant,
When the positions of the light receiving means and the through hole change, the angle formed by the light receiving means, the through hole and the auxiliary light receiving means changes. If this angle changes, the shape such as the inner diameter and area of the through hole image sensed by each light receiving means changes. Therefore, receiving each through hole image sensed as a dark part by the light receiving means and the auxiliary light receiving means,
The calculation means calculates the area difference or the difference in the inner diameter of the through hole image to calculate the horizontal distance between the through hole drilling surface and the center of gravity of the light receiving means.
The area or inner diameter is compared with the horizontal reference distance between the light receiving means and the through hole drilling surface obtained from the through hole images sensed by both light receiving means when the desired reference through hole is formed.

従って、測定する貫通孔の受光手段、測定装置との三
次元位置と、所望の基準貫通孔の三次元位置とを比較す
ることになる。
Therefore, the three-dimensional position of the through hole to be measured with respect to the light receiving means and the measuring device is compared with the desired three-dimensional position of the reference through hole.

(ヘ)実施例 この発明の実施例を表わす第1図、同使用状態を表わ
す第2図に従って説明する。
(F) Embodiment An explanation will be given according to FIG. 1 showing an embodiment of the present invention and FIG. 2 showing the same usage state.

(11)は被測定物である。被測定物(11)は、この実
施例では自動車組立ライン(12)上の未塗装の鋼板を加
工してなる自動車モノコックボデーからなる。
(11) is the measured object. The object to be measured (11) in this embodiment is an automobile monocoque body formed by processing unpainted steel plate on the automobile assembly line (12).

被測定物(11)には、貫通孔測定の前工程で他部品取
付けのため穿設し貫通孔(13)を設ける。
The object to be measured (11) is provided with a through hole (13) for attaching another component in the preceding step of measuring the through hole.

(14)は自動車組立ライン(12)を内部に設ける工場
施設、(15)は工場施設に設ける採光窓である。(16)
は遮光板であり、被測定物(11)の背景(17)へ直接照
射する自然光を遮光する。背景(17)は、この実施例で
は自動車ボデーの反対側側面内側からなる。
(14) is a factory facility inside which an automobile assembly line (12) is installed, and (15) is a lighting window installed in the factory facility. (16)
Is a light-shielding plate, which shields the natural light directly applied to the background (17) of the object (11) to be measured. The background (17) consists of the inside of the opposite side of the car body in this example.

(18)は照明手段である。照明手段としてはこの実施
例では、集光度の高いスポット照明を使用し75W、被測
定面で1000lxとなるハロゲン燈、タングステン燈等を使
用する。照明手段(18)は光量が安定していることが望
ましい。
(18) is a lighting means. In this embodiment, as the illuminating means, spot illumination having a high degree of condensing is used, and 75 W, and a halogen lamp, a tungsten lamp, or the like, which has a measurement surface of 1000 lx, is used. It is desirable that the illumination means (18) has a stable light quantity.

(19)は受光手段である。受光手段(19)は被測定物
(11)に対して測定用光源と同一側に設置し、入力して
きた光情報を電気信号に変換する。受光手段(19)は、
この実施例ではCCDカメラからなる。受光手段(19)の
被測定物(11)側には、所望の焦点距離と視野範囲を得
られる300mmf4程度の望遠レンズ(19)aを固定する。
望遠レンズ(19)aを付設することで、受光手段(19)
は被写界深度が浅くなり焦点の合っていない部分では受
光量は極端に低下する。この実施例では、被測定物(1
1)表面と、背景(17)とは1000mm程度の距離を設けて
なるが被写界深度の0.75mm以上離れていればよい。受光
手段(19)は、貫通孔(13)に向けて設置する。
(19) is a light receiving means. The light receiving means (19) is installed on the same side as the measurement light source with respect to the DUT (11), and converts the inputted optical information into an electric signal. The light receiving means (19) is
In this embodiment, it consists of a CCD camera. A telephoto lens (19) a of about 300 mmf4 capable of obtaining a desired focal length and visual field range is fixed to the object (11) side of the light receiving means (19).
By attaching a telephoto lens (19) a, the light receiving means (19)
The depth of field becomes shallow and the amount of received light is extremely reduced in the out-of-focus portion. In this example, the DUT (1
1) The surface and the background (17) are provided with a distance of about 1000 mm, but they may be separated by a depth of field of 0.75 mm or more. The light receiving means (19) is installed toward the through hole (13).

(20)は、補助受光手段であり、受光手段(19)と同
様にCCDカメラからなる。(20)aは同様の望遠レンズ
である。受光手段(19)と貫通孔(13)を結んだ直線
と、補助受光手段(20)と貫通孔(13)を結んだ直線が
第3図に示すように角度θをとるように、補助受光手段
(20)を設置する。この実施例では、測定位置に所望の
三次元形状、面積を有する基準貫通孔を有する被測定物
(11)を設置したときその基準貫通孔に対してθ=45°
となるように設置する。
Reference numeral (20) denotes an auxiliary light receiving means, which is a CCD camera like the light receiving means (19). (20) a is a similar telephoto lens. A straight line connecting the light receiving means (19) and the through hole (13) and a straight line connecting the auxiliary light receiving means (20) and the through hole (13) form an angle θ as shown in FIG. Install means (20). In this embodiment, when an object to be measured (11) having a reference through hole having a desired three-dimensional shape and area is installed at the measurement position, θ = 45 ° with respect to the reference through hole.
To be installed.

(23)a、(23)bは画像処理部であり、受光手段
(19)、補助受光手段(20)から入力する信号を受けて
画像処理し、CRT画面からなる表示部(24)上に貫通孔
像(A)を表示する。(21)は、二次元判別手段であ
り、受光手段(19)、画像処理手段(23)aからの信号
を受ける。(22)は、基準信号発生手段であり、所望の
基準貫通孔を受光手段(19)位置で感知した場合得られ
る基準貫通孔像の形状、面積、位置、重心位置等の基準
貫通孔情報を記憶し、二次元判別手段(21)に伝達す
る。
Image processing units (23) a and (23) b receive signals input from the light receiving unit (19) and the auxiliary light receiving unit (20), perform image processing, and display the images on a display unit (24) including a CRT screen. The through hole image (A) is displayed. (21) is a two-dimensional discriminating means, which receives signals from the light receiving means (19) and the image processing means (23) a. Reference numeral (22) is a reference signal generating means for displaying reference through-hole information such as the shape, area, position and center of gravity of the reference through-hole image obtained when a desired reference through-hole is detected at the position of the light receiving means (19). It is stored and transmitted to the two-dimensional discriminating means (21).

ところで、形状、面積に関する情報を記憶する場合
は、各画素毎の情報を記憶するために、記憶素子の容量
を大きくする必要が有るが、重心位置等、点の情報を記
憶する場合は、記憶素子の容量は小さくともよい。そこ
でこの実施例では、入力してきた形状、面積に関する情
報を、重心位置という点の情報に演算して記憶する。
By the way, in the case of storing information on the shape and area, it is necessary to increase the capacity of the storage element in order to store the information for each pixel. The capacitance of the element may be small. Therefore, in this embodiment, the inputted information on the shape and area is calculated and stored as information on the point of the center of gravity.

(25)は、演算手段であり、画像処理手段(23)a、
(23)bを介して受光手段(19)、および補助受光手段
(20)と接続する。
(25) is a calculation means, which is an image processing means (23) a,
(23) b is connected to the light receiving means (19) and the auxiliary light receiving means (20).

(26)は一次元判別手段であり、演算手段(25)に接
続する。(27)は、基準貫通孔穿設面〜受光手段間水平
距離の水平方向面位置信号発生手段であり、水平方向面
位置信号発生手段(27)は所望の基準貫通孔を穿設した
被測定物(11)を測定位置に設置したとき、受光手段
(19)、補助受光手段(20)で、各々感知される貫通孔
像の内径差により算出した基準貫通孔穿設面と受光手段
との水平距離も信号として演算手段に伝送する。
(26) is a one-dimensional discriminating means, which is connected to the calculating means (25). (27) is a horizontal surface position signal generating means for the horizontal distance between the reference through hole drilled surface and the light receiving means, and the horizontal surface position signal generating means (27) is a measurement target having a desired reference through hole. When the object (11) is installed at the measuring position, the light receiving means (19) and the auxiliary light receiving means (20) are used to calculate the difference between the inner diameters of the through hole images sensed by the reference through hole drilling surface and the light receiving means. The horizontal distance is also transmitted to the calculation means as a signal.

この発明の実施例の作用について説明する。まず、被
測定物(11)の貫通孔(13)形成箇所およびその周囲に
照明手段(18)から投光する。光量は被測定面でも1000
lx程度と従来の反射形二次元測定装置として一般に用い
られる被測定面で3000lx、500wの高集光度のハロゲン燈
使用に比し低いため、被加工物が鋼板等高輝度の物質か
らなる場合であっても、又反射光は表面の傷、へこみ、
変形、面傾斜が存在しても、それ等に起因する輝度の過
敏な変化は少なくなる。
The operation of the embodiment of the present invention will be described. First, light is projected from the illumination means (18) to the place where the through hole (13) is formed in the object to be measured (11) and its surroundings. The amount of light is 1000 even on the surface to be measured
lx, which is lower than the high-concentration halogen lamp of 3000lx, 500w on the surface to be measured that is generally used as a conventional reflection type two-dimensional measuring device, so when the work piece is made of high-brightness material such as steel plate. Even if there is, the reflected light again has scratches, dents,
Even if there is deformation or surface inclination, the sensitive change in luminance due to such deformation is reduced.

測定用光源(18)の光量は従来例に比し下げられ、他
方被測定物(11)の背景側は特別暗室とすることなく自
然光のうち背景(17)に入光する直接光のみを遮光板
(16)によって遮光したにすぎない。そのため、受光手
段(19)位置からは照明手段(18)を反射する貫通孔周
囲と、背景がそのまま現れるため、暗部として表れる貫
通孔(13)部分との明暗差は従来例に比し小さくなる。
The light intensity of the measurement light source (18) is lower than that of the conventional example, while the background side of the DUT (11) does not have to be a special dark room and blocks only the direct light entering the background (17) out of natural light. It is only shielded from light by the plate (16). Therefore, from the position of the light receiving means (19), the periphery of the through hole that reflects the illuminating means (18) and the background appear as they are, so the difference in brightness between the through hole (13) portion appearing as a dark part is smaller than that of the conventional example. .

しかし、受光手段(19)には、被写界深度が浅く、焦
点の合っていない部分では受光量が極端に低下する望遠
レンズ(19)aを有しており、かつ、背景(17)と被測
定物(11)表面間は被測定物(11)表面に焦点が合った
場合、背景(17)部分から受光量が極端に低下する程度
の距離を置いてあり、望遠レンズのピントは、被測定物
(11)の貫通孔(13)表面に合っている。そのため、被
測定物(11)の貫通孔(13)周囲と貫通孔(13)を通し
た背景(17)との明度差は標準レンズを使用した場合に
比して、強調して受光手段(19)で感知する。
However, the light receiving means (19) has a telephoto lens (19) a, which has a shallow depth of field and whose amount of light received is extremely reduced in a portion out of focus, and also has a background (17). The distance between the surface of the object to be measured (11) and the surface of the object to be measured (11) is such that the amount of received light is extremely reduced when the surface of the object to be measured (11) is in focus. It matches the surface of the through hole (13) of the DUT (11). Therefore, the lightness difference between the periphery of the through hole (13) of the object to be measured (11) and the background (17) passing through the through hole (13) is emphasized as compared with the case where a standard lens is used. Detect in 19).

そのため貫通孔(13)の輪郭はくっきりした形で即
ち、貫通孔(13)の画像の輪郭が明瞭な形で受光され
る。また被写界深度が浅いため背景(17)と被測定物
(11)との間で受光手段(19)に直射光が入る場合を除
き自然光が若干入ったとしても、とらえる画像に影響は
少ない。
Therefore, the outline of the through hole (13) is received in a clear form, that is, the outline of the image of the through hole (13) is received. Also, since the depth of field is shallow, there is little influence on the captured image even if a small amount of natural light enters, except when direct light enters the light receiving means (19) between the background (17) and the DUT (11). .

受光手段(19)のCCDカメラで受領された光情報は電
気信号に変換され、画像処理部(23)aに送られる。画
像処理部(23)aで受けた信号は画像処理して画像信号
として表示部(24)に伝送され、貫通孔像(A)として
表示する。同様に補助受光手段(20)で感知した貫通孔
像(B)も表示する。画像処理部(23)aからの信号
は、同時に二次元判別手段(21)でも受領する。
The optical information received by the CCD camera of the light receiving means (19) is converted into an electric signal and sent to the image processing section (23) a. The signal received by the image processing section (23) a is subjected to image processing and transmitted as an image signal to the display section (24), where it is displayed as a through hole image (A). Similarly, the through hole image (B) sensed by the auxiliary light receiving means (20) is also displayed. The signal from the image processing section (23) a is also received by the two-dimensional discriminating means (21) at the same time.

受領された貫通孔像情報を基準信号発生手段(22)か
ら伝送される所望の基準貫通孔情報信号と形状、重心位
置、面積を比較し、二次元上の許容範囲内か否かを判断
し、貫通孔の適否を表示部に適否表示(C)として表示
する。
The received through-hole image information is compared with the desired reference through-hole information signal transmitted from the reference signal generating means (22) in terms of shape, center of gravity position, and area, and it is judged whether or not it is within a two-dimensional allowable range. The suitability of the through hole is displayed on the display unit as suitability display (C).

この実施例では、基準貫通孔像と測定された貫通孔像
の重心位置の差異を比較して適否の判断をする。この実
施例のように貫通孔像の重心位置の比較によって、形成
された貫通孔の適否を判断する場合は、第3図に示すよ
うに、所望の基準貫通孔像(A)′の重心O′と、測定
された貫通孔像(A)の重心Oとの位置のずれが、誤差
範囲内か否かを判断しておこなう。
In this embodiment, the difference between the center-of-gravity positions of the reference through-hole image and the measured through-hole image is compared to determine the suitability. When the suitability of the formed through-hole is judged by comparing the positions of the centers of gravity of the through-hole images as in this embodiment, the center of gravity O of the desired reference through-hole image (A) 'is determined as shown in FIG. ′ And the measured position of the through hole image (A) with respect to the center of gravity O are within the error range.

受光手段(19)の感知した貫通孔像情報信号は、画像
処理手段(23)aを介して演算手段(25)でも受領す
る。演算手段(25)は、同時に補助受光手段(20)で感
知し画像処理手段(23)bを介し表示手段(24)にも伝
送され、貫通孔像(B)として表示される貫通孔像情報
も受領する。演算手段(25)では、両受光手段で感知し
た貫通孔像の形状を比較し、その差を求める。補助受光
手段(20)は第1図に示すように受光手段(19)に対し
て角度をもたせて設置してあるため、受光手段(19)で
感知される貫通孔像と補助受光手段(20)で感知される
貫通孔像とは異なったものとなる。
The through hole image information signal sensed by the light receiving means (19) is also received by the computing means (25) via the image processing means (23) a. The calculation means (25) is sensed by the auxiliary light receiving means (20) at the same time, is transmitted to the display means (24) through the image processing means (23) b, and is displayed as a through hole image information (B). Also receive. The computing means (25) compares the shapes of the through-hole images sensed by both light receiving means and finds the difference. Since the auxiliary light receiving means (20) is installed at an angle to the light receiving means (19) as shown in FIG. 1, the through hole image sensed by the light receiving means (19) and the auxiliary light receiving means (20) are detected. ) Is different from the image of the through-hole detected by.

演算結果は信号として一次元判別手段(26)に送られ
る。一次元判別手段(26)では、所望の基準貫通孔像に
おける水平方向面位置を記憶し信号として伝送する水平
方向面位置基準信号発生手段(27)とも接続しており、
水平方向面位置基準信号発生手段(27)から受ける基準
距離信号と実際測定している面位置と比較する。
The calculation result is sent as a signal to the one-dimensional discriminating means (26). The one-dimensional discriminating means (26) is also connected to the horizontal plane position reference signal generating means (27) for storing the horizontal plane position in the desired reference through hole image and transmitting it as a signal.
The reference distance signal received from the horizontal surface position reference signal generating means (27) is compared with the actually measured surface position.

この面位置の差を比較し、誤差範囲内かを判断し貫通
孔の適否を表示部に適否表示(D)として表示する。
The difference between the surface positions is compared, and it is judged whether or not it is within an error range, and the suitability of the through hole is displayed on the display unit as a suitability display (D).

受光手段(19)を貫通孔(13)に対して面直に設置し
なくとも、所望貫通孔を形成した被測定物(11)を測定
位置で測定し、その貫通孔情報に基づき所望貫通孔情報
を設定し基準信号発生手段(22)、(27)に入力しても
よい。
Even if the light receiving means (19) is not installed directly on the through hole (13), the object (11) having the desired through hole is measured at the measurement position, and the desired through hole is obtained based on the through hole information. Information may be set and input to the reference signal generating means (22) and (27).

実施例I 実施例の演算手段を第6図に従って説明する。即ち第
6図において L3/L1=tanθ1 ただし L1:受光手段の受光方向 L2:補助受光手段の受光方向 L3:受光手段と補助受光手段との間の距離(実測値で定
数) L1=L3/tanθ1 ただし θ1:L1とL2となる角 またd2/d1=cosθ2 ただし θ2=cos-1(d2/d1) L1=L3/tan(cos-1(d2/d1)−θ/2) d1:実際の貫通孔像 d2:補助受光手段の受光する貫通孔像 θ2:補助受光手段の貫通孔像と実面のなす角であり、
各角度間の関係は よって θ2=θ1+θ/2 ただし L:レンズの画角 である。すなち、第6図において 180°−(90°+θ1)=θ/2+θ3 θ3=180°−(90°+θ1)−θ/2 θ2=180°−(90°+θ3) θ2=180°−(90°+(180°−(90°+θ1)−θ/
2)) =180°−(90°+(90°−θ1)−θ/2) =180°−(180°−θ1−θ/2) =θ1+θ/2 θ1=180°−(90°+θ1) =θ/2+θ3 (θ:レンズ直角で300mm望遠では8°ちなみに25mm:85
° 50mm:47°) L1=L3/tan(cos-1(d2/d1)−θ/2) さらに基準孔穿設面が傾きθFを有している場合、 θ2=θ1+θ/2−θF となる。
Embodiment I The arithmetic means of the embodiment will be described with reference to FIG. That is, in FIG. 6, L 3 / L 1 = tan θ 1 where L 1 : light receiving direction of light receiving means L 2 : light receiving direction of auxiliary light receiving means L 3 : distance between light receiving means and auxiliary light receiving means (measured value is a constant ) L 1 = L 3 / tan θ 1 where θ 1 is the angle between L 1 and L 2 and d 2 / d 1 = cos θ 2 where θ 2 = cos -1 (d 2 / d 1 ) L 1 = L 3 / tan (cos −1 (d 2 / d 1 ) −θ / 2) d 1 : Actual through-hole image d 2 : Through-hole image received by auxiliary light receiving means θ 2 : Through-hole image and real surface of auxiliary light receiving means Is the angle formed by
The relationship between the angles is therefore θ 2 = θ 1 + θ / 2, where L is the angle of view of the lens. Sand, 180 ° in FIG. 6 - (90 ° + θ 1) = θ / 2 + θ 3 θ 3 = 180 ° - (90 ° + θ 1) -θ / 2 θ 2 = 180 ° - (90 ° + θ 3) θ 2 = 180 ° − (90 ° + (180 ° − (90 ° + θ 1 ) −θ /
2)) = 180 °-(90 ° + (90 ° -θ 1 ) -θ / 2) = 180 °-(180 ° -θ 1 -θ / 2) = θ 1 + θ / 2 θ 1 = 180 °- (90 ° + θ 1 ) = θ / 2 + θ 3 (θ: 300mm at right angle to the lens, 8 ° at telephoto, 25mm: 85
° 50mm: 47 °) L 1 = L 3 / tan (cos -1 (d 2 / d 1 ) −θ / 2) If the reference hole drilling surface has an inclination θ F , θ 2 = θ It becomes 1 + θ / 2-θ F.

ここで感知されたL1を面位置基準信号発生手段(27)
で記憶する。
The L 1 sensed here is used as a surface position reference signal generating means (27).
Remember.

参考例1 25mmf1.8広角レンズ、50mmf1.4標準レンズ、300mmf4
望遠レンズを各々CCDカメラ先端に固定し、モニタ(表
示部)上寸法、倍率、分解能(δ)、被写界深度(D)
を比較した。
Reference example 1 25mm f1.8 wide-angle lens, 50mm f1.4 standard lens, 300mm f4
Each telephoto lens is fixed to the tip of the CCD camera, and the size (magnification), resolution (δ), and depth of field (D) on the monitor (display section) are fixed.
Were compared.

倍率、分解能を幾何学的撮像寸法算出方法により求
める。
The magnification and resolution are obtained by the geometrical imaging size calculation method.

第4図において X:実寸法 x:CCDカメラで感知する撮像寸法 L:被写体距離 F:焦点距離 このとき x=FX/L の関係が成立する。In Fig. 4, X: Actual dimension x: Imaging dimension sensed by CCD camera L: Subject distance F: Focal length At this time, the relation of x = FX / L is established.

機器による補正をおこなった上でモニタ(表示部)上
に表示される物体の大きさ(x′)とその倍率は、以下
のように求められる。
The size (x ') of the object displayed on the monitor (display unit) after being corrected by the device and its magnification are obtained as follows.

x′=(撮像寸法:x)×(補正値)/(有効画寸法)
(mm) 倍率=x′/X 分解能(δ)は以下のように求められる。
x '= (imaging size: x) x (correction value) / (effective image size)
(Mm) Magnification = x ′ / X The resolution (δ) is calculated as follows.

δ=1/{(倍率)×(モニタ画素数)/(モニタ寸
法)}(画素/mm) 被写界深度の算出 第5図において d1:後方被写界深度 d2:前方被写界深度 d3:焦点深度 L:被写体距離 δ:許容錯乱円 である。
δ = 1 / {(magnification) × (number of monitor pixels) / (monitor size)} (pixels / mm) Depth of field calculation In FIG. 5, d 1 is the rear depth of field d 2 is the front depth of field. Depth d 3 : Depth of focus L: Object distance δ: Allowable circle of confusion.

F:焦点距離 f:絞り値 とすると、D:被写界深度は以下の式で求められる。F: focal length f: aperture value, D: depth of field is calculated by the following formula.

D=d1−d2 =F2L/{F2−(L−F)δf}−F2L/F2+(L−
F)δf}(mm) 被写体間距離L=700mm 被写体実寸法X=6.5φ とすると、 300mmf4の望遠レンズ(δ=0.03)では、被写界深度:
Dは以下の用に求められる。
D = d 1 −d 2 = F 2 L / {F 2 − (L−F) δf} −F 2 L / F 2 + (L−
F) δf} (mm) Distance between objects L = 700mm If the actual size of the object is X = 6.5φ, then with a telephoto lens of 300mm f4 (δ = 0.03), the depth of field:
D is required for:

D=3002×700/{3002−(700−300)×0.03×4}−30
02×700/{3002+(700−300)×0.03×4} =0.75mm 広角レンズ、標準レンズについても同様に計算して
まとめて以下に示す。
D = 300 2 × 700 / {300 2 − (700−300) × 0.03 × 4} −30
0 2 × 700 / {300 2 + (700−300) × 0.03 × 4} = 0.75 mm For wide-angle lenses and standard lenses, similar calculations are also shown below.

要求精度、被写界深度上、300mmf4の望遠レンズが望ま
しい。
A 300mm f4 telephoto lens is desirable in terms of required accuracy and depth of field.

(ト)発明の効果 従って、この発明では被測定物と離れた位置で、被測
定物に形成する貫通孔の三次元上の適否を判断できるの
で、被測定物がライン上を移動する場合移動を停止する
時間が短くとも測定することが可能となる。
(G) Effect of the Invention Therefore, according to the present invention, it is possible to judge the three-dimensional suitability of the through hole formed in the measured object at a position distant from the measured object. Therefore, when the measured object moves on the line, it moves. It is possible to measure even if the time to stop is short.

【図面の簡単な説明】 第1図はこの発明の実施例の構成図であり、第2図、第
3図、第4図、第5図、第6図は使用状態図、第7図は
従来例の構成図である。 (11)……被測定物、(13)……貫通孔、(17)……背
景、(18)……照明手段、(19)……受光手段、(20)
……補助受光手段、(21)……二次元判別手段、(25)
……演算手段、(26)一次元判別手段
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an embodiment of the present invention. FIG. 2, FIG. 3, FIG. 4, FIG. 5, and FIG. It is a block diagram of a prior art example. (11) …… DUT, (13) …… through hole, (17) …… background, (18) …… illuminating means, (19) …… light receiving means, (20)
...... Auxiliary light receiving means, (21) ...... Two-dimensional discriminating means, (25)
... Computing means, (26) One-dimensional discriminating means

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定物表面に投光する照明手段と、貫通
孔を形成された被測定物を測定位置に設置したとき照明
手段に対し被測定物を挟んだ反対側に位置するとともに
被測定物表面で照明手段からの照明を反射する反射光に
比し相対的に暗い背景と、貫通孔面に向けて設置され被
加工物表面が反射する反射光を感知し感知する明暗に応
じて信号を発生する受光手段と、受光手段とは貫通孔に
対し角度をもたせて設置され被加工物表面で反射する反
射光を感知するとともに感知する明暗に応じて信号を発
生する補助受光手段と、反射光を発生せず貫通孔を通し
た背景の暗部として受光手段で感知される貫通孔像と所
望の基準貫通孔像を比較する二次元判別手段と、受光手
段および補助受光手段で暗部として感知される貫通孔像
を比較して差異を演算する演算手段と、演算手段で演算
された両貫通孔像の差異と所望の基準貫通孔像を測定し
た場合における両受光手段で得られる貫通孔像の差異を
比較することで、所望の基準貫通孔と受光手段間の距離
と、貫通孔と受光手段間の距離との差異を求める一次元
判別手段とからなることを特徴とする貫通孔の三次元位
置測定装置。
1. An illumination means for projecting light onto a surface of an object to be measured and an object to be measured having a through hole formed therein are positioned on the opposite side of the object to be measured with respect to the illumination means when the object to be measured is placed. Depending on the background that is relatively dark compared to the reflected light that reflects the illumination from the illumination means on the surface of the object to be measured, and the light and darkness that senses and senses the reflected light that is installed toward the through-hole surface and reflected by the surface of the workpiece. A light receiving means for generating a signal, the light receiving means is installed at an angle to the through hole, and an auxiliary light receiving means for detecting the reflected light reflected on the surface of the workpiece and generating a signal according to the detected light and darkness, Two-dimensional discriminating means for comparing a desired reference through-hole image with the through-hole image sensed by the light receiving means as a dark part of the background passing through the through hole without generating reflected light, and the light receiving means and the auxiliary light receiving means sensing as a dark part Compare the through hole images By calculating the difference between both through-hole images calculated by the calculating means and the desired reference through-hole image by comparing the difference between the through-hole images obtained by both light receiving means, the desired reference A three-dimensional position measuring device for a through hole, comprising: a one-dimensional discriminating means for obtaining a difference between a distance between the through hole and the light receiving means and a distance between the through hole and the light receiving means.
JP62311758A 1987-12-09 1987-12-09 Through-hole three-dimensional position measuring device Expired - Lifetime JP2519187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62311758A JP2519187B2 (en) 1987-12-09 1987-12-09 Through-hole three-dimensional position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62311758A JP2519187B2 (en) 1987-12-09 1987-12-09 Through-hole three-dimensional position measuring device

Publications (2)

Publication Number Publication Date
JPH01152301A JPH01152301A (en) 1989-06-14
JP2519187B2 true JP2519187B2 (en) 1996-07-31

Family

ID=18021127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62311758A Expired - Lifetime JP2519187B2 (en) 1987-12-09 1987-12-09 Through-hole three-dimensional position measuring device

Country Status (1)

Country Link
JP (1) JP2519187B2 (en)

Also Published As

Publication number Publication date
JPH01152301A (en) 1989-06-14

Similar Documents

Publication Publication Date Title
EP1739391B1 (en) Image obtaining apparatus
KR100382577B1 (en) Wheel measuring apparatus
US5566244A (en) Method of inspecting a workpiece surface including a picturing system with a shortened focal plane
US5771309A (en) Method for measuring position of hole
EP1411322A2 (en) Optical sensor for measuring position and orientation of an object in three dimensions
US5210589A (en) Apparatus for measuring optical-axis deflection angle of headlight
JP2519187B2 (en) Through-hole three-dimensional position measuring device
JP2519183B2 (en) Through-hole three-dimensional position measuring device
JP3372014B2 (en) Missing parts inspection equipment for engine external parts
JP2572286B2 (en) 3D shape and size measurement device
JPH052923B2 (en)
JPH0949706A (en) Method for measuring moving amount of object to be measured in front/rear direction with using laser light
JP2630844B2 (en) 3D shape and size measurement device
JPH05118831A (en) End-face inspecting apparatus for optical connector
JPH10105719A (en) Optical measurement method for hole position
JPH0789044B2 (en) Through-hole measuring light-receiving device, through-hole measuring light-receiving method, through-hole three-dimensional position measuring device, through-hole three-dimensional position measuring method, multiple through-hole three-dimensional position measuring device, and multiple through-hole three-dimensional position measuring device Method
JP2520365B2 (en) Work measurement position setting method in optical length measuring device
JP2881671B2 (en) Headlight light source position measuring method, optical axis measuring method, and measuring device
KR100395773B1 (en) Apparatus for measuring coordinate based on optical triangulation using the images
JP2600567B2 (en) Pipe end processing section size measurement device
JPH08233545A (en) Method and apparatus for measuring hole shape
JPH0830782B2 (en) How to measure the amount of image point displacement
JP2000055653A (en) Method for grasping tunnel heading face
JPS6129704A (en) Measuring method
JPH03205503A (en) Image position detecting method for sheet light