JPS6320986A - Image sensor - Google Patents

Image sensor

Info

Publication number
JPS6320986A
JPS6320986A JP61164716A JP16471686A JPS6320986A JP S6320986 A JPS6320986 A JP S6320986A JP 61164716 A JP61164716 A JP 61164716A JP 16471686 A JP16471686 A JP 16471686A JP S6320986 A JPS6320986 A JP S6320986A
Authority
JP
Japan
Prior art keywords
color
transfer
wavelength light
charge
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61164716A
Other languages
Japanese (ja)
Other versions
JPH0691659B2 (en
Inventor
Masatoshi Tabei
田部井 雅利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP61164716A priority Critical patent/JPH0691659B2/en
Priority to EP87105138A priority patent/EP0244655B1/en
Priority to US07/035,402 priority patent/US4829368A/en
Priority to DE3750347T priority patent/DE3750347T2/en
Publication of JPS6320986A publication Critical patent/JPS6320986A/en
Priority to US07/207,989 priority patent/US4924316A/en
Publication of JPH0691659B2 publication Critical patent/JPH0691659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an element with high sensitivity and to set a transfer elec trode to only one layer so as to simplify a structure by having a partial aperture on a virtual electrode and forming the complete aperture in which the transfer electrode is removed especially on the side of a short wave length light in setting a vertual phase CCD structure. CONSTITUTION:The photoelectric transducer of a picture element corresponding to a color B does not have the function of transmitting a charge by itself. Consequently, complete open windows 4 in which polysilicon transfer electrodes 3 are removed are provided on the surfaces of the elements. The signal charge generated in accordance with the color B is vertically transferred through the use of the transfer line of an adjacent color R. Thus, transfer gates 5 are pro vided between the photoelectric transducers for the color B and those for the color R, and the gates 5 control the field shift of the signal charge of the color B. Thus, the photoelectric transducer for the color R fulfill three functions of the photoelectric conversion and the charge transfer of the color R and the charge transfer of the color B. The signal charge of the color B field-shifted with the photoelectric transducer for the color R is vertically transmitted similar ly with that of the color R or G, and is read out through a horizontal CCD.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はバーチャルフエーズ(+ (! D (VPC
CD)形のイメージセンサに関し、更に詳述すれば、短
波長光に対する光感度が向上できた電子スチルカメラ専
用のイメージセンナに関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides virtual phase (+ (! D (VPC)
The present invention relates to a CD-type image sensor, and more specifically, to an image sensor dedicated to electronic still cameras that has improved photosensitivity to short wavelength light.

(従来技術) 従来より、撮像素子の特性において光感度を上げること
は重要なテーマである。この点、フレームトランスファ
C0D(FTOC!D)は光電変換するための専用の撮
像部を持ち、その領域全面で受光できるため、他の方式
の撮像素子に比べると、本質的に光の利用効率は高い。
(Prior Art) Increasing light sensitivity has traditionally been an important theme in the characteristics of image sensors. In this regard, frame transfer C0D (FTOC!D) has a dedicated imaging section for photoelectric conversion and can receive light over its entire area, so compared to other types of imaging devices, it is essentially less efficient in using light. expensive.

しかし、従来のFTCCDは、撮像部をゲート電極で覆
われており、この電極による光の吸収や反射によって特
に短波長光に対する光感度が制御されていたため、この
最大の特長を充分に生かしていなかった。
However, in conventional FTCCDs, the imaging section is covered with a gate electrode, and the absorption and reflection of light by this electrode controls the photosensitivity, especially to short wavelength light, so this greatest feature has not been fully utilized. Ta.

この問題を解決するために、撮像部に電極の覆われてい
ない開口窓を構成することが考慮され、その1つとして
バーチャルフエイズCODと呼ばれるものが開発された
In order to solve this problem, consideration has been given to constructing an aperture window in which the electrode is not covered in the imaging section, and as one such method, a system called virtual phase COD has been developed.

これは、第3図に図示したとおシ、従来の2相転送にお
ける電極の片方を、チャンネル内の拡散層1で代用しく
これを仮想ゲートと呼ぶ)、この部分を開口窓としたも
のであり、チャンネル内の電位は、不純物の注入によっ
てたくみてコントロールされ、電荷転送が可能となった
ものである。
In this case, as shown in Fig. 3, one of the electrodes in conventional two-phase transfer is replaced by a diffusion layer 1 in the channel (this is called a virtual gate), and this part is made into an opening window. The potential inside the channel is carefully controlled by implanting impurities, making charge transfer possible.

(発明が解決しようとする問題点) しかしながら、このvpccnにカラーフィルタを配置
しな場合、実際の分光スペクトルはまだ長波長光側が高
く、短波長光側すなわち青感度が不足していた。これは
、感光領域がポリシリコン(ゲート電極)の無い部分と
有る部分を半々にして構成されているため、ポリシリコ
ンの有る部分では依然として光の吸収等を生じていたこ
とによる。
(Problems to be Solved by the Invention) However, when a color filter is not disposed in this vpccn, the actual spectrum is still high on the long wavelength side and lacks sensitivity on the short wavelength side, that is, blue sensitivity. This is because the photosensitive region is made up of half and half parts without polysilicon (gate electrode) and parts with polysilicon, so light absorption still occurs in the parts with polysilicon.

本発明の目的は、短波長光側の感度が改善されかつ全体
の感度も向上できたスチルカメラ専用のイメージセンサ
を提供することにある。
An object of the present invention is to provide an image sensor specifically for still cameras that has improved sensitivity on the short wavelength light side and also has improved overall sensitivity.

(問題点を解決するだめの手段) 上記目的を達成するため、本発明によるイメージセンサ
は次のよう【構成されている。すなわち、マトリクス状
に配置された光電変換素子の信号電荷をバーチャルフエ
イズCOD構造の転送電極で転送するイメージセンサに
おいて、垂直方向く同一色を並べたストライプ配列のカ
ラーフィルタを画素上に配置しており、少なくとも短波
長光に対応する画素表面はポリシリコン転送電極が取り
除かれた完全開口窓を有しており、かつ短波長光の画素
と中波長光または長波長光の画素との間に転送ゲートが
設けられて短波長光の画素の信号電荷が中波長光または
長波長光の画素の転送ラインにフィールドシフトされた
後読出されること全特徴とするイメージセンサ(より達
成される。
(Means for Solving the Problems) In order to achieve the above object, the image sensor according to the present invention is configured as follows. In other words, in an image sensor that transfers signal charges from photoelectric conversion elements arranged in a matrix using transfer electrodes with a virtual phase COD structure, color filters in a striped array of the same color arranged vertically are arranged above the pixels. At least the pixel surface corresponding to short wavelength light has a fully open window from which the polysilicon transfer electrode has been removed, and the pixel surface corresponding to short wavelength light has a fully open window from which the polysilicon transfer electrode is removed, and the pixel surface corresponding to short wavelength light has a completely open window, and the pixel surface corresponding to short wavelength light has a fully open window, and the transfer between the short wavelength light pixel and the medium wavelength light or long wavelength light pixel This is achieved by an image sensor (all characteristics) in which a gate is provided so that the signal charge of the short wavelength light pixel is field-shifted to the transfer line of the medium wavelength light or long wavelength light pixel and then read out.

(作用) 本発明によるイメージセンサは、少なくとモ短波長光に
関しては対応する光電変換素子の表面が完全開口されて
ポリシリコン転送電極が取り除かれており、従ってイン
ターライントランスファ(IT)方式で動作し、一方、
長波長光または中波長光に関しては撮像部がバーチャル
フエイズccnによシ構成されている。従って、例えば
R1G%Bストライプフィルタを用いることにより、電
荷転送プロセスは、まず長波長光または中波長光である
色Rまたは0の光電変換素子に形成された信号電荷がバ
ーチャルフエイズ電極によシ単相駆動され、信号転送周
期の間に信号蓄積部に転送される。この期間中、短波長
光である色Bの信号電荷は光電変換素子に留まっている
。色R4たはGの信号電荷がすべて信号蓄積部に転送さ
れ、更に水平CCDから読出されると、次に色Bの信号
電荷が色RまたけGの光電変換素子にフィールドシフト
される。すなわち、このとき、色RまたはGの光電変換
素子は色Bの垂直転送ラインとして動作し、色Bの信号
電荷を色RまたはGと同様に信号蓄積部へ転送する。そ
の後、色Bの電荷は水平capを介して読出される。
(Function) In the image sensor according to the present invention, the surface of the corresponding photoelectric conversion element is completely opened and the polysilicon transfer electrode is removed, at least for short wavelength light, and therefore it operates in an interline transfer (IT) manner. However, on the other hand,
For long-wavelength light or medium-wavelength light, the imaging section is constructed of virtual phases ccn. Therefore, by using, for example, an R1G%B stripe filter, the charge transfer process begins by transferring signal charges formed on a photoelectric conversion element of color R or 0, which is long wavelength light or medium wavelength light, to a virtual phase electrode. It is driven in a single phase and is transferred to the signal storage section during the signal transfer period. During this period, the signal charge of color B, which is short wavelength light, remains in the photoelectric conversion element. When all the signal charges of color R4 or G are transferred to the signal storage section and further read out from the horizontal CCD, the signal charges of color B are then field-shifted to the photoelectric conversion element of color R and G. That is, at this time, the photoelectric conversion element of color R or G operates as a vertical transfer line of color B, and transfers the signal charge of color B to the signal storage section in the same way as color R or G. The color B charge is then read out through the horizontal cap.

なお、上記の色Bの垂直転送の間、撮像部に入射する光
は、何らかの遮光手段、例えば機械式シャッタによって
遮断しておかねばならな込ことは言うまでもない。
It goes without saying that during the vertical transfer of color B, the light entering the imaging section must be blocked by some kind of light blocking means, such as a mechanical shutter.

以上のように本発明によるイメージセンサでは、少なく
とも短波長光の色に関してはポリシリコン転送電極が完
全開口された窓を有し、また、長波長光または中波長光
に対してはパーチャルフエイズ電極により部分的開口窓
を有して全体の感度向上が得られると共に、短波長光の
一層の感度向上が得られる。
As described above, in the image sensor according to the present invention, the polysilicon transfer electrode has a window that is completely opened for at least the color of short wavelength light, and the partial phase electrode has a window that is completely opened for at least the color of short wavelength light. By having a partially aperture window, overall sensitivity can be improved, and further sensitivity improvement for short wavelength light can be obtained.

(実施列) 本発明の実施例を以下図面により説明する。(Implementation row) Embodiments of the present invention will be described below with reference to the drawings.

第1図の1実施例は、本発明によるイメージセンサの撮
像部を示す構成図である。撮像部10は、マ) IJク
ス状に配列された光電変換素子素子を有し、撮像部上に
はマイクロカラーフィルタが配置!されている。マイク
ロカラーフィルタは、それぞれの光電変換素子に対応し
て3つの色R,G、Eを有する。本発明による構成のマ
イクロカラーフィルタは、垂直方向に同一の色を並べた
ストライプ・配列から成っている。図中記号R,G、B
によりこの配列が概略的に示されている。色RとGの下
に配置された光電変換素子はそれ自体電荷転送素子の役
割も有しており、その転送はパーチャルアニーズCCD
によシ単相駆動される。すなわち、このバーチギルフェ
ーズCCD構造は、従来素子を説明する第3図において
図示したように、2相駆動における2つの電極の片方全
、チャンネル内の拡散層で代用しく仮想電極)、この部
分を開口窓2としたものである。更に仮想電極としただ
けでは十分転送機能を有しないので、イオン注入によシ
基板!I度をかえて、信号電荷が仮想電極の下へ、さら
に、次の電極へ移動し易くしている。−方、色Bに対応
する画素の光電変換素子はそれ自体電荷転送機能を有し
彦い。従って素子表面はポリシリコン転送電極3が取シ
除かれた完全開口窓4を設けている。色Bに基づいて発
生した信号電荷は隣接の色沢の転送ラインを用いて垂直
転送される。従って、色B用の光電変換素子と色R用の
光電変換素子との間には転送ゲート5が設けられて、色
Bの信号電荷のフィールドシフトを制御している。以上
の記載から明らかなとおり、本実施例において、色R用
の光電変換素子は、色Rの光電変換および電荷転送と、
色Bo[荷転送の3つの機能を果たす。
One embodiment shown in FIG. 1 is a configuration diagram showing an imaging section of an image sensor according to the present invention. The imaging section 10 has photoelectric conversion elements arranged in an IJ square shape, and a micro color filter is arranged on the imaging section! has been done. The micro color filter has three colors R, G, and E corresponding to each photoelectric conversion element. The micro color filter constructed according to the present invention consists of a stripe array of the same color arranged in the vertical direction. Symbols R, G, B in the diagram
This arrangement is schematically illustrated by . The photoelectric conversion elements placed under the colors R and G also have the role of charge transfer elements themselves, and the transfer is performed by a virtual anise CCD.
It is driven by a single phase. In other words, in this vertigill phase CCD structure, as shown in FIG. 3 explaining the conventional element, one of the two electrodes in the two-phase drive is replaced by a diffusion layer in the channel (virtual electrode), and this part is This is an opening window 2. Furthermore, since a virtual electrode alone does not have sufficient transfer function, ion implantation is required for the substrate! The I degree is changed to make it easier for the signal charge to move below the virtual electrode and further to the next electrode. On the other hand, the photoelectric conversion element of the pixel corresponding to color B itself has a charge transfer function. Therefore, the element surface is provided with a completely open window 4 from which the polysilicon transfer electrode 3 has been removed. The signal charge generated based on color B is vertically transferred using the transfer line of the adjacent color. Therefore, a transfer gate 5 is provided between the photoelectric conversion element for color B and the photoelectric conversion element for color R to control the field shift of the color B signal charge. As is clear from the above description, in this example, the photoelectric conversion element for color R performs photoelectric conversion and charge transfer for color R,
Color Bo [Performs three functions of cargo transfer.

なお、図において、斜線で示す部分はシリコン基板て形
成されたチャンネルストッパテhF)、fヤンネルスト
ッパで囲まれた部分に光電変換素子および電荷転送素子
すなわちバーチャルフエイズ電極構造の自己走査形ca
nシフトレジスタが形成されている。
In the figure, the shaded area is a channel stopper (hF) formed of a silicon substrate, and the area surrounded by the channel stopper is a self-scanning type ca with a photoelectric conversion element and a charge transfer element, that is, a virtual phase electrode structure.
n shift registers are formed.

色RおよびGの光電変換素子で発生された信号電荷は、
それぞれ光電変換素子自身を介して図示しない信号蓄禎
部に近い出力端部より順次この蓄積部に送られる(図中
、■の矢印で示す)。色RおよびGのすべての電荷の転
送が完了すると、次にこれら信号電荷は図示しない水平
CODより順次読出される。この一連の色R用およびG
用に関する転送・読出しプロセスが終了する七、次に、
色Bの光電変換素子で発生された信号電荷は、転送ゲー
ト5が開いて、空状態の色R用の光電変換素子にフィー
ルドシフトされる(図中、■の矢印で示す)。色R用の
光電変換素子にフィールドシフトされた色Bの信号電荷
は、以下、先の色Rまたは色Gの電荷と同様に垂直転送
され(図中、■の矢印で示す)、更に水平CCDf介し
て読出される。
The signal charges generated by the photoelectric conversion elements of colors R and G are
The signals are sequentially sent to the signal storage section (indicated by the arrows ■ in the figure) from an output end near the signal storage section (not shown) through the photoelectric conversion element itself. When all charges of colors R and G have been transferred, these signal charges are sequentially read out from a horizontal COD (not shown). This series of colors for R and G
7. When the transfer/reading process is finished, then:
The signal charges generated in the color B photoelectric conversion element are field-shifted to the empty color R photoelectric conversion element when the transfer gate 5 is opened (indicated by the black arrow in the figure). The signal charge of color B field-shifted to the photoelectric conversion element for color R is then vertically transferred in the same way as the charge of color R or color G (indicated by the arrow ■ in the figure), and is further transferred to the horizontal CCD f. read out via

なお、上記実施例では電荷蓄積部を設けられて電荷転送
が行われるように記述したが、本発明は蓄積部を省略し
て撮像部と水平CODだけにした所謂フルフレーム・モ
ードで動作するVPCICD構造であってもよい。
In the above embodiment, a charge storage section is provided and charge transfer is performed, but the present invention is a VPCICD that operates in a so-called full frame mode in which the storage section is omitted and only the imaging section and horizontal COD are used. It may be a structure.

第2図は1本発明の他の実施f!AIを図示している。FIG. 2 shows another embodiment of the present invention f! Illustrating AI.

本実施例は、先の第1図に示した実施例素子の色qの光
電変換素子が、色Bと同様にポリシリコン転送電極6を
取り除いて完全開口窓7を有している。従って電荷の転
送は色沢の転送ラインを用いて行う。そのため色Bの転
送と同様、色G用の光電変換素子と色R用の光電変換素
子との間には転送ゲート8が設けられている。そして、
信号の転送は、色Rに関して行った後、色BまたはGに
ついて順次に行う。従って、この際、色Bと色8間の転
送ゲート9と、色Gと色8間の転送ゲート8とが同時に
動作しては困るので、それぞれのスレン)tc−ルド電
圧は異っている。
In this example, the photoelectric conversion element of color q of the example element shown in FIG. Therefore, charge transfer is performed using a colored transfer line. Therefore, similarly to the transfer of color B, a transfer gate 8 is provided between the photoelectric conversion element for color G and the photoelectric conversion element for color R. and,
The signal transfer is performed for color R and then sequentially for color B or G. Therefore, at this time, it would be a problem for the transfer gate 9 between color B and color 8 and the transfer gate 8 between color G and color 8 to operate at the same time, so the respective thread) tc- field voltages are different. .

(発明の効果) 以上記載したとおシ、本発明のイメージセンサによれば
、撮像部t−VPccD構造とすることによ)仮想!極
上に部分的開口部?有して長波長光側の感度向上がはか
れると共に、特に短波長光側は転送電稼が排除された完
全開口部を形成することKより、単にVPCCD構造の
素子より高感度の素子が得られる。また、VPCODに
ょシ実質的に転送電極が1層だけであるため、構造が簡
素化できる。
(Effects of the Invention) As described above, according to the image sensor of the present invention, the imaging section has a t-VPccD structure, so that virtual! Super partial opening? By forming a complete aperture in which transfer power is eliminated, especially on the short wavelength side, an element having higher sensitivity than a simple VPCCD structure element can be obtained. Further, since the VPCOD substantially has only one layer of transfer electrodes, the structure can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の1実施例を説明する構成図、第2図
献本発明の他の実施例を説明する構成図、第3図は従来
のバーチャルフェイズccDを説明する図である。 2−開口窓、3,6−ポリシリコン転送電極、4.7−
完全開口窓、5,8.9=転送ゲート第  1  図 第2図 第  3  図
FIG. 1 is a block diagram for explaining one embodiment of the present invention, FIG. 2 is a block diagram for explaining another embodiment of the present invention, and FIG. 3 is a diagram for explaining a conventional virtual phase CCD. 2-opening window, 3,6-polysilicon transfer electrode, 4.7-
Fully open window, 5, 8.9 = transfer gate Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] マトリクス状に配置された光電変換素子の信号電荷をバ
ーチヤルフエイズCCD構造の転送電極で転送するイメ
ージセンサにおいて、垂直方向に同一色を並べたストラ
イプ配列のカラーフィルタを画素上に配置しており、少
なくとも短波長光に対応する画素表面はポリシリコン転
送電極が取り除かれた完全開口窓を有しており、かつ短
波長光の画素と中波長光または長波長光の画素との間に
転送ゲートが設けられて短波長光の画素の信号電荷が中
波長光または長波長光の画素の転送ラインにフィールド
シフトされた後読出されることを特徴とするイメージセ
ンサ。
In an image sensor that transfers signal charges from photoelectric conversion elements arranged in a matrix using transfer electrodes of a virtual phase CCD structure, color filters in a striped array with the same color arranged vertically are arranged above the pixels. , at least the pixel surface corresponding to short wavelength light has a fully open window with the polysilicon transfer electrode removed, and a transfer gate is provided between the short wavelength light pixel and the medium wavelength light or long wavelength light pixel. 1. An image sensor characterized in that the signal charge of a pixel for short wavelength light is read out after being field shifted to a transfer line of a pixel for medium wavelength light or long wavelength light.
JP61164716A 1986-04-07 1986-07-15 Image sensor Expired - Lifetime JPH0691659B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61164716A JPH0691659B2 (en) 1986-07-15 1986-07-15 Image sensor
EP87105138A EP0244655B1 (en) 1986-04-07 1987-04-07 Solid state color pickup apparatus
US07/035,402 US4829368A (en) 1986-04-07 1987-04-07 Solid color pickup apparatus
DE3750347T DE3750347T2 (en) 1986-04-07 1987-04-07 Solid state color image recorder.
US07/207,989 US4924316A (en) 1986-04-07 1988-06-17 Solid color pickup apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61164716A JPH0691659B2 (en) 1986-07-15 1986-07-15 Image sensor

Publications (2)

Publication Number Publication Date
JPS6320986A true JPS6320986A (en) 1988-01-28
JPH0691659B2 JPH0691659B2 (en) 1994-11-14

Family

ID=15798529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61164716A Expired - Lifetime JPH0691659B2 (en) 1986-04-07 1986-07-15 Image sensor

Country Status (1)

Country Link
JP (1) JPH0691659B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153193A (en) * 1989-11-10 1991-07-01 Fuji Photo Film Co Ltd Solid-state image pickup device
JP2016143732A (en) * 2015-01-30 2016-08-08 三菱電機株式会社 Charge-coupled device, manufacturing method of charge-coupled device, and solid-state imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153193A (en) * 1989-11-10 1991-07-01 Fuji Photo Film Co Ltd Solid-state image pickup device
JP2016143732A (en) * 2015-01-30 2016-08-08 三菱電機株式会社 Charge-coupled device, manufacturing method of charge-coupled device, and solid-state imaging apparatus

Also Published As

Publication number Publication date
JPH0691659B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JP4138104B2 (en) Photosensitive device
US5754228A (en) Rapid-sequence full-frame CCD sensor
JP2002270809A (en) Solid-state image sensor and its control method
US20060125943A1 (en) Image sensor for still or video photography
JP3038539B2 (en) Color linear CCD image device and driving method thereof
JPS6320986A (en) Image sensor
CN111405208B (en) Internally frame transferred CCD
JP2002185870A (en) Solid-state image pickup element
JP2003116144A (en) Solid-state image pickup device
US5283633A (en) Solid state image pickup device in which picture elements of green are generated in vertical charge transfer paths
JPS58212167A (en) Interline transfer charge coupled element
JP2609136B2 (en) Solid-state imaging device
JP2534105B2 (en) Solid-state imaging device and signal reading method thereof
JPH0685582B2 (en) Solid-state imaging device
JP2684377B2 (en) Color solid-state imaging device
JPH01303975A (en) Solid-state image pickup device
JP4734760B2 (en) Driving device and driving method of solid-state imaging device
JPH09205520A (en) Three-line linear sensor
JP2002289828A (en) Color imaging device
JPH0691660B2 (en) Solid-state image sensor for color
JPH0582747B2 (en)
JPH0685583B2 (en) Solid-state image sensor for color
JP3367852B2 (en) Solid-state imaging device
JP2525646B2 (en) Driving method for solid-state imaging device
JP2871741B2 (en) Driving method of solid-state imaging device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term