JPS63209478A - Very fine response ultrasonic motor - Google Patents

Very fine response ultrasonic motor

Info

Publication number
JPS63209478A
JPS63209478A JP62041520A JP4152087A JPS63209478A JP S63209478 A JPS63209478 A JP S63209478A JP 62041520 A JP62041520 A JP 62041520A JP 4152087 A JP4152087 A JP 4152087A JP S63209478 A JPS63209478 A JP S63209478A
Authority
JP
Japan
Prior art keywords
rotor
pulse
stator
reverberation
ultrasonic motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62041520A
Other languages
Japanese (ja)
Other versions
JP2587418B2 (en
Inventor
Akio Kumada
熊田 明生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP62041520A priority Critical patent/JP2587418B2/en
Publication of JPS63209478A publication Critical patent/JPS63209478A/en
Application granted granted Critical
Publication of JP2587418B2 publication Critical patent/JP2587418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0045Driving devices, e.g. vibrators using longitudinal or radial modes combined with torsion or shear modes

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To heighten the positioning accuracy, by constituting an ultrasonic motor with an echoless stator. CONSTITUTION:In an echoless responsive stepping motor, a stator of integral structure is constituted with a ceramic piezoelectric disc 30 sandwiched between aluminium discs 33 and 34 in inserting and fastening the tip of a stainless steel belt set in the central hole into a screwed hole in the center of bottom of a torsional connector 37. A rotor 36 is bolted to the upper surface of this stator through bearings and springs inside the shaft of rotor. With the rotor 36 compressedly uprighted, a motor is constituted. In order to prevent the rotor 36 from overshooting, negative phase pulse is applied as soon as the pulse gets extinct. Negative phase vibration will occur as a result and the reverberation will be set off, so that the amplitude gets smaller than the border line and the rotation of the rotor 36 will stop at the same time when the pulse vanishes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波ステッピングモータに係わり、さらに詳
しくはそのステップ応答性の改良にある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultrasonic stepping motor, and more particularly to improving its step response.

〔従来の技術〕[Conventional technology]

本発明者は超音波モータに関する研究の成果を多数性特
許出願しているが、中でも、「片持梁状捻り超音波振動
子を用いた圧電モータ」 (特願59−172429号
)は本発明の基本技術であり、さらにこの種超音波モー
タが超精密ステッピングモータとして機能することは、
例えば「超音波モータ付可変蓄電器」 (特別60−2
93631号)にも述べた。
The present inventor has filed numerous patent applications for the results of his research on ultrasonic motors, and among them, the invention of ``Piezoelectric motor using cantilever-shaped torsion ultrasonic vibrator'' (Japanese Patent Application No. 59-172429) This is the basic technology of
For example, "Variable capacitor with ultrasonic motor" (Special 60-2
93631).

ところで、その後ステッピングモータとして開発を進め
、パルス応答性を詳細に検討したところ、パルスが数1
0個以上連らなった電気信号で駆動したときの変位量は
パルス数に忠実に比例するが、10個以下ではこの関係
がずれ、ことに、単バルスに対する変位は3〜4パルス
に相当する程オーバーシュートすることを見出した。例
へば、駆動周波数43.2KHz、定格回転数6Orp
mのモータでは毎秒43200パルスで1回転している
ので、10800パルスでは90”回転し、120パル
スでは1″だけ回わるが、12パルスでは6分回ねると
ころ7分回わり、単1パルスでは30秒−0,5分だけ
しか回転しないはずなのに約3〜4倍オー バーシュー
トして2分程度回わってしまう。
By the way, after further development as a stepping motor, we examined the pulse response in detail and found that the pulse was several 1.
When driven with 0 or more electric signals, the amount of displacement is faithfully proportional to the number of pulses, but when there are 10 or less, this relationship deviates, and in particular, the displacement for a single pulse is equivalent to 3 to 4 pulses. It was found that there was a slight overshoot. For example, drive frequency 43.2KHz, rated rotation speed 6Orp
The m motor rotates once at 43,200 pulses per second, so with 10,800 pulses it rotates 90", and with 120 pulses it rotates by 1", but with 12 pulses it rotates for 7 minutes instead of 6 minutes, and with a single pulse it rotates for 7 minutes. It should only rotate for 30 seconds - 0.5 minutes, but it overshoots by about 3 to 4 times and rotates for about 2 minutes.

言い換えれば角度変位1 /4.000回転までは直線
応答の精度はあるが、期待される秒置の精度は無く、分
合が限度であり、単一パルスに対する応答が期待値を数
倍オーバーシュートし高精細応答性を欠くという欠点が
あった。
In other words, there is linear response accuracy up to an angular displacement of 1/4,000 rotations, but there is no expected second-to-second accuracy, and the limit is minute summation, and the response to a single pulse overshoots the expected value by several times. However, it had the disadvantage of lacking high-definition responsiveness.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、上記従来超音波モータが持っていた単パル
ス駆動に対する変位応答がオーバーシュートしてしまう
という欠点を解決し、以って高精細応答性に優れた超音
波ステッピングモータを提供することを目的とする。
The present invention aims to solve the above-mentioned drawback of the conventional ultrasonic motor in that the displacement response to single pulse drive overshoots, and thereby to provide an ultrasonic stepping motor with excellent high-definition response. purpose.

〔問題を解決するための手段〕[Means to solve the problem]

従来の超音波モータが単発パルスに対してオーバーシュ
ート応答をすることはこの種超音波モータの宿命である
。超音波モータはロータを含むステータ系が超音波共振
系からなっており、その固有振動数と一致した振動を作
用すると共鳴現象が生じる。作用する振動がたとえ単一
のパルスであっても、共鳴すれば振動が持続し、残響状
態となる。
It is the fate of conventional ultrasonic motors to have an overshoot response to a single pulse. In an ultrasonic motor, the stator system including the rotor is composed of an ultrasonic resonance system, and a resonance phenomenon occurs when vibrations that match the natural frequency of the motor are applied. Even if the acting vibration is a single pulse, if it resonates, the vibration will continue, creating a reverberant state.

第3図に示すように、残響の振幅は時間と共に減衰する
が、その振幅がロータの定格回転を支えている規定振動
の振幅a0の半分よりも大きい間はロータは回転トルク
を受けて変位する。従来Φモータでは振幅は比較的早く
減衰し、第3〜第5残響パルスで振幅a0/2となり、
その後の減衰は少なく、可成り長時間残響が持続する。
As shown in Figure 3, the amplitude of reverberation attenuates over time, but as long as the amplitude is greater than half of the amplitude a0 of the specified vibration that supports the rotor's rated rotation, the rotor will be displaced by the rotational torque. . In the conventional Φ motor, the amplitude attenuates relatively quickly, and the amplitude becomes a0/2 at the third to fifth reverberation pulses,
After that, there is little attenuation, and the reverberation continues for quite a long time.

振幅a0/2より小さい残響はロータを回わさないから
、モータの単一パルス応答性を良くするには、パルス1
印加直後に逆相パルス2を印加しく第1図)残響を相殺
して消してしまうか残響の振幅を少°なくとも、a、/
2より小さくしてしまえば良い。
Reverberation smaller than the amplitude a0/2 does not rotate the rotor, so to improve the motor's single-pulse response, pulse 1
Immediately after application, reverse phase pulse 2 is applied (Figure 1) to cancel out the reverberation and reduce the amplitude of the reverberation at least a, /
It is better to make it smaller than 2.

〔実施例〕〔Example〕

本発明の無残響応答性ステッピングモータの一実施例を
第5図に示す。実施例に用いたモータの構造外観は、本
発明著がすでに提案し、再会に亘って改良を加えて来た
ねじり結合子型超音波モータのステップ型である。すな
わち外径40m、内径15Bが、厚さ2flのPb (
Z、T= )03系セラミック圧電円#j:30.30
を外径40m、内径8削で厚さIlnと12.5mmの
アルミニウム円板33及び34でサンドイッチし、中心
孔にセットされた直径8fi、長さ27.2mのステン
レスボルトの先端をねじり結合子37の底面中心のねし
孔に嵌めて締め付け、一体構成したステータを構成する
。このステータの上面に、ロータ36のシャフトの中に
セットされたベアリングとスプリングを介して直径6H
のボルトで締め付はロータを約301urfの最適圧力
Noで正直することにより、モータを構成した。
An embodiment of the reverberation-free responsive stepping motor of the present invention is shown in FIG. The structural appearance of the motor used in the examples is a step type of the torsion connector type ultrasonic motor that the present inventor had already proposed and has improved over the years. That is, the outer diameter of 40 m and the inner diameter of 15 B are Pb (
Z, T= )03 series ceramic piezoelectric circle #j: 30.30
sandwiched between aluminum disks 33 and 34 with an outer diameter of 40 m and an inner diameter of 8 milled, thickness Iln and 12.5 mm, and the tip of a stainless steel bolt with a diameter of 8 fi and a length of 27.2 m set in the center hole was twisted into a connector. 37 and tightened to form an integrated stator. A diameter 6H
The motor was constructed by tightening the bolts and aligning the rotor with the optimum pressure No. of about 301 urf.

端子板に接続されたリード線31.32に43.2KH
z、100Vの交流電圧を印加すると、圧電素子30に
厚み振動が住し、ステータで共鳴増幅されると同時にね
しり結合子によって楕円振動に変換されるので、ステー
タの上面に強方な超音波楕円振動が往じ、そのたて振動
成分がロータに浮力を与え、ねじり成分が回転トルクを
与えるので、ロータは勢よく回転する。
43.2KH to the lead wire 31.32 connected to the terminal board
When an AC voltage of 100V is applied to the piezoelectric element 30, thickness vibrations are generated in the piezoelectric element 30, which are resonantly amplified by the stator and at the same time converted into elliptical vibrations by the torsion coupler, producing strong ultrasonic waves on the upper surface of the stator. Elliptical vibration occurs, and its vertical vibration component gives buoyancy to the rotor, and its torsional component gives rotational torque, so the rotor rotates vigorously.

ここで、圧電体に印加する43.2Kkの正弦波電圧を
同じ周期の矩形波と変えても相変わらずロータは勢よく
回転する。回転数は60rpm、すなわち毎秒1回転す
る。印加パルスは毎秒43万2千パルスであり、1パル
ス毎に360”の43.200分の11すなわち30秒
だけ回転していることになる。ところで、電源を切ると
同時に駆動パルスは削減するが、ロータは少し余分に回
転して止まる。この余分にオーバーシュートする量は第
3図点線で示す多数個のパルス12を印加した後でも、
単一パルス11の印加後でも差はなく、3〜5パルス分
程度である。このオーバーシュートの原因を解明すべく
、ねじり結合子に振動センサーとして圧電素子37を張
り付けて、パルス消滅後の変化を測定し次のことが判明
した。
Here, even if the sine wave voltage of 43.2 Kk applied to the piezoelectric body is changed to a rectangular wave having the same period, the rotor still rotates vigorously. The rotation speed is 60 rpm, that is, 1 rotation per second. The applied pulses are 432,000 pulses per second, and each pulse rotates for 11/43.200 of 360", or 30 seconds. By the way, the drive pulses are reduced at the same time as the power is turned off. , the rotor rotates a little more and then stops.This extra amount of overshoot is even after applying a large number of pulses 12 as shown by the dotted line in Figure 3.
There is no difference even after the application of a single pulse 11, which is about 3 to 5 pulses. In order to find out the cause of this overshoot, a piezoelectric element 37 was attached as a vibration sensor to the torsion coupler, and changes after the pulse disappeared were measured, and the following was found.

パルス印加中ば、パルスが矩形波12でも、正弦波振動
10が生じる。これは単一パルスエ1に対する正弦波振
動13でも同じである。ところがパルス消滅後も振動は
徐々に減衰しながら延々と続<、減衰の仕方は最初の3
〜5パルスで大きく、第3図では4パルス目17で、本
来の振動13の振幅の半分になり、ロータはここまで動
くが、5パルス目18以降は振幅が1/2のボーダライ
ン19を下層わるのでロータは動けなくなる。ロータが
動かないとエネルギーの消費が少なくなるので振動の減
衰も少なくなり、同程度の振幅の振動が延々と動くがロ
ータは影響を受けない。ロータがオーバーシュートする
のは、ボーダライン19より大きい振幅の振動3〜5パ
ルス程度である。オーバーシュートを防ぐには、パルス
消滅後直ちに逆相パルス2又は4,5を印加すればよい
、逆相振動が生じ残響が相殺されて振幅がボーダライン
より小さくなりロータの回転はパルス消滅と同時にスト
ップする。
During pulse application, a sine wave vibration 10 occurs even if the pulse is a rectangular wave 12. The same is true for the sinusoidal vibration 13 for a single pulse 1. However, even after the pulse disappears, the oscillation continues indefinitely while gradually attenuating.
It is large at ~5 pulses, and in Figure 3, at the 4th pulse 17, it becomes half the original amplitude of the vibration 13, and the rotor moves up to this point, but after the 5th pulse 18, it reaches the border line 19 with half the amplitude. The rotor will not be able to move because the lower layer will collapse. When the rotor does not move, less energy is consumed and the vibrations are less attenuated, and although the vibrations of the same amplitude move endlessly, the rotor is not affected. The rotor overshoots at about 3 to 5 pulses of vibration with an amplitude larger than the borderline 19. To prevent overshoot, apply reverse phase pulses 2, 4, and 5 immediately after the pulse disappears. Reverse phase vibration occurs, the reverberation is canceled out, and the amplitude becomes smaller than the borderline, and the rotor rotates at the same time as the pulse disappears. Stop.

第4図は別の実施例を示しており、駆動パルス印加終了
後直ちに印加する逆相パルスの振幅を前述の実施例のよ
うに駆動パルスと同じにすることなく、振幅の小さい逆
相パルスを複数個印加した。
FIG. 4 shows another embodiment, in which the amplitude of the reverse phase pulse applied immediately after the application of the drive pulse is not made the same as the drive pulse as in the previous embodiment, but the reverse phase pulse with a small amplitude is applied. Multiple voltages were applied.

すなわち駆動パルス21の終了後直ちに振幅が駆動パル
スの50〜60%で逆相のパルス22,23、及び24
を印加したところ、ステータの超音波振動は残響が著し
く小さくなり、26のようにほとんど無視できるように
なった。残響がボーグライン29以下になると、ロータ
に回転力を作用できなくなり、モータの回転は停止する
が、振幅は小さくても、長時間持続する振動がロータに
作用し続けると、圧着面が摩耗する原因になりかねない
。しかるに本実施例では、3個の逆相パルス印加に対し
てロータは最初のパルスで停止し、残響も第3パルス2
4によって無視できる状態となり摩耗の心配もなくなっ
た。
That is, immediately after the end of the drive pulse 21, pulses 22, 23, and 24 whose amplitude is 50 to 60% of the drive pulse and whose phase is opposite to that of the drive pulse are generated.
When the ultrasonic vibration of the stator was applied, the reverberation became significantly small and became almost negligible as shown in 26. When the reverberation falls below the Borg line 29, no rotational force can be applied to the rotor and the motor will stop rotating. However, even if the amplitude is small, if long-lasting vibrations continue to act on the rotor, the crimping surface will wear out. This could be the cause. However, in this embodiment, when three reverse-phase pulses are applied, the rotor stops at the first pulse, and the reverberation also occurs at the second pulse of the third pulse.
4, the wear became negligible and there was no need to worry about wear.

なお上述した実施例に用いたモータは定格周波数43.
2KH1定格電圧100V、無負荷回転数60rpmで
ある。このモータに11.57μs幅でデュテー50%
の矩形波電圧を43.200パルス印加したところ、ち
ょうど360°回転し、10.800パルスで90″、
120パルスで1”、12パルスで6′、1パルスで3
0“だけ回転し、パルス数と回転角の完全な直線関係が
成立することが実証された。
The motor used in the above-mentioned embodiment has a rated frequency of 43.
2KH1 rated voltage is 100V and no-load rotation speed is 60 rpm. This motor has a width of 11.57 μs and a duty of 50%.
When a square wave voltage of 43.200 pulses was applied, it rotated exactly 360 degrees, and with 10.800 pulses it rotated 90'',
1" for 120 pulses, 6' for 12 pulses, 3 for 1 pulse
It was verified that the pulse number rotated by 0" and a perfect linear relationship between the number of pulses and the rotation angle was established.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は超音波モータを無残響性
のステータによって構成したので、単一パルスに対する
ロータの回転変位が、連続波における一周期分の回転変
位と等しくなり、したがって砂金の回転変位分解能を有
する超音波モータを実現することができ、例えば高精細
位置決め装置等に用いるモータとして、位置決め精度を
高くすることができるだはでなく、パルス数と変位の直
線関係が得られたので、位置決めのための制御がきわめ
て容易となったことは実用上顕著な効果である。
As explained above, since the ultrasonic motor of the present invention is configured with a non-reverberant stator, the rotational displacement of the rotor in response to a single pulse is equal to the rotational displacement of one period in a continuous wave, and therefore the rotation of the gold dust We were able to realize an ultrasonic motor with displacement resolution, which not only allows for high positioning accuracy as a motor used in high-definition positioning devices, but also allows us to obtain a linear relationship between the number of pulses and displacement. , the fact that positioning control has become extremely easy is a significant practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による高精細応答の超音波モータの駆動
波形とそれに対応するステータの振動状態の一実施例を
示す説明図、第2図は同じく別の実施例を示す説明図、
第3図は従来のステータの残響性を示す説明図、第4図
は本発明の第3の実施例を示す説明図、第5図は本発明
に用いた高精細応答の超音波モータの正面図である。 1・・・・・・駆動単一パルス、2・・・・・・=残響
化パルス、1′2′・・・・・・1,2に対するステー
タの振動、3・・・・・・連Mv<ルス、4.5・・・
・・・m 残!’ 化パルス、6゜7・・・・・・3,
4.5に対するステータの振動、11・・・・・・駆動
単一パルス、12・旧・・駆動連続パルス、10.13
〜18・・・・・・11.12に対するステータの振動
、19.29・・・・・・振幅ボーダ・ライン、21・
・・・・・駆動単一パルス、22,23.24・・・・
・・無残響化パルス、25.26.26’、26’。 27・・・・・・21及び22,23.24に対するス
テータの振動、30・・・・・・圧電素子、31.32
・旧・・リード線、33.34・・・・・・アルミニウ
ム円板、35・・・・・・ねじり結合子、36・旧・・
ロータ、37・・・・・・振動センサー。 第1図 第2図 第3図 第4図
FIG. 1 is an explanatory diagram showing one embodiment of the driving waveform of a high-definition response ultrasonic motor and the corresponding vibration state of the stator according to the present invention, and FIG. 2 is an explanatory diagram showing another embodiment.
Fig. 3 is an explanatory diagram showing the reverberation of a conventional stator, Fig. 4 is an explanatory diagram showing the third embodiment of the present invention, and Fig. 5 is a front view of a high-definition response ultrasonic motor used in the present invention. It is a diagram. 1... Single drive pulse, 2... = Reverberation pulse, 1'2'... Stator vibration for 1 and 2, 3... Continuous Mv<Rus, 4.5...
...m left! ' pulse, 6°7...3,
4. Stator vibration for 5, 11... Drive single pulse, 12. Old... Drive continuous pulse, 10.13
~18...11. Stator vibration for 12, 19.29... amplitude border line, 21.
...Drive single pulse, 22, 23.24...
...Dereverberation pulse, 25.26.26', 26'. 27... Stator vibration for 21, 22, 23.24, 30... Piezoelectric element, 31.32
・Old... Lead wire, 33. 34... Aluminum disc, 35... Torsion connector, 36. Old...
Rotor, 37... Vibration sensor. Figure 1 Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1) 無残響性のステータを用いたことにより、駆動
電圧が終了後ロータがオーバーシユートすることなく、
直ちに停止することを特徴とする高精細応答の超音波モ
ータ。
(1) By using a non-reverberant stator, the rotor will not overshoot after the drive voltage is finished.
Ultrasonic motor with high-definition response, characterized by immediate stopping.
(2) 特許請求の範囲第(1)項記載の無残響性ステ
ータにおいて、駆動電圧が終了後のステータの振動状態
がロータを駆動するに必要な最小振幅より大きい振幅の
振動の無いことを特徴とする高精細応答の超音波モータ
(2) The reverberation-free stator according to claim (1), characterized in that the vibration state of the stator after the drive voltage ends is free of vibrations with an amplitude larger than the minimum amplitude necessary to drive the rotor. Ultrasonic motor with high-definition response.
(3) 特許請求の範囲第(1)項記載の無残響性ステ
ータとは、ロータを駆動する単一パルス又は複数個が周
期的に連なる正弦波、矩形波、台形波、三角波等の電気
信号もしくはそれと同様な波形の連続波からなる電気信
号の印加終了後、引き続いて同一波形で逆位相の電気信
号を少なくとも1個印加することにより、駆動電気信号
による残響を打ち消し無残響状態にしたものであること
を特徴とする高精細応答の超音波モータ。
(3) The reverberation-free stator described in claim (1) refers to an electric signal such as a sine wave, a rectangular wave, a trapezoidal wave, a triangular wave, etc. in which a single pulse or a plurality of pulses are periodically connected to drive the rotor. Alternatively, after the application of an electrical signal consisting of a continuous wave with a similar waveform is completed, at least one electrical signal of the same waveform and opposite phase is applied subsequently, thereby canceling out the reverberation caused by the driving electrical signal and creating a reverberation-free state. Ultrasonic motor with high-definition response characterized by:
JP62041520A 1987-02-26 1987-02-26 Control method of ultrasonic drive device Expired - Lifetime JP2587418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62041520A JP2587418B2 (en) 1987-02-26 1987-02-26 Control method of ultrasonic drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62041520A JP2587418B2 (en) 1987-02-26 1987-02-26 Control method of ultrasonic drive device

Publications (2)

Publication Number Publication Date
JPS63209478A true JPS63209478A (en) 1988-08-31
JP2587418B2 JP2587418B2 (en) 1997-03-05

Family

ID=12610656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62041520A Expired - Lifetime JP2587418B2 (en) 1987-02-26 1987-02-26 Control method of ultrasonic drive device

Country Status (1)

Country Link
JP (1) JP2587418B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206373A (en) * 1989-02-03 1990-08-16 Matsushita Electric Ind Co Ltd Ultrasonic motor
US5939851A (en) * 1996-12-27 1999-08-17 Canon Kabushiki Kaisha Position control device
US7061156B2 (en) 2001-06-01 2006-06-13 Canon Kabushiki Kaisha Control apparatus for vibration type actuator
US7154208B2 (en) 2001-06-01 2006-12-26 Canon Kabushiki Kaisha Control apparatus for vibration type actuator
JP2009089517A (en) * 2007-09-28 2009-04-23 Olympus Corp Drive device for ultrasonic motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116980A (en) * 1984-11-08 1986-06-04 Nippon Kogaku Kk <Nikon> Drive device of surface wave motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116980A (en) * 1984-11-08 1986-06-04 Nippon Kogaku Kk <Nikon> Drive device of surface wave motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206373A (en) * 1989-02-03 1990-08-16 Matsushita Electric Ind Co Ltd Ultrasonic motor
US5939851A (en) * 1996-12-27 1999-08-17 Canon Kabushiki Kaisha Position control device
US7061156B2 (en) 2001-06-01 2006-06-13 Canon Kabushiki Kaisha Control apparatus for vibration type actuator
US7154208B2 (en) 2001-06-01 2006-12-26 Canon Kabushiki Kaisha Control apparatus for vibration type actuator
JP2009089517A (en) * 2007-09-28 2009-04-23 Olympus Corp Drive device for ultrasonic motor

Also Published As

Publication number Publication date
JP2587418B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
JPS58192474A (en) Piezoelectric motor
JPS63209478A (en) Very fine response ultrasonic motor
SU658684A1 (en) Piezoelectric motor
JPS60148387A (en) Piezoelectric motor of standing wave type
JPH0150196B2 (en)
JP2003143877A (en) Motor with piezoelectric element
JP2994714B2 (en) Rod ultrasonic motor
SU803048A1 (en) Vibromotor
JPS6135176A (en) Piezoelectric motor
JP2684418B2 (en) Ultrasonic actuator
JP3057908B2 (en) Piezo motor
JPH03203573A (en) Ultrasonic motor with tapered application face
JPH055838Y2 (en)
JPS6292779A (en) Ultrasonic motor driven by both-phase elliptical vibrator
JPS6013480A (en) Piezoelectric motor
SU620003A1 (en) Synchronous vibration motor
Morita et al. A micro ultrasonic motor fabricated by hydrothermal method (1.4 mm in diameter and 5 mm in length stator transducer)
SU624320A1 (en) Piezoelectric vibromotor
JP2995665B2 (en) Ultrasonic motor
JPS6016180A (en) Rotary drive device
JPS60207468A (en) Supersonic motor
JPS63205591A (en) Electronic timepiece
JPH0736709B2 (en) Bolt tightening ultrasonic elliptical transducer for piezoelectric motor
JPS6152165A (en) Piezoelectric motor using twist vibrator periphery drive
JPS61150675A (en) Biresonance supersonic wave motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term