JPS6320939A - Quantization feedback type integration detection circuit - Google Patents

Quantization feedback type integration detection circuit

Info

Publication number
JPS6320939A
JPS6320939A JP16581886A JP16581886A JPS6320939A JP S6320939 A JPS6320939 A JP S6320939A JP 16581886 A JP16581886 A JP 16581886A JP 16581886 A JP16581886 A JP 16581886A JP S6320939 A JPS6320939 A JP S6320939A
Authority
JP
Japan
Prior art keywords
voltage
error
output signal
error propagation
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16581886A
Other languages
Japanese (ja)
Inventor
Shigekazu Togashi
富樫 茂和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16581886A priority Critical patent/JPS6320939A/en
Publication of JPS6320939A publication Critical patent/JPS6320939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To reduce the occurrence in identification error by clamping an input signal to an identification means to a normal voltage at the time of code inversion just after the occurrence of an error to cancel an erroneons voltage by the feedback of a regeneration signal of identification error so far thereby suppressing the identification error from being propagated after the next code inversion. CONSTITUTION:A discharge time constant (product between a resistor R2 and a capacitor C2) of a clamp device 11 is equalized to a time constant (product between a resistor R1 and a capacitor C1) of a primary low-pass filter to a regeneration signal input of an adder means, and an error propagation detector 13 consists of two voltage comparators CP2, CP3 detecting it as a positive or negative error propagation if an output signal of an adder 10 exceeds a positive or a negative constant voltage respectively. When the error propagation is detected, the peak value of the input signal of the identifier 12 is clamped to a normal voltage corresponding to 1 or zero. Since the time constant of the primary low-pass filter of the clamp means and the adding means is identical to each other, the output signal of the adding means is coincident with a decreasing curve of the error voltage due to the propagation of error. Thus, in applying clamping, the error due to the feedback of the preceding identification error is cancelled out.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はデジタル信号の伝送・記録再生における受信信
号の識別を行う量子化帰還形積分検出回路に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a quantization feedback integral detection circuit for identifying received signals during transmission, recording and reproduction of digital signals.

従来の技術 磁気記録における電磁変換系は一般に低域遮断特性を示
す、又伝送回線においても中継器への電源供給などのた
めに低域を遮断する必要が生じる場合がある。このよう
な低域遮断特性を有する系を通過させることにより低域
遮断による符号量干渉が生じることはよく知られるとお
りであり、その改善方法の一つとして第6図に示す如き
量子化帰還の方法がある。
BACKGROUND ART Electromagnetic conversion systems in magnetic recording generally exhibit low-frequency cutoff characteristics, and even in transmission lines, it may be necessary to cut off the low-frequency range for purposes such as supplying power to repeaters. It is well known that passing through a system with such low-frequency cutoff characteristics causes code amount interference due to low-frequency cutoff, and one way to improve this is to use quantization feedback as shown in Figure 6. There is a way.

電磁変換系又は伝送回線の特性や高域の等化器等を含め
た低域遮断特性を第6図のバイパスフィルター1で現わ
すと、この伝達特性は一次のバイパスフィルターで近似
され、伝達関数は次の如く現わされる。
When the characteristics of the electromagnetic conversion system or transmission line and the low-frequency cut-off characteristics including the high-frequency equalizer are represented by the bypass filter 1 in Figure 6, this transfer characteristic is approximated by a first-order bypass filter, and the transfer function is is expressed as follows.

Gh(s)= ST/(1+ST )   ・・・・・
・・・・・・・・・・・・・0)一方帰還フイルター2
の伝達関数は次の如くである0 Gl(s)= 1 /(1+ST )   ・・・・・
・・・・・・・・・・・・・(2)従って識別器4の識
別再生信号に誤りが無ければ、加算器3の出力は完全に
低域成分の再生された信号となる。
Gh(s)=ST/(1+ST)...
・・・・・・・・・・・・・・・0) On the other hand, feedback filter 2
The transfer function of is as follows: 0 Gl(s)=1/(1+ST)...
(2) Therefore, if there is no error in the reproduced signal identified by the discriminator 4, the output of the adder 3 will be a completely reproduced signal of low frequency components.

発明が解決しようとする問題点 よく知られているように量子化帰還による直流再生の最
大の欠点として誤り伝搬の発生の問題がある。
Problems to be Solved by the Invention As is well known, the biggest drawback of DC regeneration using quantized feedback is the problem of error propagation.

以下誤り伝搬の問題について第7図の波形図を参考にし
ながら述べる。波形Aの実線の如き信号が電磁変換系や
受信側の低域遮断特性により、加算器2の入力では波形
Bの実線の如く低域の遮断されたものとなる。そしてド
ロップアウトやノイズ等により波形BのTmの期間破線
の如き信号が受信された場合、a点における符号反転は
当然検出不能となり識別器4の出力信号は誤ったものと
なる0式(1)の如きローパスフィルターを介して誤り
が帰還されることにより、加算器3の出力における誤差
電圧Veは波形Cの如くとなる。このように正常時の信
号振幅を1とするとTnの期間に誤差電圧Veは Ve=1−e−t/T   ・・・・・・・・・・・・
・・・・・考)で増加する。なおtはa時点からの経過
時間であり、Tはローパスフィルター11の時定数であ
る。
The problem of error propagation will be described below with reference to the waveform diagram in FIG. A signal as shown by the solid line of waveform A becomes a signal with the low frequency cut off as shown by the solid line of waveform B at the input of the adder 2 due to the low frequency cutoff characteristics of the electromagnetic conversion system and the receiving side. If a signal like the broken line during Tm of waveform B is received due to dropout or noise, the sign reversal at point a will naturally be undetectable, and the output signal of the discriminator 4 will be incorrect.0 Equation (1) The error voltage Ve at the output of the adder 3 has a waveform C by feeding back the error through a low-pass filter such as . In this way, if the normal signal amplitude is 1, then the error voltage Ve during the period Tn is Ve=1-e-t/T...
・・・・・・Consideration) increases. Note that t is the elapsed time from time a, and T is the time constant of the low-pass filter 11.

従ってb点においてドロップアウト又はノイズによる入
力信号への影響が無くなっても識別器4の入力には誤差
電圧Veは ye= 1−e−Tm/T   ・・・・・・・・・・
・・・・・・・・(4)であり、識別器4の出力信号は
誤ったままとなる。
Therefore, even if the influence of dropout or noise on the input signal disappears at point b, the error voltage Ve at the input of the discriminator 4 is ye=1-e-Tm/T...
...(4), and the output signal of the discriminator 4 remains erroneous.

そしてさらに誤りの帰還により識別器4の入力での誤差
は増加し、次の符号反転時点Cまで誤りは伝搬される。
Furthermore, the error at the input of the discriminator 4 increases due to feedback of the error, and the error is propagated until the next sign inversion time point C.

次にC時点以降波形Aの実線の如く原信号の符号反転が
しばらく無い場合には識別器4の入力における誤差電圧
Veは、C時点からの経過時間をt′とすると、 Ve = (1−e−T0/T) ・e −t7”−・
・−(5)で現せ、波形Cの如く減少する。ところが波
形Aの一点鎖線の如く時点Cの近くに次の符号反転が有
る場合、式(句から明らかなように誤差電圧Veが大き
く残っており、識別器4の入力波形は波形りの一点鎖線
の如くとなり識別誤りが発生する。
Next, if there is no sign reversal of the original signal for a while after time C, as shown by the solid line of waveform A, the error voltage Ve at the input of the discriminator 4 is as follows, where t' is the elapsed time from time C, Ve = (1- e-T0/T) ・e-t7”-・
・It can be expressed as -(5), and decreases as shown in waveform C. However, when there is the next sign reversal near time point C as shown by the dashed line in waveform A, the error voltage Ve remains large as is clear from the expression (phrase), and the input waveform of the discriminator 4 is As a result, an identification error occurs.

以上の如く量子化帰還による直流再生をする方法では、
一つの符号反転の識別ができなかったときに次の符号反
転時点まで識別誤りが連続するのみならず、識別誤りの
期間が比較的長い場合には誤りの帰還により次の符号反
転時点以後での識別誤りをも招く確率が高いという問題
があった。
In the method of DC regeneration using quantized feedback as described above,
If one code reversal cannot be identified, not only will identification errors continue until the next code reversal, but if the period of identification error is relatively long, the feedback of the error will cause errors to occur after the next code reversal. There is a problem in that there is a high probability of causing identification errors.

そこで本発明は識別誤りが次の符号反転以後に伝搬する
のを抑圧し、識別誤りの発生を低減した量子化帰還形積
分検出回路を提供するものである。
Therefore, the present invention provides a quantization feedback type integral detection circuit which suppresses the propagation of identification errors after the next sign inversion and reduces the occurrence of identification errors.

問題点を解決するだめの手段 本発明は、受信信号の高域成分と識別後の再生信号の低
域成分とを加算する加算手段と、誤り伝搬を検出するた
めの誤り伝搬検出手段と、誤り伝搬検出手段により誤り
伝搬が検出されたときに識別手段の入力信号を1又は零
に相当する正規の電圧に尖頭値クランプするクランプ手
段と、クランプ手段出力信号を基準電圧と比較して1・
零を識別する識別手段とを備え、クランプ手段の放電時
定数を加算手段の再生信号入力に対する一次の口一パス
フィルターの時定数と等しくした構成にしたものである
Means for Solving the Problems The present invention provides an addition means for adding high frequency components of a received signal and a low frequency component of a reproduced signal after identification, an error propagation detection means for detecting error propagation, and an error propagation detecting means for detecting error propagation. Clamping means for peak value clamping the input signal of the discriminating means to a normal voltage corresponding to 1 or zero when error propagation is detected by the propagation detecting means;
The discharging time constant of the clamping means is made equal to the time constant of the first-order one-pass filter for the reproduction signal input to the adding means.

作  用 以上の構成により本発明においては、誤りが発生した直
後の符号反転時点で識別手段入力信号が正規の電圧にク
ランプされ、それまでの識別誤りの再生信号の帰還によ
る誤差電圧が打ち消されることにより、誤りの伝搬が断
ち切られる。以下この作用についてより詳細に述べる◇ 誤りが発生してから次の符号反転まで識別誤りが生じて
いるものとし、その期間をTeとし、加算手段出力の1
又は零に相当する正規の電圧を±Eとし、加算手段の再
生信号入力に対する一次のローパスフィルターの時定数
をTとすると、識別誤りが発生した次の符号反転直後の
加算手段出力信号電圧Vaは次の如くである。
Effect With the above configuration, in the present invention, the identification means input signal is clamped to the normal voltage at the time of sign reversal immediately after an error occurs, and the error voltage due to the feedback of the reproduced signal of the identification error up to that point is canceled out. This cuts off error propagation. This effect will be described in more detail below◇ It is assumed that an identification error occurs from the time an error occurs until the next sign reversal, and that period is Te, and 1 of the output of the adding means is
Alternatively, if the normal voltage corresponding to zero is ±E, and the time constant of the first-order low-pass filter for the input of the reproduction signal of the adding means is T, then the adding means output signal voltage Va immediately after the next sign inversion where an identification error occurs is It is as follows.

Va =±(E +2E (1−e−TV/T) )−
・−−・−−−(6)次に誤り伝搬検出手段により誤り
伝搬が検出されるとクランプ手段により、加算手段出力
信号が正規の1又零相当の電圧レベル±Eにクランプさ
れる。ツまりクラy7”K!り式(6)ノ±2E (1
=e−”/T)だけ電圧シフトしたことになる。そして
このクランプ手段の時定数は加算手段の再生入力信号に
対する一次のローパスフィルターと同一時定数Tであり
、クランプ時点からの放電時間をt′とするとその放電
はet ’/T  のカーブとなり式(5)に示す如き
加算手段出力信号の誤り伝搬による誤差電圧の減少カー
ブと一致する。従ってクランプ手段によってクランプが
行なわれると、その以前の識別誤りの帰還による誤差は
全て打ち消されることになる。なお以上の説明において
受信信号に含まれるノイズを無視して説明したが、受信
信号にノイズが含まれても基本的な作用には何んら変化
はない。
Va = ±(E +2E (1-e-TV/T) )-
(6) Next, when error propagation is detected by the error propagation detecting means, the adding means output signal is clamped by the clamping means to a voltage level ±E corresponding to a normal one or zero. Tsumarikura y7”K!ri formula (6) no ±2E (1
= e-''/T).The time constant of this clamping means is the same time constant T as that of the first-order low-pass filter for the reproduction input signal of the adding means, and the discharge time from the clamping point is t. ', then the discharge becomes a curve of et'/T, which coincides with the reduction curve of the error voltage due to error propagation of the output signal of the adding means as shown in equation (5).Therefore, when clamping is performed by the clamping means, the previous All errors due to feedback of identification errors are canceled out.In the above explanation, noise included in the received signal was ignored, but even if noise is included in the received signal, it has no effect on the basic operation. There is no change.

ただノイズ成分によるクランプ手段での誤差が発生する
ので、ノイズの量によって誤り伝搬検出手段の感度の設
定は変えた方がよい。
However, since errors occur in the clamping means due to noise components, it is better to change the sensitivity setting of the error propagation detection means depending on the amount of noise.

実施例 以下本発明の第1の実施例について第1図とともに説明
するが、本発明にあまり影響しない伝送路による高域の
劣化については以後無視して説明する。本実施例は、受
信信号の高域成分と識別後の再生信号の低域成分とを加
算するi日算器1oと、誤りの伝搬を検出するだめの誤
り伝搬検出器13と、誤り伝搬検出器13によりiり伝
搬が検出されたとき識別器12の入力信号を1又は零に
相当する正規の電圧に尖頭値クランプするクラスプ器1
1と、クランプ器11出力信号を基準電圧と比較して1
・零を識別する識別器12とを備え、クランプ器11の
放電時定数(抵抗R2とコンデンサー02の積)を加算
手段の再生信号入力に対すルー次のローパスフィルター
〇時定i(W抗R1とコンデンサー01の積)と等しく
し、加算器1゜出力信号が正側又は負側の一定電圧を超
えたときにそれぞれ正側又は負側の誤り伝搬として検出
する2ケの電圧比較器CP2・CF2で誤り伝搬検出器
13を構成した量子化帰還形積分検出回路である。なお
、BFOはバッファーアンプ、MM 1・MM2は単安
定マルチバイブレータ−である0以上の如き第1図に示
す構成の本実施例の動作について第2図の各部波形を参
考にしながら述べる。
EXAMPLE A first example of the present invention will be described below with reference to FIG. 1, but the description will be made while ignoring the high frequency deterioration caused by the transmission path, which does not have much influence on the present invention. This embodiment includes an i-day calculator 1o that adds the high-frequency component of the received signal and the low-frequency component of the reproduced signal after identification, an error propagation detector 13 that detects error propagation, and an error propagation detector a clasp device 1 that peak-clamps the input signal of the discriminator 12 to a normal voltage corresponding to 1 or zero when i-response propagation is detected by the device 13;
1 and the output signal of the clamper 11 is compared with the reference voltage.
・A discriminator 12 for identifying zero is provided, and the discharging time constant (product of resistor R2 and capacitor 02) of the clamper 11 is connected to a Roux-order low-pass filter 〇 time constant i (W anti-R1) for the reproduction signal input of the adding means. and capacitor 01), and when the adder 1 output signal exceeds a certain voltage on the positive side or negative side, two voltage comparators CP2 and CP2 detect error propagation on the positive side or negative side, respectively. This is a quantization feedback type integral detection circuit in which the error propagation detector 13 is configured with CF2. The operation of this embodiment having the configuration shown in FIG. 1, where BFO is a buffer amplifier, and MM1 and MM2 are monostable multivibrators, will be described with reference to the waveforms of each part in FIG. 2.

加算器1oは図示の如く構成されており、受信信号入力
端より出力端への伝達関数Gh(s)は先述の式(1)
の如くであり、識別後の再生信号入力端から出力端への
伝達関数Gl(S)は同様に式(2)の如くであシ、同
2式のTは抵抗R1とコンデンサーC1との積である。
The adder 1o is configured as shown in the figure, and the transfer function Gh(s) from the received signal input end to the output end is expressed by the above equation (1).
Similarly, the transfer function Gl(S) from the reproduced signal input end to the output end after identification is as shown in equation (2), and T in the same equation is the product of resistor R1 and capacitor C1. It is.

このように加算器1oは、量子化帰還フィルターである
再生信号入力に対する一次のローパスフィルターと、プ
リフィルターであるバイパスフィルターとを複合的に構
成したものである。従って波形Eの如き原信号を伝送し
たときにTnの期間ドロップアウト又はノイズで本来波
形Fの破線の如き受信信号の高域成分が得られず実線の
如くであった場合、先述の第7図波形りと同様波形Gの
如くとなる。なお同図a −dは時点を示し、Teは誤
りの発生時点aから次の符号反転時点までの期間である
In this way, the adder 1o has a composite configuration of a first-order low-pass filter for the reproduced signal input, which is a quantization feedback filter, and a bypass filter, which is a pre-filter. Therefore, when transmitting an original signal such as waveform E, if the high frequency component of the received signal as shown by the broken line of waveform F is not obtained due to dropout or noise during the period Tn, and the result is as shown in the solid line, as shown in Fig. 7 above. The waveform will look like waveform G. Note that a to d in the figure indicate time points, and Te is a period from time point a when an error occurs to the next sign inversion time point.

次に誤り伝搬検出器13は図示の如く構成されており、
二つの電圧比較器CP2・CF2の基準電圧vh、vz
は波形Gの如く、1又は零に相当する正規の電圧量Eの
おおよそ2倍にしている。従・って加算器1oの出力信
号が正側又は負側の1定電圧VhsVeを超えたときに
それぞれ正側又は負側の誤り伝搬として検出され、単安
定マルチバイブレータ−MMl・MM2で一定パルス幅
の検出信号を出力する。なお単安定マルチバイブレーク
−MM 1−MM2は尖頭値クランプを動作させる期間
を制限し、ノイズによる影響を少なくするためのもので
ある0又マルチバイブレータ−MMl・MM2の検出信
号の出力電圧レベルはそれぞれ誤り伝搬を検出したとき
波形Gの−E・+Eとし誤り伝搬の検出されないとき波
形Gの+E・−Eとしている。
Next, the error propagation detector 13 is configured as shown in the figure,
Reference voltage vh, vz of two voltage comparators CP2 and CF2
As shown in waveform G, the voltage is approximately twice the normal voltage amount E, which corresponds to 1 or 0. Therefore, when the output signal of the adder 1o exceeds one constant voltage VhsVe on the positive side or negative side, it is detected as error propagation on the positive side or negative side, respectively, and a constant pulse is generated in the monostable multivibrators MMl and MM2. Outputs width detection signal. The monostable multivibrator MM1 and MM2 are used to limit the period during which the peak value clamp is operated and to reduce the influence of noise.The output voltage level of the detection signal of the multivibrator MM1 and MM2 is When error propagation is detected, the waveform G is set to -E and +E, and when no error propagation is detected, the waveform G is set to +E and -E.

次にクランプ器11においてダイオードD1・D2の順
方向電圧は波形Gの1±E1の2倍としており、誤り伝
搬が誤り伝搬検出器で検出されたときに、クランプ器1
1の出力信号は波形Gの±Eの電圧・つま沙1又は零に
相当する正規の電圧にクランプされ、波形Iの如き波形
となる。なおこのときコンデンサー02の両端の電圧波
形は波形Hの如くであり、先の作用の説明で述べたよう
にこのコンデンサーC2に充電された電圧によって識別
誤りの再生信号の帰還による誤差を打ち消している。
Next, in the clamper 11, the forward voltage of the diodes D1 and D2 is set to twice 1±E1 of the waveform G, and when error propagation is detected by the error propagation detector, the clamper 11
The output signal of 1 is clamped to a normal voltage corresponding to the voltage of ±E of waveform G and a voltage of 1 or 0, resulting in a waveform such as waveform I. At this time, the voltage waveform across capacitor 02 is as shown in waveform H, and as mentioned in the explanation of the operation above, the voltage charged in capacitor C2 cancels out the error due to feedback of the reproduced signal due to identification error. .

従って第2図の各波形に一点鎖線で示す如く、比較的長
い識別誤の次の符号反転の直後にさらに符号反転のある
ような、従来の方法では識別不可能な場合も、波形工の
如き信号が識別器12に入力され良好に識別される。な
お識別器12のコンデンサーCoと可変抵抗vR1とは
識別器12の基準電圧(波形IのVr)作成用である0
又電圧比較器の出力レベルは、量子化帰還の条件を満す
ために正常時の1又は零相当の電圧(波形Gの±E)と
している。
Therefore, as shown by the dashed line in each waveform in Figure 2, even in cases where there is another sign reversal immediately after a relatively long misidentification, which cannot be identified using conventional methods, it is possible to The signal is input to the discriminator 12 and is successfully discriminated. Note that the capacitor Co and variable resistor vR1 of the discriminator 12 are used to create the reference voltage (Vr of waveform I) of the discriminator 12.
Further, the output level of the voltage comparator is set to a voltage equivalent to 1 or 0 (±E of waveform G) during normal operation in order to satisfy the conditions for quantization feedback.

以上の如く本実施例によれば簡単な構成の誤り伝搬検出
器で誤り伝搬の発生を検出し、識別誤りの再生信号の帰
還による誤差量を打ち消すことが可能となり、量子化帰
還形積分検出回路における誤り伝搬を軽減することがで
きる。
As described above, according to this embodiment, it is possible to detect the occurrence of error propagation with an error propagation detector with a simple configuration, and cancel the amount of error due to feedback of the reproduced signal of an identification error, and the quantization feedback type integral detection circuit Error propagation can be reduced.

なお本実施例において、従来の量子化帰還における低域
遮断のだめのプリフィルターと帰還フィルターである一
次のローパスフィルターと加算器を複合的に構成し、単
に加算器と称したが、それらをそれぞれ独立にしても何
ら問題はない。さらにVTRの如く必然的に通過する系
に低域遮断がある場合にはそれをそのままプリフィルタ
ーと見なしても本実施例の応用には何ら問題ない。又逆
に本実施例のバッファーアンプBFO・抵抗R2・コン
デンサー02を取り除き、本実施例の加算器とクランプ
器とをより複合的に構成することも可能である。
In this example, a pre-filter for cutting off low frequencies in conventional quantization feedback, a first-order low-pass filter (which is a feedback filter), and an adder are combined, and are simply referred to as an adder, but they can be used independently. However, there is no problem. Furthermore, if there is a low-frequency cut-off in a system such as a VTR that necessarily passes through, there is no problem in applying this embodiment even if it is regarded as a pre-filter. Conversely, it is also possible to remove the buffer amplifier BFO, resistor R2, and capacitor 02 of this embodiment, and to configure the adder and clamp device of this embodiment in a more complex manner.

以下第2の実施例を第3図とともに述べる。本実施例は
第3図に示す如く、受信信号の高域成分と識別後の再生
信号の低域成分とを加算する第2の加算器14を新たに
備え、前記第2の加算器14のクロスオーバー周波数を
第1の加算器10のクロスオーバー周波数より高く設定
するとともに、前記第2の加算器14出力信号を誤り伝
搬検出器13の入力信号とし、その他は第1の実施例と
同一の構成としたものである。なお第2の加算器14は
図示の如く、抵抗R3とコンデンサーC3とで構成して
いる。
The second embodiment will be described below with reference to FIG. As shown in FIG. 3, this embodiment is newly equipped with a second adder 14 that adds the high frequency component of the received signal and the low frequency component of the reproduced signal after identification. The crossover frequency is set higher than the crossover frequency of the first adder 10, and the output signal of the second adder 14 is used as the input signal of the error propagation detector 13, and the rest is the same as the first embodiment. It is structured as follows. As shown in the figure, the second adder 14 is composed of a resistor R3 and a capacitor C3.

以下本実施例の作用について述べる。第1の加算器10
のクロスオーバー周波数を1/T1とし、第2の加算器
14のクロスオーバー周波数を1/T2とすると、識別
誤りが発生しその誤りが次の符号反転まで伝搬した時の
それぞれの加算器10.11の出力信号電圧は式(6)
の時定数TをそれぞれT1゜T2と置き換えたものとな
る。又先述の如<1/T2は1/T1より太きい。従っ
て式(6)より明らかなように短い期間の誤り伝搬であ
っても加算器14の出力には識別誤りの帰還による誤差
電圧が大きく含まれる。つまり短期間の誤り伝搬も検出
可能となる。従って、識別器12の入力における、識別
誤りの発生以後の初めの符号反転以後での、識別誤りの
再生信号の帰還による誤差電圧は非常に小さくなる。
The operation of this embodiment will be described below. first adder 10
Assuming that the crossover frequency of the second adder 14 is 1/T1 and the crossover frequency of the second adder 14 is 1/T2, each adder 10. The output signal voltage of 11 is expressed by formula (6)
The time constant T of is replaced with T1 and T2, respectively. Also, as mentioned above, <1/T2 is thicker than 1/T1. Therefore, as is clear from equation (6), even if error propagation occurs over a short period of time, the output of the adder 14 contains a large amount of error voltage due to feedback of identification errors. In other words, short-term error propagation can also be detected. Therefore, the error voltage at the input of the discriminator 12 due to the feedback of the reproduced signal of the identification error after the first sign inversion after the occurrence of the identification error becomes extremely small.

以上の如く本実施例によれば、受信信号の識別を行なう
系のクロスオーバー周波数を変更することなく簡単な回
路の追加で誤り伝搬の検出感度を上げることが可能とな
り、結果として、次の符号反転を超えて誤りが伝搬する
確率が非常に小さくなるという効果がある。
As described above, according to this embodiment, it is possible to increase the detection sensitivity of error propagation by adding a simple circuit without changing the crossover frequency of the system that identifies the received signal, and as a result, the following code This has the effect that the probability that an error propagates beyond the inversion becomes very small.

以下本発明の第3の実施例について述べる。本実施例は
、第4図に示す如く、第2の加算器14出力信号電圧と
識別器12の出力信号電圧との少なくとも一方に係数を
かける係数器である分圧器15と、第2の加算器14出
力信号電圧と識別器12の出力信号電圧とを少なくとも
いずれか一方に前記係数器で係数をかけた後に電圧比較
する電圧比較器である電圧比較器CP4と、前記電圧比
較器出力信号を識別器12出力信号でゲートするゲート
G1・G2とにより誤り伝搬検出器13を構成し、他は
第2の実施例と同一の構成としたものである。なお分圧
器15は単に第2の加算器14の出力信号電圧を抵抗R
4・R6で半分に分圧しているものであシ、BFl・B
F2はバッフ1−アンプであり、可変抵抗VR2・コン
デンサー04は単に分圧のための基準電圧を作るためで
あるO 以下本発明の作用について述べるが、誤り伝搬検出器1
3以外は、第2の実施例と同一の動作であり、以下誤り
伝搬検出器13について、波形図第5図とともに述べる
。なお第6図a−Cは時点を示してよ久、To−Tnは
期間を示し、±Eは電圧レベルを示している。波形Iの
如き原信号を伝送又は記録再生したときに、加算器14
の出力信号中の受信信号成分が、波形にの如(Tnの期
間ドロップアウト又はノイズに本来破線の如くであるべ
きところが実線の如くであった場合、先述の如くa時点
での符号反転は識別できずTeの期間識別誤りとなる。
A third embodiment of the present invention will be described below. As shown in FIG. 4, this embodiment includes a voltage divider 15 which is a coefficient multiplier that multiplies at least one of the output signal voltage of the second adder 14 and the output signal voltage of the discriminator 12, and a voltage comparator CP4 that compares the voltages after multiplying at least one of the output signal voltage of the detector 14 and the output signal voltage of the discriminator 12 by a coefficient using the coefficient multiplier; The error propagation detector 13 is constituted by the gates G1 and G2 which are gated by the output signal of the discriminator 12, and the other configuration is the same as that of the second embodiment. Note that the voltage divider 15 simply connects the output signal voltage of the second adder 14 to the resistor R.
4.The partial pressure is halved by R6.BFl.B
F2 is a buffer 1-amplifier, and variable resistor VR2 and capacitor 04 are simply used to create a reference voltage for voltage division.
The operations other than 3 are the same as those in the second embodiment, and the error propagation detector 13 will be described below with reference to the waveform diagram in FIG. Note that FIG. 6a-C shows time points, To-Tn shows periods, and ±E shows voltage levels. When transmitting or recording/reproducing an original signal such as waveform I, the adder 14
If the received signal component in the output signal of is as shown in the waveform (dropout or noise during the period of Tn, it should be as a solid line but should be as a broken line), the sign reversal at time a can be identified as described above. This will result in an error in identifying the period of Te.

従って分圧器15で半分に分圧された加算器14の出力
信号波形は波形Iの実線の如くである。なお波形■は図
面上の都合で振幅方向を波形M〜○に対し2倍で示して
いる。
Therefore, the output signal waveform of the adder 14 whose voltage is divided in half by the voltage divider 15 is as shown by the solid line of waveform I. Note that the amplitude direction of the waveform (■) is shown to be twice as large as that of the waveforms (M to O) for convenience of drawing.

次に電圧比較器CP4へは前記分圧器16の出力信号と
波形Jの一点鎖線の如き識別器12の出力信号が加えら
れ、電圧比較器CP4からは波形Mの如く、分圧器16
の出力信号電圧が識別器12の出力電圧より高いか低い
かの判定信号が得られる。これは識別誤りのないときに
は、分圧器15の出力信号振幅が識別器12の出力信号
振幅より小さいために、電圧比較器CP4の出力信号は
識別器12の出力信号を反転したものとなる。つまり識
別誤りの再生信号の帰還により、加算器14の出力信号
に含まれる誤差電圧が一定値(IEI)を超えた符号反
転時に、電圧比較器CP4の出力信号の極性が識別器1
2の出力信号と一致する。
Next, the output signal of the voltage divider 16 and the output signal of the discriminator 12 as shown in the dashed line of the waveform J are added to the voltage comparator CP4, and the output signal of the voltage divider 16 as shown in the waveform M is applied from the voltage comparator CP4.
A determination signal indicating whether the output signal voltage of is higher or lower than the output voltage of the discriminator 12 is obtained. This is because when there is no identification error, the output signal amplitude of the voltage divider 15 is smaller than the output signal amplitude of the discriminator 12, so the output signal of the voltage comparator CP4 becomes the inverted version of the output signal of the discriminator 12. In other words, when the error voltage included in the output signal of the adder 14 exceeds a certain value (IEI) due to feedback of the reproduced signal of the identification error, the polarity of the output signal of the voltage comparator CP4 changes to the discriminator 1.
It matches the output signal of 2.

次に電圧比較器CP4出力をNANDゲートG1で識別
器12の出力信号によりゲートすることにより波形Nの
如く、正側の誤り伝搬がTcの期間検出される。なお波
形0はゲー)G2の出力であり負側の誤り伝搬があれば
+Eのレベルとなる。
Next, the output of the voltage comparator CP4 is gated by the output signal of the discriminator 12 using the NAND gate G1, so that error propagation on the positive side is detected for a period of Tc, as shown by waveform N. Note that waveform 0 is the output of G2, and if there is error propagation on the negative side, the level will be +E.

なお波形N、Oの如く、ゲートG1・G2の出力には、
ゲートや電圧比較器等の群遅延によるヒゲが発生するが
、ヒゲのパルス幅が小さい場合には実用上特に問題とな
らない。仮りに群遅延が非常に大きいような場合には、
クランプ回路のクランプ用ダイオードに直列抵抗を入れ
るのも有効である。
As shown in waveforms N and O, the outputs of gates G1 and G2 are as follows:
Whiskers occur due to group delays in gates, voltage comparators, etc., but this does not pose a practical problem if the pulse width of the whiskers is small. If the group delay is very large,
It is also effective to insert a series resistor into the clamp diode of the clamp circuit.

以上実施例によれば電圧比較器が一個で済み回路構成が
簡単になるという効果がある。
According to the embodiments described above, only one voltage comparator is required and the circuit configuration is simplified.

発明の効果 以上の如く本発明によれば、識別誤りが次の符号反転以
後に伝搬するのを抑圧し識別誤りの発生を低減した量子
化帰還形積分検出回路を簡単な回路構成で実現できる。
Effects of the Invention As described above, according to the present invention, a quantization feedback type integral detection circuit that suppresses the propagation of identification errors after the next sign inversion and reduces the occurrence of identification errors can be realized with a simple circuit configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す回路図、第2図は
同実施例の説明のための波形図、第3図は本発明の第2
の実施例を示す回路図、第4図は第3の実施例を示す回
路図、第6図は第3の実施例の説明のための波形図、第
6図は従来例を示すブロック図、第7図は従来例の説明
のだめの波形図である。 1・・・・・・バイパスフィルター、2・・・・・・ロ
ーパスフィルター、3・・・・・・加算器、4・・・・
・・識別器、1o・・・・・・加算器、11・・・・・
・クランプ器、12・・・・・・識別器、13・・・・
・・誤り伝搬検出器、14・・・・・・加算器、15・
・・・・・分圧器。 第1図 第2図 第3図 第 ・1[71 第5図
FIG. 1 is a circuit diagram showing a first embodiment of the present invention, FIG. 2 is a waveform diagram for explaining the same embodiment, and FIG. 3 is a circuit diagram showing a second embodiment of the present invention.
4 is a circuit diagram showing a third embodiment, FIG. 6 is a waveform diagram for explaining the third embodiment, FIG. 6 is a block diagram showing a conventional example, FIG. 7 is a waveform diagram for explanation of a conventional example. 1...Bypass filter, 2...Low pass filter, 3...Adder, 4...
...Discriminator, 1o... Adder, 11...
・Clamp device, 12... Discriminator, 13...
...Error propagation detector, 14...Adder, 15.
...Voltage divider. Figure 1 Figure 2 Figure 3 ・1 [71 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)受信信号の高域成分と識別後の再生信号の低域成
分とを加算する加算手段と、誤り伝搬を検出するための
誤り伝搬検出手段と、この誤り伝搬検出手段により誤り
伝搬が検出されたときに前記加算手段の出力信号を1又
は零に相当する正規の電圧に尖頭値クランプするクラン
プ手段と、このクランプ手段の出力信号を基準電圧と比
較して1・零を識別する識別手段とを備え、前記クラン
プ手段の放電時定数を前記加算手段の再生信号入力に対
する一次のローパスフィルターの時定数と等しくしたこ
とを特徴とする量子化帰還形積分検出回路。
(1) Adding means for adding the high-frequency components of the received signal and the low-frequency components of the reproduced signal after identification, error propagation detection means for detecting error propagation, and error propagation detected by the error propagation detection means clamping means for peak value clamping the output signal of the adding means to a regular voltage corresponding to 1 or 0 when 2. A quantization feedback type integral detection circuit comprising means, wherein a discharge time constant of said clamp means is made equal to a time constant of a first-order low-pass filter for inputting a reproduced signal of said addition means.
(2)誤り伝搬検出手段を、加算手段出力信号が正側又
は負側の一定電圧を超えたときにそれぞれ正側又は負側
の誤り伝搬として検出する2ケの電圧比較器で構成した
ことを特徴とする特許請求の範囲第1項記載の量子化帰
還形積分検出回路。
(2) The error propagation detection means is composed of two voltage comparators that detect error propagation on the positive side or negative side when the output signal of the adding means exceeds a certain voltage on the positive side or negative side, respectively. A quantization feedback integral detection circuit according to claim 1.
(3)受信信号の高域成分と識別後の再正信号の低域成
分とを加算する第2の加算手段を備え、前記第2の加算
手段のクロスオーバー周波数を第1の加算手段のクロス
オーバー周波数より高く設定するとともに、前記第2の
加算手段出力信号を誤り伝搬検出手段の入力信号とする
ことを特徴とする特許請求の範囲第1項記載の量子化帰
還形積分検出回路。
(3) A second adding means for adding the high-frequency component of the received signal and the low-frequency component of the re-corrected signal after identification, and the crossover frequency of the second adding means is set to the cross-over frequency of the first adding means. 2. The quantization feedback type integral detection circuit according to claim 1, wherein the quantization feedback integral detection circuit is set higher than the overfrequency, and the output signal of the second addition means is used as an input signal of the error propagation detection means.
(4)第2の加算手段の出力信号電圧と識別手段の出力
信号電圧との少なくとも一方に係数をかける係数器と、
第2の加算手段の出力信号電圧と識別手段の出力信号電
圧とを少なくともいずれか一方に前記係数器で係数をか
けた後に電圧比較する電圧比較器と、前記電圧比較器出
力信号を識別手段の出力信号でゲートするゲートとによ
り誤り伝搬検出手段を構成したことを特徴とする特許請
求の範囲第3項記載の量子化帰還形積分検出回路。
(4) a coefficient unit that applies a coefficient to at least one of the output signal voltage of the second addition means and the output signal voltage of the identification means;
a voltage comparator that compares the output signal voltage of the second adding means and the output signal voltage of the discriminating means after multiplying at least one of them by a coefficient using the coefficient multiplier; 4. The quantization feedback type integral detection circuit according to claim 3, wherein the error propagation detection means is constituted by a gate gated by an output signal.
JP16581886A 1986-07-15 1986-07-15 Quantization feedback type integration detection circuit Pending JPS6320939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16581886A JPS6320939A (en) 1986-07-15 1986-07-15 Quantization feedback type integration detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16581886A JPS6320939A (en) 1986-07-15 1986-07-15 Quantization feedback type integration detection circuit

Publications (1)

Publication Number Publication Date
JPS6320939A true JPS6320939A (en) 1988-01-28

Family

ID=15819577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16581886A Pending JPS6320939A (en) 1986-07-15 1986-07-15 Quantization feedback type integration detection circuit

Country Status (1)

Country Link
JP (1) JPS6320939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239740A (en) * 1992-02-21 1993-09-17 Kanebo Ltd Production of raised web having high grade touch
US5395693A (en) * 1992-06-26 1995-03-07 Kolon Industries, Inc. Conjugated filament

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239740A (en) * 1992-02-21 1993-09-17 Kanebo Ltd Production of raised web having high grade touch
US5395693A (en) * 1992-06-26 1995-03-07 Kolon Industries, Inc. Conjugated filament

Similar Documents

Publication Publication Date Title
US4385328A (en) Data extracting circuit
US5822104A (en) Digital optical receiving apparatus
US4736163A (en) Circuit for detecting and suppressing pulse-shaped interferences
EP0390724B1 (en) Data recording and reproducing circuit
JPS6320939A (en) Quantization feedback type integration detection circuit
US4528601A (en) Digital signal reproducing apparatus
JPS6253967B2 (en)
US4495528A (en) Magnetic reproducing system for a digital signal
JP2772193B2 (en) DC regeneration method in signal identification circuit
JPS6315549A (en) Quantization feedback type integration detection circuit
JPS628843B2 (en)
JPS59221026A (en) Receiving circuit of digital signal
KR930004940Y1 (en) Circuit for distinguishing a kind of cartridge in turntable
JPS5810939A (en) Detection circuit for reception signal interruption
JPS6122487B2 (en)
SU1597906A1 (en) Device for playback of perpendicular magnetic record
JPH0659036B2 (en) Variable equalizer
JPH06104669A (en) Automatic gain control circuit and data storage device using the circuit
JPH0422054B2 (en)
JPH0660546A (en) Digital signal regenerating circuit
JPS59153358A (en) System for detecting single frequency component
JPS6373708A (en) Automatic gain control circuit
JPS6025319A (en) Level comparator
JPS63232741A (en) Multi-frequency signal receiver
JPS5948586B2 (en) DC regeneration circuit