JPS6320907A - Frequency adjusting method for piezoelectric vibrator - Google Patents

Frequency adjusting method for piezoelectric vibrator

Info

Publication number
JPS6320907A
JPS6320907A JP16572986A JP16572986A JPS6320907A JP S6320907 A JPS6320907 A JP S6320907A JP 16572986 A JP16572986 A JP 16572986A JP 16572986 A JP16572986 A JP 16572986A JP S6320907 A JPS6320907 A JP S6320907A
Authority
JP
Japan
Prior art keywords
trimming
frequency
laser
spot
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16572986A
Other languages
Japanese (ja)
Inventor
Masaaki Ono
正明 小野
Yuji Kojima
雄次 小島
Shigemi Kurashima
茂美 倉島
Noboru Wakatsuki
昇 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16572986A priority Critical patent/JPS6320907A/en
Publication of JPS6320907A publication Critical patent/JPS6320907A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive to suppress the change in a static capacitance Cd and a capecitance ratio gamma by applying laser radiaton onto an electrode face so as to apply mesh spot trimming thereby attaining the trimming with respect to a decreasing frequency as well as an increasing frequency. CONSTITUTION:The mesh spot trimming is applied to the electrode face by using a laser to adjust the frequency. The frequency is adjusted in both increasing and decreasing directions by varying a trimming laser output as shown in figure A. The resonance frequency tends to increase as the laser output is increased as the result of experiment, but, on the other hand, the frequency has a decreasing tendency with further increase of the resonance frequency. That is, the resonance frequency is decreased proportional to number of spots with the mesh trimming at a large laser spot diameter, while the resonance frequency is increased proportional to the spot number with the trimming at a smaller spot diamter. Moreover, the static capacitance Cd and the capacitance ratio gamma are almost unchanged independenly of the trimming as shown in figures B and C.

Description

【発明の詳細な説明】 〔概要〕 圧電振動子の共振周波数を上昇方向或いは下降方向に調
整する方法として金属膜電極にレーザを照射してスポッ
トトリミングを行う周波数調整方法。
[Detailed Description of the Invention] [Summary] A frequency adjustment method that performs spot trimming by irradiating a metal film electrode with a laser as a method of adjusting the resonance frequency of a piezoelectric vibrator in an upward or downward direction.

〔産業上の利用分野〕[Industrial application field]

本発明はスポットトリミングを用いた圧電振動子の周波
数調整方法に関する。
The present invention relates to a method for adjusting the frequency of a piezoelectric vibrator using spot trimming.

圧電振動子はニオブ酸リチウム(LiNbOz) 、タ
ンタル酸リチウム(LiTaOz) +水晶などの圧電
結晶或いはチタン酸ジルコン酸鉛(PZT)などの圧電
磁器など電気機械結合係数の大きな誘電材料からなる薄
板の両面に真空蒸着法やスパッタ法などにより金属電極
を設けたもので、この電極間に交流電界を加えると圧電
効果により、これに等しい周波数の応力を生じ、電界の
周波数が振動子の固有周波数と一敗する場合には強い共
振を起こす。
A piezoelectric vibrator consists of both sides of a thin plate made of a dielectric material with a large electromechanical coupling coefficient, such as a piezoelectric crystal such as lithium niobate (LiNbOz), lithium tantalate (LiTaOz) + quartz, or a piezoelectric ceramic such as lead zirconate titanate (PZT). metal electrodes are provided by vacuum evaporation or sputtering, and when an alternating current electric field is applied between these electrodes, stress with a frequency equal to this is generated due to the piezoelectric effect, and the frequency of the electric field becomes equal to the natural frequency of the vibrator. If it loses, it will cause a strong resonance.

かかる圧電振動子はマイクロコンピュータ用のクロック
信号用や電圧制御発振器の振動子として使用されている
Such piezoelectric vibrators are used for clock signals for microcomputers and as vibrators for voltage-controlled oscillators.

〔従来の技術〕[Conventional technology]

圧電振動子の金属電極の材料としては金(Au)や銀(
Ag)が用いられている。
Gold (Au) and silver (
Ag) is used.

すなわち、圧電基板材料としてLiNbO3やLiTa
0゜を用いるものについては下地層として厚さ約500
人のニクロム(Ni  −Cr)膜を設け、この上に厚
さが1000〜5000人のAu膜を設けたものが電極
として使用されており、また水晶振動子についてはAg
蒸着膜が使用されている。
That is, LiNbO3 and LiTa are used as piezoelectric substrate materials.
For those using 0°, the base layer has a thickness of approximately 500°.
A nichrome (Ni-Cr) film with a thickness of 1,000 to 5,000 people is used as an electrode.
Vapor-deposited film is used.

°さて、一般に振動子は厚みすべり振動をとり、一義的
に振動板(以下基板)の厚さにより共振周波数が決まり
、この関係は次式で示される。
Generally, a vibrator exhibits thickness shear vibration, and the resonant frequency is uniquely determined by the thickness of the diaphragm (hereinafter referred to as the substrate), and this relationship is expressed by the following equation.

fr =v / 2t ここで、f7は共振周波数、 ■は厚み振動の伝播速度、 tは基板の厚さ、 そのため、共振周波数f、の値を調整するには板厚tの
値を変えればよいが、電極形成後においては基板の厚さ
tの変更はできないので、伝播速度Vを変化させて行っ
ている。
fr = v / 2t Here, f7 is the resonant frequency, ■ is the propagation speed of thickness vibration, and t is the thickness of the board. Therefore, to adjust the value of the resonant frequency f, just change the value of the board thickness t. However, since the thickness t of the substrate cannot be changed after the electrodes are formed, the propagation velocity V is changed.

ここで、伝播速度Vは次の要因によって変化することが
知られている。
Here, it is known that the propagation velocity V changes depending on the following factors.

■ 基板の弾性定数と密度、 (イオン注入や熱処理などにより変更可能)■ 電極部
の付加質量、 (電極材料あるいは膜厚の変更により可能)■ 基板の
電気機械結合係数、 (材料により決まる) ■ 電極の寸法、 (トリミングにより変更可能) そのため、一般に■の方法を用いて共振周波数f1の1
i1整が行われている。
■ Elastic constant and density of the substrate, (can be changed by ion implantation, heat treatment, etc.) ■ Added mass of the electrode, (possible by changing the electrode material or film thickness) ■ Electromechanical coupling coefficient of the substrate, (determined by the material) ■ The dimensions of the electrode (can be changed by trimming) Therefore, in general, the resonant frequency f1 is adjusted using method (■).
i1 adjustment is being performed.

ここで、従来より行われているトリミング法としてはレ
ーザを用いて基板の長手方向の電極膜を削る長手方向ト
リミングと幅方向の電極膜を削る幅方向トリミングとが
あるが、このようなトリミングによって共振周波数は上
昇し、また端子間容量と容量比が変化し易い。
Here, conventional trimming methods include longitudinal trimming, which uses a laser to cut the electrode film in the longitudinal direction of the substrate, and widthwise trimming, which cuts the electrode film in the width direction of the substrate. The resonant frequency increases, and the terminal capacitance and capacitance ratio tend to change.

第2図は圧電振動子の等価回路を示すもので、C4は対
向する電極間の静電容量、 Lは直列共振回路の等価インダクタンス、Cは直列共振
回路の等価静電容量、 Rは直列共振回路の等価抵抗、 を表し、容量比γは、 r=c、/C で表され、また、共振周波数f、と反共振周波数f3と
の周波数間隔を表す目安としても用いられている。
Figure 2 shows the equivalent circuit of a piezoelectric vibrator, where C4 is the capacitance between opposing electrodes, L is the equivalent inductance of the series resonant circuit, C is the equivalent capacitance of the series resonant circuit, and R is the series resonance. The equivalent resistance of the circuit is expressed as follows, and the capacitance ratio γ is expressed as r=c,/C, and is also used as a guideline to express the frequency interval between the resonant frequency f and the anti-resonant frequency f3.

r=K fr/(fm−rr) ここでKは比例定数である。r=K fr/(fm-rr) Here K is a proportionality constant.

またQ値は、 Q=ωL/R ここでωは角周波数、 の関係がある。Also, the Q value is Q=ωL/R Here ω is the angular frequency, There is a relationship between

さて、圧電振動子の共振周波数調整を電極膜のトリミン
グにより行う場合には、共振周波数を上昇方向、下降方
向の何れにも変化できることが望ましく、また電極間の
静電容量C6と容量比γは変化しないことが望ましい。
Now, when adjusting the resonant frequency of a piezoelectric vibrator by trimming the electrode film, it is desirable that the resonant frequency can be changed in either an upward direction or a downward direction, and the capacitance C6 between the electrodes and the capacitance ratio γ are It is desirable that it does not change.

然し、現実には長手方向トリミング或゛いは幅方向トリ
ミングを行うとこれらの特性は大きく変化してしまう。
However, in reality, these characteristics change significantly when longitudinal trimming or widthwise trimming is performed.

第3図(A)〜(C)の破線1は従来の傾向を示すもの
で、共振周波数は同図(A)に示すように電極面積の減
少と共に上昇方向に移行し、一方同図(B)に示すよう
に静電容1 caは減少し、また同図(C)に示すよう
に容量比γは増加する傾向がある。
The broken line 1 in FIGS. 3(A) to 3(C) shows the conventional trend; the resonant frequency shifts to an upward direction as the electrode area decreases as shown in FIG. ), the capacitance 1 ca tends to decrease, and the capacitance ratio γ tends to increase, as shown in (C) of the same figure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように従来のトリミング法によると共振周波
数は必ず上昇の方向に向かい、静電容量C4は減少し、
また容量比γは増加しているが、共振周波数を下降させ
ることができ、また静電容量C4と容量比γの変化がな
るべく少なくて済むトリミング方法を見出すことが課題
である。
As mentioned above, according to the conventional trimming method, the resonant frequency always tends to rise, and the capacitance C4 decreases.
Although the capacitance ratio γ is increasing, the challenge is to find a trimming method that can lower the resonance frequency and minimize changes in the capacitance C4 and the capacitance ratio γ.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は電極面にレーザ照射を行い、網目状にスポ
ットトリミングを行うことにより解決することができる
The above problem can be solved by irradiating the electrode surface with a laser and performing spot trimming in a mesh pattern.

〔作用〕[Effect]

第1図は本発明を実施した圧電振動子の斜視図であって
、レーザを用いて網目状にスポットトリミングを行い周
波数調整を行うものである。
FIG. 1 is a perspective view of a piezoelectric vibrator embodying the present invention, in which frequency adjustment is performed by spot trimming in a mesh pattern using a laser.

第3図(A)〜(C)の実vA2は本発明を適用してレ
ーザトリミングを行った場合の傾向を示すもので、トリ
ミングのレーザ出力を変えることにより同図(A)に示
すように上昇方向にも下降方向にも調整することができ
る。
Actual vA2 in Figures 3 (A) to (C) shows the tendency when laser trimming is performed by applying the present invention, and by changing the laser output for trimming, as shown in Figure 3 (A), It can be adjusted both in the upward and downward directions.

実験の結果ではレーザ出力を大きくするに従って共振周
波数は増加する傾向があるが、更に大きくすると減少す
る傾向がある。
Experimental results show that as the laser output increases, the resonance frequency tends to increase, but as the laser output increases further, the resonance frequency tends to decrease.

すなわち、大きなレーザスポット径で網目状にトリミン
グを行うとスポット数に比例して共振周波数は下降して
ゆく。
That is, when trimming is performed in a mesh pattern with a large laser spot diameter, the resonant frequency decreases in proportion to the number of spots.

一方、小さなスポット径でトリミングを行うとスポット
数に比例して共振周波数は増加する。
On the other hand, when trimming is performed with a small spot diameter, the resonance frequency increases in proportion to the number of spots.

なお、同図(B)と(C)に示すように静電容量C6と
容量比Tの値はトリミングを行っても殆ど変わらない。
Note that, as shown in FIGS. 3B and 3C, the values of the capacitance C6 and the capacitance ratio T hardly change even after trimming.

このような効果は実験の結果として見出したもので、理
由は明らかではないが、レーザスポットの径は最大でも
50μmと小さく、また穴は上下の電極膜に正確に対向
して開いている訳ではないので、基板上の電極膜に網目
状に穴開けが行われても電界は均等に印加され、そのた
め静電容量C6の変化は僅かで済むと思われる。
This effect was discovered as a result of experiments, and the reason is not clear, but the diameter of the laser spot is small, at most 50 μm, and the holes are not exactly opposite to the upper and lower electrode films. Therefore, even if holes are made in the electrode film on the substrate in a mesh pattern, the electric field is applied uniformly, and therefore, it is thought that the change in capacitance C6 is small.

また、容量比γの変化が少ない理由も電極面積の減少に
よるエネルギー閉じ込め量の減少が無視できるためと推
定される。
Furthermore, the reason for the small change in the capacitance ratio γ is presumed to be that the decrease in the amount of energy trapped due to the decrease in the electrode area can be ignored.

〔実施例〕〔Example〕

圧電結晶としてLiTa0=を用い、Y軸の周りに3°
回転させたXカットを基板面とし、長手方向の方位がY
軸から時計方向に50’回転させた方位を面内方位とし
た。
Using LiTa0= as the piezoelectric crystal, 3° around the Y axis
The rotated X cut is the board surface, and the longitudinal direction is Y.
The direction rotated 50' clockwise from the axis was defined as the in-plane direction.

かかる基板の大きさは3.5mm(長さ’)  X48
0μm(幅)X167μm(厚さ)であり、電極膜の長
さは1.4 mmである。
The size of this board is 3.5 mm (length') x 48
The dimensions are 0 μm (width) x 167 μm (thickness), and the length of the electrode film is 1.4 mm.

ここで電極膜は約500人の厚さのNiCr膜の上に約
2000人の厚さにAu膜を形成して電極膜を形成した
Here, the electrode film was formed by forming an Au film with a thickness of about 2000 mm on a NiCr film with a thickness of about 500 mm.

次にトリミングを行うレーザ光源には定格出力が101
のYAG (イツトリウム・アルミニウム・ガーネット
)レーザを使用した。
Next, the laser light source to be trimmed has a rated output of 101
A YAG (yttrium aluminum garnet) laser was used.

第4図はレーザ出力(但しダイアル目盛りで評価)を横
軸にとり、共振周波数の変化率を縦軸にとった場合の変
化を図示したものであり、表は測定結果である。
FIG. 4 shows changes when the horizontal axis is the laser output (evaluated using a dial scale) and the vertical axis is the rate of change in the resonance frequency, and the table shows the measurement results.

表 すなわちレーザ出力を選択することにより共振周波数を
何れの方向へも調整することができる。
By selecting the table or laser power, the resonant frequency can be adjusted in either direction.

次に第5図は共振周波数を6000ppm(0,6%)
まで調整した場合のQ値9等価直列抵抗R3および静電
容量C4の変化を示すもので破線3は従来の長手方向の
トリミングを行った結果であり、実線4は本発明の方法
によりトリミングを行った結果である。
Next, in Figure 5, the resonance frequency is set to 6000ppm (0.6%).
This graph shows the changes in the equivalent series resistance R3 and capacitance C4 when the Q value is adjusted to 9. The broken line 3 is the result of conventional trimming in the longitudinal direction, and the solid line 4 is the result of trimming by the method of the present invention. This is the result.

ここで、トリミングはスポット径43.2μmで行 ・
い共振周波数が減少する方向に調整した。
Here, trimming is performed with a spot diameter of 43.2 μm.
Adjusted to reduce the high resonance frequency.

図で明らかなように従来の方法によると静電容量C1は
調整量に比例して減少しているが、本発明による場合は
殆ど変化しない。
As is clear from the figure, according to the conventional method, the capacitance C1 decreases in proportion to the amount of adjustment, but according to the present invention, it hardly changes.

また、調整量が増すに従って等価直列抵抗Rsが増加し
Qが減少する傾向はあるが、それでも4000程度のQ
値を保つことができる。
Also, as the amount of adjustment increases, the equivalent series resistance Rs tends to increase and the Q tends to decrease, but the Q is still around 4000.
value can be maintained.

〔発明の効果〕〔Effect of the invention〕

以上記したように本発明の実施により従来のように周波
数上昇形のみならず下降形のトリミングが可能となり、
そのために製造収率が向上し、また静電容ffi Cd
と容量比Tの変化を少く抑えることができる。
As described above, by implementing the present invention, it is possible to perform not only frequency increasing type trimming but also decreasing type trimming as in the past.
Therefore, the production yield is improved and the capacitance ffi Cd
Therefore, the change in the capacitance ratio T can be suppressed to a small extent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した圧電振動子の斜視図、第2図
は圧電振動子の等価回路、 第3図(A)〜(C)は電極トリミングの影響を示す説
明図、 第4図はレーザ出力と共振周波数との関係図、第5図は
共振周波数の変化率に対するQ、  R。 およびC4の特性図、 である。
Figure 1 is a perspective view of a piezoelectric vibrator embodying the present invention, Figure 2 is an equivalent circuit of the piezoelectric vibrator, Figures 3 (A) to (C) are explanatory diagrams showing the effects of electrode trimming, and Figure 4. Figure 5 shows the relationship between laser output and resonant frequency, and Figure 5 shows the relationship between Q and R as a function of the rate of change in resonant frequency. and a characteristic diagram of C4.

Claims (1)

【特許請求の範囲】  圧電結晶或いは圧電磁器からなる振動板の両面上に対
向して金属膜電極があり、該電極より互いに反対方向に
電極取り出し部を設けてなる振動子において、 前記の電極面にレーザ照射を行い、網目状にスポットト
リミングを行うことを特徴とする圧電振動子の周波数調
整方法。
[Scope of Claims] A vibrator comprising metal film electrodes facing each other on both sides of a diaphragm made of a piezoelectric crystal or piezoelectric ceramic, and electrode extraction portions provided in mutually opposite directions from the electrodes, the electrode surface as described above. A method for adjusting the frequency of a piezoelectric vibrator, characterized by irradiating the laser with a laser and performing spot trimming in a mesh pattern.
JP16572986A 1986-07-15 1986-07-15 Frequency adjusting method for piezoelectric vibrator Pending JPS6320907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16572986A JPS6320907A (en) 1986-07-15 1986-07-15 Frequency adjusting method for piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16572986A JPS6320907A (en) 1986-07-15 1986-07-15 Frequency adjusting method for piezoelectric vibrator

Publications (1)

Publication Number Publication Date
JPS6320907A true JPS6320907A (en) 1988-01-28

Family

ID=15817964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16572986A Pending JPS6320907A (en) 1986-07-15 1986-07-15 Frequency adjusting method for piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JPS6320907A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230654A (en) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd Piezoelectric vibrating element and producing method therefor
JP2002164759A (en) * 2000-11-24 2002-06-07 Daishinku Corp Frequency adjusting device for tuning fork oscillator and its method and fork oscillator whose frequency is adjusted by the same method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182910A (en) * 1982-04-20 1983-10-26 Fujitsu Ltd Piezoelectric oscillator
JPS6192010A (en) * 1984-10-11 1986-05-10 Nippon Dempa Kogyo Co Ltd Vapor deposition mask

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182910A (en) * 1982-04-20 1983-10-26 Fujitsu Ltd Piezoelectric oscillator
JPS6192010A (en) * 1984-10-11 1986-05-10 Nippon Dempa Kogyo Co Ltd Vapor deposition mask

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230654A (en) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd Piezoelectric vibrating element and producing method therefor
JP2002164759A (en) * 2000-11-24 2002-06-07 Daishinku Corp Frequency adjusting device for tuning fork oscillator and its method and fork oscillator whose frequency is adjusted by the same method

Similar Documents

Publication Publication Date Title
US3683213A (en) Microresonator of tuning fork configuration
KR100200179B1 (en) Saw apparatus
JP2001211052A (en) Piezoelectric resonator
JPS60137112A (en) Piezoelectric vibrator
JPS6320907A (en) Frequency adjusting method for piezoelectric vibrator
JPH0211043B2 (en)
JP2001257558A (en) Piezoelectric vibrator
JPS6357967B2 (en)
JPH08125486A (en) Piezoelectric vibrator
JPH04199906A (en) Surface acoustic wave resonator
JP4513150B2 (en) High frequency piezoelectric vibrator
JP2855208B2 (en) LiTaO 3 Lower piezoelectric resonator
JPH0131728B2 (en)
JP2002368573A (en) Superthin sheet piezoelectric vibrator and production method therefor
JPS5912811Y2 (en) Thickness sliding piezoelectric vibrator
JPH09181556A (en) Piezoelectric vibrator
JPS5824503Y2 (en) Width-slip crystal oscillator
JP2000332573A (en) Piezoelectric device
JPH054337Y2 (en)
JP2854581B2 (en) Piezoelectric vibrating element and its frequency adjustment method
JPH08148967A (en) Piezoelectric resonator and manufacture therefor
JPS58141021A (en) Thickness sliding crystal oscillator
JP2547980B2 (en) Ultrasonic transducer and method of manufacturing the same
JPH01232812A (en) Method for forming lithium tantalate wafer polarized inverting layer
JPS62220012A (en) Piezoelectric vibration element