JPS63208781A - Waveform shaping circuit - Google Patents

Waveform shaping circuit

Info

Publication number
JPS63208781A
JPS63208781A JP4189887A JP4189887A JPS63208781A JP S63208781 A JPS63208781 A JP S63208781A JP 4189887 A JP4189887 A JP 4189887A JP 4189887 A JP4189887 A JP 4189887A JP S63208781 A JPS63208781 A JP S63208781A
Authority
JP
Japan
Prior art keywords
waveform
transmission
transmission output
output
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4189887A
Other languages
Japanese (ja)
Other versions
JPH057669B2 (en
Inventor
Naoto Oshida
直人 大信田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4189887A priority Critical patent/JPS63208781A/en
Publication of JPS63208781A publication Critical patent/JPS63208781A/en
Publication of JPH057669B2 publication Critical patent/JPH057669B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To eliminate nonlinear distortion resulting from the class 'C' amplifica tion of a transmission waveform by shaping the transmission output waveform according to the difference between the mean waveform of a prescribed number of transmission output waveforms and an ideal transmission waveform. CONSTITUTION:A detector 1 detects the transmission output of a class 'C' power amplifier 200 is extract the transmission output waveform. This waveform is inputted to an averaging device 4 through an AD converter 2 and an input buffer 3 to become the mean waveform of a prescribed number of waveforms. The mean waveform is inputted to a modulation waveform correcting device 5 together with the output of an ideal waveform memory and the output of a modulation waveform initializing device 7 to obtain the difference from the ideal modulation waveform. This difference is sent to a modulation part 100 through an output buffer and a DA converter 10 to correct the transmission output waveform. Consequently, the transmission waveform which has no nonlinear distortion is obtained without any secular change.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は波形整形回路に関し、特に例えばDME装匝の
トランスポンダとしての地上局から機上局に対して送信
する波形に含まれる非線形増幅歪を含む各撞歪を除去し
整形する波形整形回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a waveform shaping circuit, and particularly to a waveform shaping circuit that corrects nonlinear amplification distortion contained in a waveform transmitted from a ground station to an airborne station, such as a DME-equipped transponder. The present invention relates to a waveform shaping circuit that removes and shapes the various distortions included.

〔従来の技術〕[Conventional technology]

航法装置としてのDME装置はよく知られている。この
DME装置は飛翔する航空機に搭載する機上局から地上
局に対し質問パルスを発射し、これを受けた地上局側で
は応答パルスを発射する。
DME devices as navigation devices are well known. This DME device emits an interrogation pulse to a ground station from an onboard station mounted on a flying aircraft, and the ground station, which receives the interrogation pulse, emits a response pulse.

機上局は質問から応答までの時間にもとづいて当該地上
局までの距離を知る。
The airborne station learns the distance to the ground station based on the time from inquiry to response.

地上局から発射される送信出力は、機上局からの質問が
ないときでも約1000pp/5(pulsepair
s per 5econd)で出力されるランダムパル
ス、質問パルス到来に対応してこのランダムパルスと入
替って出力される応答パルスのほか地上局の識別パルス
が含まれ、応答パルスを加えた酩パルス数は最小的10
00、最大約2700pp/sに達する。
The transmission power emitted from the ground station is approximately 1000 pp/5 (pulse pair) even when there are no questions from the airborne station.
In addition to the random pulse that is output at s per 5 seconds), the response pulse that is output in place of the random pulse in response to the arrival of the interrogation pulse, and the identification pulse of the ground station, the number of pulses including the response pulse is minimum 10
00, reaching a maximum of about 2700 pp/s.

上述した送信出力パルスのうち、局識別パルスを除いた
ランダムパルスと質問パルスは互いに12μs離隔した
3、5μsのパルス幅のものである。
Among the above-mentioned transmission output pulses, the random pulses and the interrogation pulses excluding the station identification pulse are separated from each other by 12 μs and have a pulse width of 3.5 μs.

これらツインパルスのうち応答信号は特に機上局の距離
計側で重要である。いずれにせよ、これら送信出力パル
スは、地上局の送信系の変調部でパルスAM変調を受け
た所定の周波数のキャリアが電力増幅され所定のレベル
となってアンテナに印加する形式で発射される。
Among these twin pulses, the response signal is particularly important on the distance meter side of the airborne station. In any case, these transmission output pulses are emitted in the form of a carrier of a predetermined frequency that has undergone pulse AM modulation in a modulation section of a transmission system of the ground station, is power amplified to a predetermined level, and is applied to an antenna.

このような送信出力の電力増幅はC級増幅で行なわれ、
従って当然のことながらC級増幅に伴なう非線形歪が発
生し、距離計測における誤差の要因となるほか、スペク
トルの拡大を招きこれが制限帯域を逸脱して隣接常域に
入りこむようになる。
Power amplification of such transmission output is performed by class C amplification,
Therefore, as a matter of course, nonlinear distortion occurs due to class C amplification, which not only causes errors in distance measurement, but also causes spectrum expansion, which deviates from the limited band and enters the adjacent normal range.

DME装置は空港における航空a#I着陸のための主要
装置のひとつであシ、従ってこの非線形歪は除去する必
要がある。
DME equipment is one of the main equipment for aviation a#I landing at airports, so this nonlinear distortion needs to be removed.

しかも近時、高精度D M E (Precision
 DME 。
Moreover, recently, high-precision DME (Precision
DME.

以後DME/Pと略称する)がM L S (Micr
owaveLanding 5ystan)の距離系を
惧当する存在としてその運用が予定され、上述した非線
形歪の除去の問題は一層加重しつつある。
(hereinafter abbreviated as DME/P) is MLS (Micr
Its operation is planned as a concern for the distance system of owaveLanding (5ystan), and the problem of removing the nonlinear distortion described above is becoming more serious.

DME/Pは、従来のDME装置の地上局と機上局間の
交信におけるマルチパス(multi path)の影
響の排除を図り、応答パルスの検出をツインパルスの先
行パルスのパルス前縁の低レベル部位を利用して行なう
ものである。
DME/P aims to eliminate the influence of multipath in communication between the ground station and the airborne station of conventional DME equipment, and detects the response pulse by detecting the low level of the leading edge of the leading pulse of the twin pulse. This is done using the body parts.

第4図はDME/Pの送信ツインパルスの波形図である
。第4図に示す如く、たとえば5%〜30%の低レベル
部位が受信の除の検出対象となりている。つまり、かか
る低レベル検出によりマルチパス波の影響を最小化しう
ろことを狙っているのである。これによって期待しうる
測距精度の改善は一層が目標となっている。このため、
パルスの立上りも急峻なものが利用される。
FIG. 4 is a waveform diagram of the DME/P transmission twin pulse. As shown in FIG. 4, for example, a low level region of 5% to 30% is targeted for reception rejection detection. In other words, the aim is to minimize the effects of multipath waves through such low-level detection. The goal is to further improve the distance measurement accuracy that can be expected from this. For this reason,
A pulse with a steep rise is also used.

このような波形を安定して出力するためには前述した如
く、CR増幅の非線形歪の除去がいよいよ重要であるが
、従来この歪の除去は次のようにして実施されている。
In order to stably output such a waveform, as described above, it is all the more important to remove the nonlinear distortion of CR amplification, and conventionally, this distortion has been removed as follows.

すなわち、従来は、送信パルスを出力してみて、これと
理想波形を比較し、その差異がなくなるまでC級電力増
幅器に供給する変調波形を補正しこれを変調用基準波形
としてROM等に格納し、送信トリガ入力の都度これを
挽出しC級増幅器でキャリアを変調するという方式をと
っている。
In other words, in the past, a transmission pulse was output, compared with an ideal waveform, the modulation waveform supplied to the class C power amplifier was corrected until the difference disappeared, and this was stored in a ROM etc. as a reference waveform for modulation. , a method is adopted in which the signal is recovered each time a transmission trigger is input and the carrier is modulated using a class C amplifier.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のこの種の波形整形回路には次のような種
種の問題点がある。
The above-mentioned conventional waveform shaping circuit of this type has the following various problems.

すなわち、その(1)は、C級増幅器の非直線性を補償
するためにあらかじめ歪ませた変調波形を用意しておく
必要があることであり、その(2)は、折角こうして用
意した変調波形もC級増幅器の特性のばらつきにより波
形、スペクトルが変化することが避けられないというこ
とであシ、その(3)は個個のC級増幅器ごとに変調波
形を合わせると互換性が問題となることであシ、その(
4)は、オープンルーズによる波形整形のため温度、経
時変化に対応できないといったさまざまな欠点がある。
In other words, (1) is that it is necessary to prepare a distorted modulation waveform in advance to compensate for the nonlinearity of the class C amplifier, and (2) is that it is necessary to prepare a distorted modulation waveform in advance to compensate for the nonlinearity of the class C amplifier. Also, it is inevitable that the waveform and spectrum will change due to variations in the characteristics of class C amplifiers, and (3), compatibility becomes a problem when the modulation waveforms are matched for each individual class C amplifier. By the way, that (
4) has various drawbacks, such as not being able to cope with changes in temperature and over time because it uses open-loose waveform shaping.

本発明の目的は上述した欠点を除去し、閉ループによる
波形整形をリアルタイムで送信出力に施すという手段を
備えることによシ、あらかじめ歪ませた変調波形を用意
する必要なく、互換性および温度、経時変化の影響を者
しく低減しうる波形整形回路を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a means for applying closed-loop waveform shaping to the transmitted output in real time, thereby eliminating the need to prepare a pre-distorted modulation waveform, improving compatibility, temperature, and aging. An object of the present invention is to provide a waveform shaping circuit that can significantly reduce the influence of changes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の回路は、例えばDME装置の地上局から機上局
に送信すべき送信出力波形に含まれる非線形増幅歪を整
形する波形整形回路において、送信出力波形をディジタ
ル化しつつ所定の波形数ごとの平均化処理を行なって出
力する平均化処理手段と、前記平均化処理手段の出力す
るディジタル化送信出力波形データと理想送信波形デー
タとを比較しその差分にもとづいて前記送信出力波形に
含まれる非線形増幅歪を補正するように前記送信出力波
形を整形する送信出力波形手段とを備えて櫂成される。
The circuit of the present invention can be used, for example, in a waveform shaping circuit that shapes nonlinear amplification distortion included in a transmission output waveform to be transmitted from a ground station to an airborne station of a DME device. An averaging processing means that performs averaging processing and outputs the data, and compares the digitized transmission output waveform data outputted by the averaging processing means with the ideal transmission waveform data, and calculates the nonlinearity contained in the transmission output waveform based on the difference. and transmission output waveform means for shaping the transmission output waveform so as to correct amplification distortion.

〔実施例〕 次に図面を参照して本発明の詳細な説明する。〔Example〕 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例のブロック図であり、DME
/Pを対象として実施しており、検波器1、A−Dコン
バータ2、入力バッファ3、平均化器4、変調波形補正
器5、理想波形メモリ6、変調波形初期化器7、初期化
データ8、出力バッファ9、D−Aコンバータ1θ等を
備えて構成され、第1図にはなお、送信系の変調部10
0と電力増幅部200とを併記して示す。
FIG. 1 is a block diagram of one embodiment of the present invention.
/P, and includes a detector 1, A-D converter 2, input buffer 3, averager 4, modulation waveform corrector 5, ideal waveform memory 6, modulation waveform initializer 7, and initialization data. 8, an output buffer 9, a D-A converter 1θ, etc., and FIG.
0 and the power amplifying section 200 are shown together.

検波器工は電力増幅器200の送信出力を直M検波し送
信出力波形を抽出する。こうして抽出された送信出力波
形は第4図に示すものでパルス;μが3.5μsである
。この送信出力波形はA−Dコンバータ2でディジタル
化されたのち人力バッファ3に格納される。こうして格
納されるデータは、検波ノイズ、検出ジッター、A−D
処理に伴なう量子化ノイズ等の各糧ノイズ除去と突出デ
ータ排除のため平均化器4で平均化処理を行なう。
The detector performs DC detection on the transmission output of the power amplifier 200 and extracts the transmission output waveform. The transmitted output waveform extracted in this way is shown in FIG. 4, and the pulse; μ is 3.5 μs. This transmission output waveform is digitized by an A-D converter 2 and then stored in a manual buffer 3. The data stored in this way includes detection noise, detection jitter, A-D
Averaging processing is performed by an averaging unit 4 in order to remove various noises such as quantization noise accompanying the processing and to remove prominent data.

平均化器4は、入力バッファに格納されたディジタル化
送信出力波形データを所定の波形分、本実施例では8波
形分積算して平均化を行ない、こうして大幅にノイズ低
減と平均化を図ったものを次に変調波形補正器5に供給
する。
The averager 4 integrates and averages the digitized transmission output waveform data stored in the input buffer for a predetermined waveform, eight waveforms in this example, thereby achieving significant noise reduction and averaging. The signal is then supplied to a modulation waveform corrector 5.

変調波形補正器5は、入力する平均化器4の出力に残存
する突出データの平滑化、ならびに理想波形との差異を
補正する変調波形補正処理を行なう。
The modulated waveform corrector 5 smoothes the protruding data remaining in the input output of the averager 4, and performs a modulated waveform correction process to correct the difference from the ideal waveform.

平滑化は、後述する移動平均法にもとづくIみ関数付与
の条件で突出データの抑圧手法を利用しているが、ただ
、入力した平均化ディジタル送信出力波形の数サンプル
ずつの移動平均をとる方法では波形の立上シ部のデータ
が等髄内に遅れて位相ずれを起し、従って測距誤差の増
大につながるので次のような手順を採用している。
Smoothing uses a method of suppressing prominent data under the condition of applying an I function based on the moving average method described later, but there is a method of taking a moving average of several samples of the input averaged digital transmission output waveform. In this case, the data at the rising edge of the waveform is delayed within the isomedullary region, causing a phase shift, which leads to an increase in distance measurement error, so the following procedure is adopted.

すなわち、本実施例では上述した問題を避けるため、理
想的送信出力波形データと入力との差分をとりてからこ
の差分に対し移動平均法による平滑化を適用するように
している。
That is, in this embodiment, in order to avoid the above-mentioned problem, the difference between the ideal transmission output waveform data and the input is calculated, and then smoothing using the moving average method is applied to this difference.

第2図は第1図の実施例における平滑化処理説明図であ
る。
FIG. 2 is an explanatory diagram of the smoothing process in the embodiment of FIG. 1.

第2図に示す積算平均化データfn(t)は、平均化器
4で得られる8波形分の積算平均であり、この平均化処
理でもデータの分散程度はかなり抑圧されるが、それで
もなお突出データが残る。変調波形補正器5は、理想波
形メモリ6から読出した理想波形データt。(t)と2
%(t)との差分データΔf%(t)を算出し、この差
分データに移動平均法を適用して平滑化差分データを得
る。
The cumulative averaged data fn(t) shown in FIG. Data remains. The modulated waveform corrector 5 receives ideal waveform data t read from the ideal waveform memory 6. (t) and 2
%(t) is calculated, and the moving average method is applied to this difference data to obtain smoothed difference data.

第3図は第1図の実施例における平滑化処理に利用する
移動平均法の説明図である。
FIG. 3 is an explanatory diagram of the moving average method used in the smoothing process in the embodiment of FIG. 1.

一般にル個の点を含む離散的波形X(−)があるとする
。ここで4=1 、2 、・・・・・・ルである。これ
に対してN=2m+1の点を含む左右対称な重み関数W
(7’)を設定する。ここでノ= −m 、・・・−1
,0,1・・・扉である。この重み関数WU)を付与し
たX(()の点(における平均値y(<)は次の(1)
式で示される。
Assume that there is a discrete waveform X(-) that generally includes R points. Here, 4=1, 2, . . . le. On the other hand, a symmetrical weighting function W including N=2m+1 points
(7') is set. Here, ノ = -m,...-1
, 0, 1... It is a door. The average value y(<) at the point (of X() given this weighting function WU) is the following (1)
It is shown by the formula.

通常Wは計算処理の便宜を図って2 をとっている。こ
のような条件を満たすものとして例示するのが第3図の
内容である。′第3図には==<1>の3点を対象とし
1点ずつシフトしながら移動平均を(1)式にもとづっ
て求めつつデータの平滑化を図る場合と、 !(()の
7点を対象として移動平均を求める場合の2例を示して
いるが、いずれも中央データに他のデータの2倍の貞み
を付与している。この重みは、平滑化の目的等を勘案し
適宜設定し得るものである。
Normally, W is set to 2 for convenience of calculation processing. The contents of FIG. 3 are exemplified as satisfying these conditions. 'Figure 3 shows two cases in which the moving average is calculated based on equation (1) while shifting one point at a time, targeting three points ==<1>, and smoothing the data. Two examples are shown in which the moving average is calculated for the seven points in (), but in both cases, the central data is given twice the precision as the other data.This weight is used for smoothing. It can be set as appropriate, taking into consideration the purpose, etc.

ふたたび第1図に戻って実施例の説明を続行する。Returning again to FIG. 1, the description of the embodiment will be continued.

変調波形補正器5は、こうして得られる平滑化差分デー
タで理想波形データの補正を行ない、これを出力バッフ
ァ9に供給する。この補正は理想波形データに対し平滑
化差分データの極性全反転し同じサンプル点のデータご
とにディジタル加算する形式で行なわれる。このよりな
補正の結果、理想送信波形データは0級項幅による非線
形子分を見越した歪があらかじめ付与されて第2図の補
正データの如くなり、逆にC級増幅の歪を受けることに
よって理想送信波形となりて出力されることとなる。
The modulated waveform corrector 5 corrects the ideal waveform data using the smoothed difference data obtained in this way, and supplies this to the output buffer 9. This correction is performed by completely reversing the polarity of the smoothed difference data with respect to the ideal waveform data, and digitally adding the data at the same sample point. As a result of this further correction, the ideal transmission waveform data is predistorted in anticipation of the nonlinear component due to the width of the 0th class term, and becomes the corrected data shown in Figure 2, and conversely, by being subjected to distortion from the class C amplification, The ideal transmission waveform will be output.

出力バッファ9に格納された補正ずみの変調阪形データ
は次次に読出され、D−Aコンバータ10でアナログ変
換され変調部100に供給すべき変調波形として利用さ
れる、。
The corrected modulated waveform data stored in the output buffer 9 is read out one after another, converted into analog by the DA converter 10, and used as a modulated waveform to be supplied to the modulation section 100.

この変調波形の補正において、送信信号が得られない初
期補正に対しては次の手段が用意され、システム起動時
の時間短縮を図っている。
In this modulation waveform correction, the following means are provided for initial correction when no transmission signal is obtained, in order to shorten the time required to start up the system.

初期化データメモリ8には、最新の運用時における送信
出力波形に関するデータ等を利用し、とれを初期化デー
タとして格納される。
In the initialization data memory 8, data regarding the transmission output waveform during the latest operation is used, and the distortion is stored as initialization data.

変調波形初期化器7は、理ぜ波形メモリ6から読出した
理想送信波形データを初期化データで補正したものを補
正初期値として変調波形補正器5を介して出カバソファ
に格納せしめ、かくして初期値を確保する。
The modulation waveform initializer 7 corrects the ideal transmission waveform data read from the rational waveform memory 6 with the initialization data and stores it in the output buffer via the modulation waveform corrector 5 as a correction initial value, thus making the initial value the initial value. ensure that

変調部100t’!、こうして受ける送信出力波形を利
用し所定の変調形式のパルスA M 変f、h’4信号
を発生しこれを電力増幅部200に供給し、電力増幅部
200はこれを送信出力レベルに電力増幅しアンテナ系
に供給する。この送信出力の1部はレベル分岐され検波
器1に供給され、変調波形初期化に引続き閉ループによ
る送信波形の整形が繰返される。
Modulation section 100t'! , the received transmission output waveform is used to generate a pulse A M variable f, h'4 signal in a predetermined modulation format, and this is supplied to the power amplification section 200, which power amplifies this to the transmission output level. and supplies it to the antenna system. A part of this transmission output is level-divided and supplied to the detector 1, and following modulation waveform initialization, the transmission waveform is repeatedly shaped in a closed loop.

なお、上述した94m例では、初期化データとして運用
上の最新の送信出力波形−データ、すなわち最終運用時
取得した送信出力波形データを利用しているがこれは初
期化に利用しうるものであれば何でもよく、lだ、運用
上特にこの初期化を必要としないときは、変調波形初期
化器7や初期化データメモリ8は削除しうる。
Note that in the 94m example described above, the latest operational transmission output waveform data, that is, the transmission output waveform data obtained during the final operation, is used as initialization data, but this may be used for initialization. If this initialization is not particularly required for operation, the modulation waveform initializer 7 and the initialization data memory 8 can be deleted.

〔発明の効果〕 以上説明した如く本発明によれば、送信出力波形のC級
増幅による非線形歪を補正、整形する波形整形回路にお
いて、送信出力波形を分岐出力しつつ、この送信出力波
形に含まれる非線形歪をリアルタイムで閉ループにより
補正するという手段を備えることによシ、温度ならびに
経時変化のほかD 工、i E g置ごとの製造上のば
らつきを含む非線形歪の影響を大幅に−減しう2ととも
に、ディジタル処理にもとづく精密なコントロールも可
能となシはぼ理想波形に整形しうる波形整形回路が実現
できるという効果がある。
[Effects of the Invention] As explained above, according to the present invention, in a waveform shaping circuit that corrects and shapes nonlinear distortion caused by class C amplification of a transmission output waveform, while branching out the transmission output waveform, By providing a means for correcting the nonlinear distortion that occurs in real time in a closed loop, the effects of nonlinear distortion, including temperature and aging changes, as well as manufacturing variations from position to position, can be significantly reduced. In addition to the second advantage, it is possible to realize a waveform shaping circuit that can perform precise control based on digital processing and can shape an ideal waveform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図の実施例における平滑化処理説明図、第3図は第
1図の実施例における平滑化処理に利用する移動平均法
の説明図、第4図は高精度DME装置の送信ツインパル
スの波形図である。 1・・・・・・検波器、2・・・・・・A−Dコンバー
タ、3・・・・・・入カパッファ、4・・・・・・平均
化器、5・・・・・・変調波形補正器、6・・・・・・
理想波形メモリ、7・・・・・・変調波形初期化器、8
・・・・・・初期化データメモリ、9・・・・・・出力
バッファ、10・・・・・・D/Aコンバータ、100
・・・・・・変調部、200・・・・・・電力増幅部。 代理人 弁理士  内 原   音 蒋 2 河 W二J 茅 3 菌
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of smoothing processing in the embodiment of Fig. 1, and Fig. 3 is a movement used for smoothing processing in the embodiment of Fig. 1. FIG. 4, which is an explanatory diagram of the averaging method, is a waveform diagram of twin pulses transmitted by a high-precision DME device. 1...Detector, 2...A-D converter, 3...Input buffer, 4...Averaging device, 5... Modulation waveform corrector, 6...
Ideal waveform memory, 7...Modulation waveform initializer, 8
...Initialization data memory, 9...Output buffer, 10...D/A converter, 100
...Modulation section, 200... Power amplification section. Agent Patent Attorney Uchihara Otochi 2 Kawa Wji J Kaya 3 Bacteria

Claims (1)

【特許請求の範囲】 送信出力波形をディジタル化しつつ所定の波形数ごとの
平均化処理を行なって出力する平均化処理手段と、 前記平均化処理手段の出力するディジタル化送信出力波
形データと理想送信波形データとを比較しその差分にも
とづいて前記送信出力波形に含まれる非線形増幅歪を補
正するように前記送信出力波形を整形する送信出力波形
整形手段とを備えて前記迷信出力波形に含まれる非線形
増幅歪を整形することを特徴とする波形整形回路。
[Claims] Averaging processing means that performs averaging processing for each predetermined number of waveforms while digitizing a transmission output waveform and outputs the result, and digitized transmission output waveform data output from the averaging processing means and ideal transmission. a transmission output waveform shaping means for shaping the transmission output waveform so as to compare the waveform data and correct nonlinear amplification distortion included in the transmission output waveform based on the difference; A waveform shaping circuit characterized by shaping amplification distortion.
JP4189887A 1987-02-24 1987-02-24 Waveform shaping circuit Granted JPS63208781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4189887A JPS63208781A (en) 1987-02-24 1987-02-24 Waveform shaping circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4189887A JPS63208781A (en) 1987-02-24 1987-02-24 Waveform shaping circuit

Publications (2)

Publication Number Publication Date
JPS63208781A true JPS63208781A (en) 1988-08-30
JPH057669B2 JPH057669B2 (en) 1993-01-29

Family

ID=12621105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4189887A Granted JPS63208781A (en) 1987-02-24 1987-02-24 Waveform shaping circuit

Country Status (1)

Country Link
JP (1) JPS63208781A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042227A (en) * 2004-07-30 2006-02-09 Nec Network & Sensor Systems Ltd Automatic pulse waveform shaping system
JP2006343131A (en) * 2005-06-07 2006-12-21 Toshiba Corp Radar device
JP2008190955A (en) * 2007-02-02 2008-08-21 Toshiba Corp Pulse signal transmitting device, adjusting method of its waveform, and dme ground station device
JP2010066097A (en) * 2008-09-10 2010-03-25 Toshiba Corp Distance measuring apparatus
JP2012163575A (en) * 2012-05-01 2012-08-30 Toshiba Corp Distance measuring device
JP2016156732A (en) * 2015-02-25 2016-09-01 株式会社東芝 Distance measuring equipment and distance measuring method
WO2017213138A1 (en) * 2016-06-08 2017-12-14 株式会社デンソー Reception device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336270A (en) * 1993-05-28 1994-12-06 Ikeno Shiki:Kk Usage for pocket tissue and pocket tissue paper case

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042227A (en) * 2004-07-30 2006-02-09 Nec Network & Sensor Systems Ltd Automatic pulse waveform shaping system
JP4527463B2 (en) * 2004-07-30 2010-08-18 Necネットワーク・センサ株式会社 Automatic pulse waveform shaping method
JP2006343131A (en) * 2005-06-07 2006-12-21 Toshiba Corp Radar device
JP2008190955A (en) * 2007-02-02 2008-08-21 Toshiba Corp Pulse signal transmitting device, adjusting method of its waveform, and dme ground station device
JP2010066097A (en) * 2008-09-10 2010-03-25 Toshiba Corp Distance measuring apparatus
JP2012163575A (en) * 2012-05-01 2012-08-30 Toshiba Corp Distance measuring device
JP2016156732A (en) * 2015-02-25 2016-09-01 株式会社東芝 Distance measuring equipment and distance measuring method
WO2017213138A1 (en) * 2016-06-08 2017-12-14 株式会社デンソー Reception device
JP2017220820A (en) * 2016-06-08 2017-12-14 株式会社デンソー Receiving device

Also Published As

Publication number Publication date
JPH057669B2 (en) 1993-01-29

Similar Documents

Publication Publication Date Title
EP1766825B1 (en) System and method for differential iq delay compensation in a communications system utilizing adaptive aqm compensation
US8164496B2 (en) Mismatch compensators and methods for mismatch compensation
US7782235B1 (en) Adaptive mismatch compensators and methods for mismatch compensation
US9014299B2 (en) Digital pre-distortion system for radio frequency transmitters with reduced sampling rate in observation loop
US7769103B2 (en) Amplifier system employing analog polynomial predistortion with sub-nyquist digital adaptation
JP5259093B2 (en) DME ground station equipment
US8928403B2 (en) Envelope path processing for envelope tracking amplification stage
AU630978B2 (en) Transmitter
US7791413B2 (en) Linearizing technique for power amplifiers
KR20010033536A (en) Feed forward amplifier with digital intermodulation control
WO2016031108A1 (en) Fmcw radar
US8358719B2 (en) Method and device for the compensation of signal errors in IQ-modulators
JPS63208781A (en) Waveform shaping circuit
US9344041B2 (en) Polar amplification transmitter distortion reduction
EP2541811A2 (en) Apparatus for generation of corrected vector wideband RF signals
US11251803B2 (en) Non-linearity correction
US7782153B2 (en) Timing adjusting method and timing adjusting apparatus
KR20040080353A (en) Signal sample acquisition techniques
US8755757B2 (en) Amplifier apparatus, radio transmitting apparatus including same, and method of adjusting gain of amplifier apparatus
CN106888000B (en) Measuring device with ALC circuit
CN113126065A (en) Receiving end input offset cancellation device and method in distance sensing system
CN111308224B (en) Signal flatness compensation method of radio astronomical receiver and radio astronomical receiver
JPH07154315A (en) Method for correcting amplitude and phase distortions in both bqualizer and transmission system
EP1258078B1 (en) System for estimating a non-linear characteristic of an amplifier
US20040146128A1 (en) Method to compensate for a step DC disturbance in a digital baseband signal in a homodyne radio receiver

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term