JPS6320766B2 - - Google Patents

Info

Publication number
JPS6320766B2
JPS6320766B2 JP56141470A JP14147081A JPS6320766B2 JP S6320766 B2 JPS6320766 B2 JP S6320766B2 JP 56141470 A JP56141470 A JP 56141470A JP 14147081 A JP14147081 A JP 14147081A JP S6320766 B2 JPS6320766 B2 JP S6320766B2
Authority
JP
Japan
Prior art keywords
lialo
powder
chloride
flux
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56141470A
Other languages
Japanese (ja)
Other versions
JPS5845113A (en
Inventor
Mikinori Nakanishi
Tomio Sugyama
Shuzo Waratani
Yoshikazu Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP56141470A priority Critical patent/JPS5845113A/en
Publication of JPS5845113A publication Critical patent/JPS5845113A/en
Publication of JPS6320766B2 publication Critical patent/JPS6320766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明は、特に溶融炭酸塩燃料電池の重要な構
成要素の一つである電解質タイルの原料として用
いられるLiAlO2の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a method for producing LiAlO 2 used as a raw material for electrolyte tiles, which are one of the important components of molten carbonate fuel cells.

即ち、上記のタイルは、炭酸アルカリ(LiCO3
―K2CO3)及びこれを溶融状態で保持するため
の電解質保持材からなるが、本発明は、特にこの
電解質保持材であるLiAlO2の製造方法に関する
ものである。
That is, the above tile is made of alkali carbonate (LiCO 3
-K 2 CO 3 ) and an electrolyte holding material for holding it in a molten state, and the present invention particularly relates to a method for producing LiAlO 2 which is this electrolyte holding material.

この際、LiAlO2には次のような特性が要求さ
れる。
At this time, LiAlO 2 is required to have the following properties.

(1) 耐アルカリ性を有すること。(1) Must have alkali resistance.

(2) 耐熱性を有すること。(2) Must be heat resistant.

(3) 微細な粉末であること。(3) Must be a fine powder.

これらの要求特性のうち本発明は特に(3)の要求
に応えるものであり、LiAlO2は多孔質板に成形
したとき、原材料の粉末が微細であればある程多
孔質板の細孔径が小さくなり、毛細管力による溶
融炭酸アルカリ(LiCO3―K2CO3)の保持性能が
向上する。
Among these required characteristics, the present invention particularly satisfies requirement (3). When LiAlO 2 is formed into a porous plate, the finer the raw material powder, the smaller the pore diameter of the porous plate. This improves the retention performance of molten alkali carbonate (LiCO 3 -K 2 CO 3 ) due to capillary force.

電解質タイルの製造方法としては、一般に酸化
アルミニウム(γ―Al2O3又はγ―Al2O3とα―
Al2O3との混合物)と炭酸アルカリ(LiCO3
K2CO3)とをボールミルで乾燥した後、これを
熱処理する方法(米国特許第3998939号明細書)、
あるいは酸化アルミニウムのスラリーに水酸化リ
チウム(LiOH)水溶液を添加し、湿式混合を行
なうことを特徴とする方法(米国特許第4115632
号明細書)などが知られている。
In general, electrolyte tiles are manufactured using aluminum oxide (γ-Al 2 O 3 or γ-Al 2 O 3 and α-
mixture with Al 2 O 3 ) and alkali carbonate (LiCO 3 -
K 2 CO 3 ) in a ball mill and then heat-treated (U.S. Pat. No. 3,998,939),
Alternatively, a method characterized by adding a lithium hydroxide (LiOH) aqueous solution to an aluminum oxide slurry and performing wet mixing (U.S. Pat. No. 4,115,632)
No. 1 specification), etc. are known.

一方別の試みとしてゼネラルエレクトリツク社
では、アルカリ塩化物を融剤とし、水酸化リチウ
ム1水和物(LiOH・H2O)と酸化アルミニウム
を反応物として用い、熱処理することにより
LiAlO2粉末を得る方法を開発している。これは
塩化物を用いたフラツクス(融剤)法であり、
“クロライド法”と呼ばれる(雑誌“J.
Electrochem.Soc.”127.No.8,1660(1980))。
On the other hand, in another attempt, General Electric Company used an alkali chloride as a flux, lithium hydroxide monohydrate (LiOH・H 2 O) and aluminum oxide as reactants, and heat-treated it.
We are developing a method to obtain LiAlO 2 powder. This is a flux method using chloride,
It is called the “chloride method” (magazine “J.
Electrochem.Soc.”127.No.8, 1660 (1980)).

“クロライド法”によるLiAlO2粉末製造方法
の特徴は水に可溶なアルカリ塩化物を融剤として
用い、水に不溶なLiAlO2生成後融剤を容易に除
去できるところにある。
The feature of the LiAlO 2 powder manufacturing method using the "chloride method" is that a water-soluble alkali chloride is used as a fluxing agent, and the fluxing agent can be easily removed after the water-insoluble LiAlO 2 is produced.

したがつて、電解質タイルの製造方法として、
予めLiAlO2粉末の多孔質体をつくつておき、こ
れに溶融炭酸アルカリを含浸させることにより電
解質タイルを製造するマトリツクス法を適用する
場合には、LiAlO2粉を前以て用意しておく必要
があるから、“クロライド法”は原料のLiAlO2
味が得られやすいという点で有利である。
Therefore, as a method for manufacturing electrolyte tiles,
When applying the matrix method of manufacturing electrolyte tiles by making a porous body of LiAlO 2 powder in advance and impregnating it with molten alkali carbonate, it is necessary to prepare the LiAlO 2 powder in advance. Therefore, the ``chloride method'' is advantageous in that it is easy to obtain the raw material LiAlO 2 alone.

次に“クロライド法”によるLiAlO2粉末の製
造手順を示す。反応物として水酸化リチウム1水
和物(LiOH・H2O)および酸化アルミニウム
(γ―Al2O3)を、融剤として塩化ナトリウム
(NaCl)及び塩化カリウム(KCl)を用意する。
これらの配合比は次のとおりである。
Next, the procedure for producing LiAlO 2 powder using the "chloride method" is shown. Lithium hydroxide monohydrate (LiOH.H 2 O) and aluminum oxide (γ-Al 2 O 3 ) are prepared as reactants, and sodium chloride (NaCl) and potassium chloride (KCl) are prepared as fluxes.
The mixing ratio of these is as follows.

反応物:融剤=45:55(重量比) 水酸化リチウム1水和物/酸化アルミニウム=
1.02(当量比) 塩化ナトリウム/塩化カリウム=1(モル比) これらの原料をボールミルで乾式粉砕混合し、
反応用試料を得、次にこの反応用試料を高純度ア
ルミナあるいは金製ボート中で昇温速度100℃/
hrにて400〜850℃に昇温させ、大気中で1時間加
熱保持した後室温まで冷却する。
Reactant: Fluxing agent = 45:55 (weight ratio) Lithium hydroxide monohydrate/aluminum oxide =
1.02 (equivalent ratio) Sodium chloride/potassium chloride = 1 (molar ratio) These raw materials were dry-pulverized and mixed in a ball mill,
A reaction sample is obtained, and then the reaction sample is heated at a heating rate of 100℃/100℃ in a high-purity alumina or gold boat.
The temperature is raised to 400 to 850°C at hr, heated and held in the atmosphere for 1 hour, and then cooled to room temperature.

以上の操作により得られる試料中には、生成し
たLiAlO2のほかにアルカリ塩化物および少量の
酸化リチウム(LiO2)が含まれているが、この
酸化リチウム(LiO2)は水酸化リチウムム1水
和物(LiOH・H2O)を過剰に加えたために生ず
るものである。そこで、LiAlO2のみを分離採取
するためにイオン交換水中に試料を入れ、先づ水
洗して水溶性成分を溶解させる。次にその溶液か
ら不溶物LiAlO2を分離させるために濾過を行な
う。なおNa+,K+,Cl-などの残存イオンを除去
するために、さらに充分に水洗し、最後に、得ら
れた不溶物を乾燥器中で乾燥する。クロライド法
では以上の操作を通してLiAlO2粉末をつくるこ
とができる。
The sample obtained by the above operation contains alkali chloride and a small amount of lithium oxide (LiO 2 ) in addition to the generated LiAlO 2 . This is caused by adding too much hydroxide (LiOH・H 2 O). Therefore, in order to separate and collect only LiAlO 2 , the sample is placed in ion-exchanged water and first washed with water to dissolve the water-soluble components. Next, filtration is performed to separate insoluble LiAlO 2 from the solution. Furthermore, in order to remove residual ions such as Na + , K + , Cl -, etc., it is further washed thoroughly with water, and finally, the obtained insoluble matter is dried in a dryer. In the chloride method, LiAlO 2 powder can be produced through the above operations.

こゝで融剤としてNaCl―KCl系(モル比1:
1)を用い、前述の製造過程により得られる
LiAlO2粉末の性状を、加熱温度と比表面積との
関係において、図面に曲線1で示す。図面の曲線
1からわかるように、加熱温度400〜850℃で得ら
れるLiAlO2粉末は5〜30m2/gの比表面積値を
有する。これらのLiAlO2について別途調査した
ところ、加熱温度400〜600℃のものはβ型単味、
600℃〜850℃のものはγ型単味の化合物形態を示
した。しかし、さらに微細かつ比表面積の大きい
LiAlO2粉末が得られるならば、これを基材とし
たタイルは、溶融した電解質の保持性能を、一層
向上させることができる。
Here, NaCl-KCl system (molar ratio 1:
1) using the above-mentioned manufacturing process.
The properties of LiAlO 2 powder are shown by curve 1 in the drawing in terms of the relationship between heating temperature and specific surface area. As can be seen from curve 1 of the drawing, the LiAlO 2 powder obtained at a heating temperature of 400-850°C has a specific surface area value of 5-30 m 2 /g. A separate investigation of these LiAlO 2 revealed that those heated at a heating temperature of 400 to 600°C were β-type single,
Those at 600°C to 850°C showed a γ-type simple compound form. However, it is finer and has a larger specific surface area.
If LiAlO 2 powder can be obtained, tiles based on it can further improve the ability to retain molten electrolyte.

したがつて、本発明の目的は、従来のNaCl―
KCl系を用いたフラツクス法に較べて、より微細
なLiAlO2粉末を生成することのできるLiAlO2
末の製造方法を提供することにある。
Therefore, the object of the present invention is to
The object of the present invention is to provide a method for producing LiAlO 2 powder that can produce finer LiAlO 2 powder than a flux method using a KCl system.

本発明によれば、従来のフラツクス法で用いる
NaCl―KCl系(融点660℃)より融点の低いLiCl
―KCl系(融点360℃)を使用することにより、
さらに微細なLiAlO2粉末を得ることができる。
According to the present invention, the conventional flux method uses
LiCl has a lower melting point than the NaCl-KCl system (melting point 660℃)
- By using KCl system (melting point 360℃),
Even finer LiAlO 2 powder can be obtained.

なお“クロライド法”は既に述べた如く
LiAlO2生成過程で融剤を用いており、かつその
融剤として水溶性のアルカリ塩化物を使用してい
る所に特徴があるがLiAlO2の生成は水酸化リチ
ウムと酸化アルミニウムの固体反応によつて実現
される。この際融剤は反応物同志の接触にもとづ
く固体反応の速度を高める役割を果している。本
発明における融剤として、低融点のLiCl―KCl系
(例えばモル比58:42、融点360℃)を用いた場合
従来法より微細なLiAlO2粉末が得られる正確な
理由については明らかでないが、本発明者らは、
以下のように推論している。
As already mentioned, the “chloride method”
It is characterized by the fact that a flux is used in the LiAlO 2 production process, and a water-soluble alkali chloride is used as the flux, but LiAlO 2 is produced by a solid-state reaction between lithium hydroxide and aluminum oxide. It will be realized. In this case, the flux plays the role of increasing the rate of solid reaction based on contact between reactants. Although the exact reason why a finer LiAlO 2 powder can be obtained than in the conventional method when a low melting point LiCl-KCl system (for example, molar ratio 58:42, melting point 360°C) is used as a flux in the present invention is not clear, The inventors
The reasoning is as follows.

即ち、融剤中に溶け込んでいる水酸化リチウム
と酸化アルミニウムとの反応によりLiAlO2の結
晶核が生じ、これが結晶成長の過程を経て
LiAlO2結晶が生成される。このとき低融点の融
剤を用いると、低温で上記反応が進行し、
LiAlO2結晶の成長速度が低く抑制されるため微
細なLiAlO2粉末が得られる。
In other words, the reaction between lithium hydroxide dissolved in the flux and aluminum oxide generates LiAlO 2 crystal nuclei, which undergo a crystal growth process.
LiAlO2 crystals are produced. If a low melting point flux is used at this time, the above reaction will proceed at low temperature,
Since the growth rate of LiAlO 2 crystals is suppressed to a low level, fine LiAlO 2 powder can be obtained.

以下実施例を示し本発明によるLiAlO2微細粉
末の製造分法について説明する。
EXAMPLES The method for producing LiAlO 2 fine powder according to the present invention will be described below with reference to Examples.

反応物として水酸化リチウム1水和物
(LiOH・H2O)及び酸化アルミニウム(γ―
Al2O3)を用意した。一方融剤として塩化リチウ
ム(LiCl)及び塩化カリウム(KCl)を用意し
た。これら原料の代表的な配合比は次のとおりで
あつた。
Lithium hydroxide monohydrate (LiOH・H 2 O) and aluminum oxide (γ-
Al 2 O 3 ) was prepared. On the other hand, lithium chloride (LiCl) and potassium chloride (KCl) were prepared as fluxing agents. The typical blending ratio of these raw materials was as follows.

反応物:融剤=45:55(重量比)水酸化リチウ
ム・1水和物/酸化アルミニウム=1.02(当量
比) 塩化リチウム:塩化カリウム=58:42(モル比) これらの物質をボールミルで17hr乾式粉砕混合
し反応用試料を得、次にこの反応用試料を高純度
アルミナあるいは金製ボート中で昇温速度100
℃/hrにて360〜900℃に昇温させ、大気中1時間
加熱保持した後室温まで冷却した。
Reactants: Fluxing agent = 45:55 (weight ratio) Lithium hydroxide monohydrate/aluminum oxide = 1.02 (equivalent ratio) Lithium chloride: Potassium chloride = 58:42 (molar ratio) These materials were heated in a ball mill for 17 hours. A reaction sample is obtained by dry grinding and mixing, and then this reaction sample is heated at a heating rate of 100 in a high-purity alumina or gold boat.
The temperature was raised to 360 to 900°C at a rate of 360 to 900°C, held in the air for 1 hour, and then cooled to room temperature.

以上の操作で得られた試料中には、生成した
LiAlO2のほかにアルカリ塩化物及び少量の酸化
リチウム(Li2O)が含まれているが、この酸化
リチウム(LiO2)は水酸化リチウム・1水和物
(LiOH・H2O)を過剰に加えたために生じたも
のである。そこでLiAlO2のみを分離採取するた
めに、先づ試料を水洗した。即ち、イオン交換水
中に試料を入れ、水溶性成分を溶解させた。次に
その溶液から不溶物(LiAlO2)を分離させるた
めに濾過を行なつた。なおNa+,K+,Cl-などの
残存イオンを除去するために、さらに濾紙上で充
分に水洗し、最後に分離された不溶物を乾燥器に
入れ150℃で乾燥した。比上の操作を通して
LiAlO2粉末が得られた。
In the sample obtained by the above procedure, the generated
In addition to LiAlO 2 , it contains alkali chloride and a small amount of lithium oxide (Li 2 O), but this lithium oxide (LiO 2 ) has an excess of lithium hydroxide monohydrate (LiOH・H 2 O). This was caused by the addition of Therefore, in order to separate and collect only LiAlO 2 , the sample was first washed with water. That is, a sample was placed in ion-exchanged water to dissolve water-soluble components. Next, filtration was performed to separate insoluble matter (LiAlO 2 ) from the solution. In order to remove residual ions such as Na + , K + and Cl - , the filter paper was further washed thoroughly with water, and finally the separated insoluble matter was placed in a dryer and dried at 150°C. through figurative manipulation
LiAlO2 powder was obtained.

次に本発明の製造方法により生成される
LiAlO2粉末の性状について、加熱温度と比表面
積の関係を図面の曲線2を参照して説明する。
Next, produced by the production method of the present invention
Regarding the properties of LiAlO 2 powder, the relationship between heating temperature and specific surface area will be explained with reference to curve 2 in the drawing.

図面の曲線2から加熱温度360〜900℃で得られ
るLiAlO2粉末は10〜80m2/gの比表面積を有す
ることがわかる。360〜550℃のものはβ型単味、
700〜900℃のものはγ型単味の化合物形態を示し
た。即ち本発明の方法により得られるLiAlO2
末は、曲線1で示した従来技術により得られる
LiAlO2粉末に較べて比表面積値が大きい。
It can be seen from curve 2 in the drawing that the LiAlO 2 powder obtained at a heating temperature of 360 to 900°C has a specific surface area of 10 to 80 m 2 /g. Those at 360-550℃ are β-type simple,
Those at 700-900°C showed a simple γ-type compound form. That is, the LiAlO 2 powder obtained by the method of the present invention is the same as that obtained by the conventional technique shown by curve 1.
The specific surface area value is larger than that of LiAlO 2 powder.

なお溶融炭酸塩燃料電池の作動時には、タイル
の電解質保持材は、作動温度条件に加えて、時間
の経過とともに、最終的にはγ型に移転するもの
と推察される。しかしながら、タイル作製時の基
材として用いるLiAlO2粉末の化合物形態が、β
型あるいはγ型のいずれを用いるのが最適である
かは不明であり、少くとも出発原料としては微細
な粉末であることが望ましく、本発明の方法によ
れば、β型及びγ型のLiAlO2の比表面積の大き
い微細な粉末をつくることができる。
It is assumed that during operation of a molten carbonate fuel cell, the electrolyte retaining material of the tile will eventually shift to the γ type over time, in addition to the operating temperature conditions. However, the compound form of LiAlO 2 powder used as a base material during tile production is β
It is unclear whether it is best to use the LiAlO 2 type or the γ type, and it is desirable that the starting material be at least a fine powder, and according to the method of the present invention, the β type and γ type LiAlO 2 It is possible to create fine powder with a large specific surface area.

【図面の簡単な説明】[Brief explanation of drawings]

図面は従来方法および本発明方法における加熱
温度と、得られたLiAlO2粉末の比表面積との関
係を表わす線図である。
The drawing is a diagram showing the relationship between the heating temperature and the specific surface area of the obtained LiAlO 2 powder in the conventional method and the method of the present invention.

Claims (1)

【特許請求の範囲】 1 水酸化リチウム(LiOH)と酸化アルミニウ
ム(Al2O3)の固体反応に融剤として塩化リチウ
ム(LiCl)―塩化カリウム(KCl)系のアルカリ
塩化物を用いることを特徴とする微細なリチウム
アルミネート(LiAlO2)粉末の製造方法。 2 特許請求の範囲第1項記載の方法において、
反応温度が360℃以上550℃以下の範囲であること
を特徴とするβ型の微細なLiAlO2粉末の製造方
法。 3 特許請求の範囲第1項記載の方法において、
反応温度が700℃以上850℃以下の範囲であること
を特徴とするγ型の微細なLiAlO2粉末の製造方
法。
[Claims] 1. The invention is characterized by using a lithium chloride (LiCl)-potassium chloride (KCl) based alkali chloride as a flux in the solid-state reaction between lithium hydroxide (LiOH) and aluminum oxide (Al 2 O 3 ). A method for producing fine lithium aluminate (LiAlO 2 ) powder. 2. In the method described in claim 1,
A method for producing fine β-type LiAlO 2 powder, characterized in that the reaction temperature is in the range of 360°C or higher and 550°C or lower. 3. In the method described in claim 1,
A method for producing fine γ-type LiAlO 2 powder, characterized in that the reaction temperature is in the range of 700°C or higher and 850°C or lower.
JP56141470A 1981-09-08 1981-09-08 Manufacture of lithium aluminate powder Granted JPS5845113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56141470A JPS5845113A (en) 1981-09-08 1981-09-08 Manufacture of lithium aluminate powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56141470A JPS5845113A (en) 1981-09-08 1981-09-08 Manufacture of lithium aluminate powder

Publications (2)

Publication Number Publication Date
JPS5845113A JPS5845113A (en) 1983-03-16
JPS6320766B2 true JPS6320766B2 (en) 1988-04-30

Family

ID=15292628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56141470A Granted JPS5845113A (en) 1981-09-08 1981-09-08 Manufacture of lithium aluminate powder

Country Status (1)

Country Link
JP (1) JPS5845113A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217702A (en) * 1991-11-19 1993-06-08 Fmc Corporation Preparation of a high surface area gamma lithium aluminate

Also Published As

Publication number Publication date
JPS5845113A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
US6423294B2 (en) Lithium manganese oxide spinel compound and method of preparing same
US4115632A (en) Method of preparing electrolyte for use in fuel cells
US4512905A (en) Method of making sodium zirconium silico-phosphates
US6271172B2 (en) Method for manufacturing a carbon dioxide gas absorbent
JP2001106534A (en) Multiple metallic hydroxide as raw material of active material for nonaqueous electrolyte liquid battery and lithium multiple metallic oxide for the active material
JPH0258744B2 (en)
US5827495A (en) Molten carbonate fuel cell and method of manufacturing retaining material for electrolyte body of molten carbonate fuel cell
US5356731A (en) Molten cabonate fuel cell with sintered LiCoO2 electrode
JPH0746610B2 (en) Molten carbonate fuel cell positive electrode and method for producing the same
US4308299A (en) Lithiated nickel oxide
US4164557A (en) Process for the production of β-lithium aluminate and needle-shaped product
JPS6320766B2 (en)
JP4312286B2 (en) Method for producing α-lithium aluminate
Arendt et al. Alternate synthesis of electrolyte matrix for molten carbonate fuel cells
JP3601188B2 (en) Method for producing γ-lithium aluminate powder
JPH075299B2 (en) Method for producing lithium aluminum fiber
JPH02243511A (en) Production of highly crystalline lithium aluminate
JP3101708B2 (en) Method for producing lithium manganate thin film
JP3786456B2 (en) Lithium aluminate and method for producing the same
JPS63151615A (en) Production of lithium aluminate fiber
EP0499639A1 (en) Method of producing porous lithium aluminate fiber and coarse particle
JP3786457B2 (en) Method for producing porous lithium aluminate
JPS5842178A (en) Electrolyte-holding member
JP3367106B2 (en) Method for producing γ-lithium aluminate fiber
US6290928B1 (en) Gamma lithium aluminate product and process of making