JPS63151615A - Production of lithium aluminate fiber - Google Patents

Production of lithium aluminate fiber

Info

Publication number
JPS63151615A
JPS63151615A JP61299186A JP29918686A JPS63151615A JP S63151615 A JPS63151615 A JP S63151615A JP 61299186 A JP61299186 A JP 61299186A JP 29918686 A JP29918686 A JP 29918686A JP S63151615 A JPS63151615 A JP S63151615A
Authority
JP
Japan
Prior art keywords
fibers
lithium aluminate
lithium
holding material
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61299186A
Other languages
Japanese (ja)
Inventor
Akira Watanabe
明 渡辺
Yoshimitsu Takeuchi
武内 祥光
Koji Saeki
佐伯 剛二
Masashi Fujiwara
藤原 政志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kyushu Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd filed Critical Kyushu Refractories Co Ltd
Priority to JP61299186A priority Critical patent/JPS63151615A/en
Publication of JPS63151615A publication Critical patent/JPS63151615A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Fibers (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain the titled fibers, having a long fiber length and suitable as an electrolytic holding material in molten salt fuel cells, by blending gamma-alumina with lithium hydroxide at a specific molar ratio and heat-treating the resultant blend while limiting heating temperature and time. CONSTITUTION:1mol gamma-alumina is blended with 5-12mol lithium hydroxide and the resultant raw material is then heat-treated at 400-800 deg.C temperature for 15min-50hr to afford lithium aluminate fibers. Thereby the aimed lithium aluminate fibers having a long fiber length and high aspect ratio can be obtained without requiring an alkali metal compound as a flux. When the obtained fibers are used as an electrolyte holding material in molten salt fuel cells, the electrolyte holding material having great entangling of fibers and consequent high strength even as a porous sintered material can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融塩燃料電池の電解質保持材として最適なリ
チウムアルミネート繊維の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing lithium aluminate fibers that are most suitable as an electrolyte holding material for molten salt fuel cells.

〔従来の技術とその問題点〕[Conventional technology and its problems]

炭酸塩の溶融物を電解質として用いる燃料電池の電解質
保持材として電解質に対する安定性の高いリチウムアル
ミネートが注目されている。
Lithium aluminate, which has high stability against electrolytes, is attracting attention as an electrolyte holding material for fuel cells that use a molten carbonate as an electrolyte.

このリチウムアルミネートは通常多孔質の焼結体として
使用されるが、電解質の充填量、イオン透過性、電子伝
導性および強度を十分に満足させる多孔体を得るには、
従来の粒状のリチウムアルミネートを焼結させたもので
は不十分である。
This lithium aluminate is usually used as a porous sintered body, but in order to obtain a porous body that satisfies the electrolyte filling amount, ion permeability, electronic conductivity, and strength.
Conventional sintered granular lithium aluminate is insufficient.

リチウムアルミネートにはα、β、γ型の3種の結晶形
態が知られているが、このうちα型とγ型は粒状であり
、β型に繊維状のものが知られていた。最近γ型の繊維
状のものの合成が発表されている。この繊維状のリチウ
ムアルミネートを用いれば、繊維の絡み合いにより多孔
質であっても焼結体の強度は飛躍的に増大するはずであ
る。
Three types of crystal forms are known for lithium aluminate: α, β, and γ types. Among these, the α type and γ type are granular, and the β type is known to be fibrous. Recently, the synthesis of γ-type fibrous materials has been announced. If this fibrous lithium aluminate is used, the strength of the sintered body should be dramatically increased even if it is porous due to the entanglement of the fibers.

特開昭60−65719号公報で開示されている製造方
法によれば、酸化アルミニウムあるいはその水和物と水
酸化リチウムから塩化リチウム−塩化カリウム系の融剤
を使用してリチウムアルミネートの繊維状のものを得て
いるが、このリチウムアルミネートは繊維状であっても
繊維長は4μm程度であり、繊維としては短かすぎて多
孔体の強度の向上には十分には寄与しないものであった
According to the manufacturing method disclosed in JP-A-60-65719, fibrous lithium aluminate is produced from aluminum oxide or its hydrate and lithium hydroxide using a lithium chloride-potassium chloride flux. However, even if this lithium aluminate is in the form of fibers, the fiber length is about 4 μm, which is too short to be a fiber and does not contribute enough to improving the strength of the porous body. Ta.

〔問題を解決するための手段〕[Means to solve the problem]

本発明のリチウムアルミネート繊維の製造方法では特別
な融剤を用いず、T−アルミナ1モルに対し水酸化リチ
ウム5〜12モルの割合で混合した原料を400〜so
o ”cの温度で15分〜50時間加熱するだけで、繊
維長が10〜20μmと従来知られているよりはかなり
長いリチウムアルミネート繊維が得られるものである。
The method for producing lithium aluminate fibers of the present invention does not use any special fluxing agent, but uses raw materials mixed at a ratio of 5 to 12 moles of lithium hydroxide to 1 mole of T-alumina at a concentration of 400 to so.
Lithium aluminate fibers having a fiber length of 10 to 20 μm, which is considerably longer than conventionally known, can be obtained by simply heating at a temperature of 0 ”c for 15 minutes to 50 hours.

〔発明の構成および作用〕[Structure and operation of the invention]

本発明に用いられるアルミナはγ型であり、例えば水酸
化アルミニウムの沈澱を1000℃以゛下の温度で仮焼
したものが用いられる。
The alumina used in the present invention is of the γ type, and for example, aluminum hydroxide precipitate calcined at a temperature of 1000° C. or lower is used.

水酸化リチウムは無水物(LiOH)でも水和物(Li
OH−H2O)でもよいが、特に水和物を用いると好結
果が得られる。その使用量はアルミナ1モルに対し水酸
化リチウムを5〜12モル、好ましくは6〜10モルと
する。本発明ではこの水酸化リチウムを多量に使用する
点に特徴があり、これによってリチウムアルミネートの
長い繊維が得られるのである。この水酸化リチウムの割
合が5モル未満ではリチウムアルミネート繊維とならず
、また12モル以上では長さは変わらず、繊維が太(な
り、アスペクト比が低下して電解質保持材として使用し
た際に十分な補強効果が得られなくなる。
Lithium hydroxide is anhydrous (LiOH) and hydrated (Li
OH-H2O) may be used, but particularly good results are obtained when a hydrate is used. The amount of lithium hydroxide used is 5 to 12 moles, preferably 6 to 10 moles, per mole of alumina. The present invention is characterized by the use of a large amount of lithium hydroxide, which allows long fibers of lithium aluminate to be obtained. If the proportion of lithium hydroxide is less than 5 moles, lithium aluminate fibers will not be formed, and if the proportion is more than 12 moles, the length will not change, the fibers will become thick (and the aspect ratio will decrease, and when used as an electrolyte holding material) A sufficient reinforcing effect cannot be obtained.

秤量したγ−アルミナと水酸化リチウムを十分混合、混
練後加圧成形する。なお、混練したま\でも、あるいは
原料混合物に水を加えてペースト状としたものを用いて
もよい。これを電気炉などの適当な加熱装置中で、40
0〜800℃、好ましくは500〜700℃の温度で1
5分〜50時間、好ましくは1〜20時間加熱して繊維
を発達させる。この加熱温度が400℃未満では繊維と
ならず、800℃以上ではリチウムアルミネートが塊状
となりいずれも好ましくない。また、加熱時間が15分
未満では時間が短かすぎて繊維が発達せず、逆に50時
間以上となると次第に生成した繊維が融着して太(なっ
てしまう。
The weighed γ-alumina and lithium hydroxide are thoroughly mixed, kneaded, and then pressure-molded. Note that the mixture may be used either as it is kneaded or as a paste by adding water to the raw material mixture. Heat this in a suitable heating device such as an electric furnace for 40 minutes.
1 at a temperature of 0 to 800°C, preferably 500 to 700°C.
Fibers are developed by heating for 5 minutes to 50 hours, preferably 1 to 20 hours. If the heating temperature is lower than 400°C, the fibers will not form, and if the heating temperature is higher than 800°C, the lithium aluminate will become lumpy, which is not preferable. Furthermore, if the heating time is less than 15 minutes, the time is too short and the fibers will not develop, and if the heating time is more than 50 hours, the fibers formed will gradually fuse and become thick.

こうしてリチウムアルミネートとリチウム化合物の混合
物が得られるが、冷却後水で洗浄することにより長さ1
0〜20μm1直径0.7〜1μmのリチウムアルミネ
ート繊維を得ることができる。
In this way, a mixture of lithium aluminate and lithium compound is obtained, and by washing with water after cooling, the mixture has a length of 1
Lithium aluminate fibers having a diameter of 0 to 20 μm and a diameter of 0.7 to 1 μm can be obtained.

〔実施例〕〔Example〕

第1表に示す配合を十分混合、混練後圧線成形し、表に
示した温度、時間で電気炉中で焼成しリチウムアルミネ
ート繊維を得た。得られた繊維はすべてβ型であり、そ
の繊維長、繊維径およびアスペクト比の測定値を第1表
に示す。
The formulations shown in Table 1 were thoroughly mixed and kneaded, then wire-formed and fired in an electric furnace at the temperature and time shown in the table to obtain lithium aluminate fibers. All of the obtained fibers were of the β type, and the measured values of the fiber length, fiber diameter, and aspect ratio are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明のγ−アルミナと水酸化リチウムを用いたリチウ
ムアルミネート繊維の製造方法によれば第1表にみられ
るように、従来の製造方法のように融剤としてのアルカ
リ金属化合物を必要とせずに、単に使用する水酸化リチ
ウムの量を多くしただけで繊維長の大きい、アスペクト
比の大きいリチウムアルミネート繊維を得ることができ
た。
According to the method for producing lithium aluminate fibers using γ-alumina and lithium hydroxide of the present invention, as shown in Table 1, there is no need for an alkali metal compound as a flux unlike in the conventional production method. In addition, it was possible to obtain lithium aluminate fibers with a large fiber length and a large aspect ratio simply by increasing the amount of lithium hydroxide used.

この繊維は溶融塩燃料電池の電解質保持材として使用し
た場合に、従来知られているリチウムアルミネート繊維
より繊維が長く、しかもアスペクト比も大であるので、
繊維の絡み合いが太き(、従って、多孔質の焼結体とし
ても強度の大きい電解質保持材を得ることができるもの
である。
When this fiber is used as an electrolyte holding material in molten salt fuel cells, it has longer fibers and a larger aspect ratio than conventionally known lithium aluminate fibers, so
The entanglement of fibers is thick (therefore, an electrolyte holding material with high strength can be obtained even as a porous sintered body).

手続補正書 昭和63年1月26日Procedural amendment January 26, 1986

Claims (1)

【特許請求の範囲】[Claims] γ−アルミナ1モルに対し水酸化リチウム5〜12モル
の割合で混合した原料を400〜800℃の温度で15
分〜50時間加熱することを特徴とするリチウムアルミ
ネート繊維の製造方法。
Raw materials mixed at a ratio of 5 to 12 moles of lithium hydroxide to 1 mole of γ-alumina are heated at a temperature of 400 to 800°C for 15 minutes.
A method for producing lithium aluminate fibers, the method comprising heating for 50 minutes to 50 hours.
JP61299186A 1986-12-15 1986-12-15 Production of lithium aluminate fiber Pending JPS63151615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61299186A JPS63151615A (en) 1986-12-15 1986-12-15 Production of lithium aluminate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61299186A JPS63151615A (en) 1986-12-15 1986-12-15 Production of lithium aluminate fiber

Publications (1)

Publication Number Publication Date
JPS63151615A true JPS63151615A (en) 1988-06-24

Family

ID=17869255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61299186A Pending JPS63151615A (en) 1986-12-15 1986-12-15 Production of lithium aluminate fiber

Country Status (1)

Country Link
JP (1) JPS63151615A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271911A (en) * 1989-04-12 1990-11-06 Ishikawajima Harima Heavy Ind Co Ltd Production of porous lithium aluminate fiber
US5827495A (en) * 1995-10-03 1998-10-27 Kabushiki Kaisha Toshiba Molten carbonate fuel cell and method of manufacturing retaining material for electrolyte body of molten carbonate fuel cell
US6340454B1 (en) * 1998-12-28 2002-01-22 Nippon Chemical Industries Co., Ltd. α-Lithium aluminate and method of manufacturing the same, and electrolyte support material of molten carbonate fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271911A (en) * 1989-04-12 1990-11-06 Ishikawajima Harima Heavy Ind Co Ltd Production of porous lithium aluminate fiber
WO1992004496A1 (en) * 1989-04-12 1992-03-19 Ishikawajima-Harima Heavy Industries Co., Ltd. Method of producing porous lithium aluminate fiber and coarse particle
US5827495A (en) * 1995-10-03 1998-10-27 Kabushiki Kaisha Toshiba Molten carbonate fuel cell and method of manufacturing retaining material for electrolyte body of molten carbonate fuel cell
US6037076A (en) * 1995-10-03 2000-03-14 Kabushiki Kaisha Toshiba Molten carbonate fuel cell and method of manufacturing retaining material for electrolyte body of molten carbonate fuel cell
US6340454B1 (en) * 1998-12-28 2002-01-22 Nippon Chemical Industries Co., Ltd. α-Lithium aluminate and method of manufacturing the same, and electrolyte support material of molten carbonate fuel cell

Similar Documents

Publication Publication Date Title
RU2687730C1 (en) Ion-conducting oxide with garnet structure and method of producing sintered body of oxide electrolyte
JP7486580B2 (en) Positive electrode material and its manufacturing method and use
JP2014241288A (en) Ion conductor having garnet structure
JP2000344520A (en) Production of flaky titanate
JPH0258744B2 (en)
JP2016006005A (en) Method for manufacturing lithium-containing composite oxide powder
JPH0512320B2 (en)
JPS63151615A (en) Production of lithium aluminate fiber
US5492871A (en) Superstoichiometric MgAl2 O4 spinel and use thereof, and process for the synthesis thereof
CN109461932A (en) A kind of high capacity sodium-ion battery positive material and preparation method thereof
JPS63151614A (en) Production of lithium aluminate fiber
JPH075300B2 (en) Method for producing lithium aluminate fiber
JP2014169219A (en) METHOD FOR PRODUCING α-LITHIUM ALUMINATE
JPH0130766B2 (en)
JP3533439B2 (en) Zirconia-based solid electrolyte having high conductivity and method for producing the same
JPS6011228A (en) Heat-resistant heat-insulating material of octotitanate
JPH0441718A (en) Gamma-lithium aluminate fiber
KR20240034938A (en) Magnesium oxide powder and method for manufacturing the same
Chu Properties and evaluation of HPS lamp seals: materials and structures
US6117595A (en) High sodium ion conducting inorganic composite solid electrolyte and method for production thereof
JP2000226251A (en) Production of beta-alumina ceramic
JP2569205B2 (en) Raw material powder for barium titanate-based semiconductor porcelain composition and porcelain composition comprising the same
JPS63112422A (en) Synthesis of li2sno3
KR20240065261A (en) Sulfide-based solid electrolyte and method for producing the same
JPS603870A (en) Molten carbonate fuel cell