JPS63207133A - Method for processing semiconductor substrate - Google Patents

Method for processing semiconductor substrate

Info

Publication number
JPS63207133A
JPS63207133A JP4070987A JP4070987A JPS63207133A JP S63207133 A JPS63207133 A JP S63207133A JP 4070987 A JP4070987 A JP 4070987A JP 4070987 A JP4070987 A JP 4070987A JP S63207133 A JPS63207133 A JP S63207133A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
substrate
fine particles
processing
hydrofluoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4070987A
Other languages
Japanese (ja)
Inventor
Mikio Tsuji
幹生 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4070987A priority Critical patent/JPS63207133A/en
Publication of JPS63207133A publication Critical patent/JPS63207133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Abstract

PURPOSE:To reduce fine particles adhered to a semiconductor substrate by using an ultrasonic waves simultaneously when the substrate is treated with fluoric acid or a mixture solution containing the fluoric acid. CONSTITUTION:When a semiconductor substrate is dipped in fluoric acid or mixture solution containing the fluoric acid to process the substrate, it can prevent fine particles from being adhered to the substrate surface during processing by using in combination with an ultrasonic wave. That is, it is, for example, processed for 5 min. by using a processing method using in combination with an ultrasonic wave by generating the wave of 28kHz, 100W in a processing solution for dipping the substrate, and the substrate is thereafter rinsed with pure water for 10min. Thus, the adhered particles on the substrate are reduced to maintain it in a clean state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体基板の処理方法に関し、特に半導体基
板を弗酸あるいは弗酸を含む混合液中に浸漬して処理を
行なうディップ式と呼ばれる半導体基板のエツチング処
理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for processing a semiconductor substrate, and in particular a method called a dip method in which a semiconductor substrate is immersed in hydrofluoric acid or a mixed solution containing hydrofluoric acid. The present invention relates to a method for etching a semiconductor substrate.

〔従来の技術〕[Conventional technology]

従来のこの種の半導体基板の処理方法では、半導体基板
は処理工程中、処理液の中に放置されているかもしくは
揺動されているだけであった。
In conventional methods for processing semiconductor substrates of this type, the semiconductor substrate is left in the processing solution or simply shaken during the processing process.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した従来の半導体基板の処理方法で
は、弗酸あるいは弗酸を含む混合液中に半導体基板を浸
漬することによって露出した半導体単結晶面は非常に活
性化され、この露出した半導体単結晶面に薬品中や装置
内壁あるいは治具等からの微粒子が付着しやすくなる。
However, in the conventional semiconductor substrate processing method described above, the exposed semiconductor single crystal plane is highly activated by immersing the semiconductor substrate in hydrofluoric acid or a mixed solution containing hydrofluoric acid, and the exposed semiconductor single crystal surface is highly activated. Fine particles from chemicals, equipment inner walls, jigs, etc. tend to adhere to the surface.

また、処理中の反応により生成される酸化シリコン(S
iO□)等の反応生成物の付着も起こりやすくなる。こ
れら処理中に半導体基板表面に付着する微粒子は一度乾
燥してしまうと容易には除去できなくなる。
In addition, silicon oxide (S) produced by reactions during processing
Reaction products such as iO□) also tend to adhere. Once the fine particles that adhere to the surface of the semiconductor substrate during these processes are dried, they cannot be easily removed.

この付着微粒子を除去する方法として、弗酸あるいは弗
酸を含む混合液による処理後にアルカリ系溶液による処
理工程を追加する方法等が採用されている。しか°しな
がら、通常の半導体装置製造工程において、このような
弗酸系処理液を用いる工程は20乃至30工程にま及ぶ
ため、工期の短縮や量産性の点からこのようなアルカリ
土類金属よる処理工程を追加するには問題がある。また
、アルカリ系溶液による処理工程を追加しても付着微粒
子は完全には除去できず半導体基板表面上に残るもの、
がある。近年、半導体素子の集積度か増すにつれて、半
導体基板上に付着する微粒子が、半導体素子の特性1歩
留りに与える影響は益々重大になってきている。一般に
設計ルールの10分の1程度の大きさの微粒子(設計ル
ール1μmの場合には直径0.1μmの微粒子)が存在
すると、半導体装置製造上問題があると言われている。
As a method for removing these adhered fine particles, a method has been adopted in which a treatment step with an alkaline solution is added after treatment with hydrofluoric acid or a mixture containing hydrofluoric acid. However, in the normal semiconductor device manufacturing process, there are 20 to 30 steps using such a hydrofluoric acid-based treatment solution. There are problems with adding additional processing steps. In addition, even if a treatment process using an alkaline solution is added, the attached fine particles cannot be completely removed and remain on the semiconductor substrate surface.
There is. In recent years, as the degree of integration of semiconductor devices has increased, the influence of fine particles adhering on semiconductor substrates on the yield per characteristic of semiconductor devices has become increasingly important. Generally, it is said that the presence of fine particles having a size of about one-tenth of the design rule (fine particles having a diameter of 0.1 μm in the case of a design rule of 1 μm) causes problems in the manufacture of semiconductor devices.

これら微粒子が与える影響としては、例えばりソゲラフ
イエ程においてはパターン欠陥の原因となる。また、拡
散、酸化工程においては、異常拡散や酸化膜厚異常の原
因となったりする。特に、集積度の増大に伴ない、ゲー
ト酸化膜や容量絶縁膜が薄くなると半導体基板上の微粒
子が原因となり、酸化膜、絶縁膜にいわゆるピンホール
と呼ばれる微少な欠陥が形成され、絶縁耐圧を著しく劣
化させる。このために半導体素子の特性を劣化させ、歩
留りの低下9品質の低下を招くという問題がある。
As for the influence of these fine particles, for example, they cause pattern defects in the case of sockeye. Furthermore, in the diffusion and oxidation steps, it may cause abnormal diffusion and abnormal oxide film thickness. In particular, as gate oxide films and capacitor insulating films become thinner as the degree of integration increases, fine particles on the semiconductor substrate can cause minute defects called pinholes to form in the oxide films and insulating films, lowering the dielectric strength. cause significant deterioration. For this reason, there is a problem that the characteristics of the semiconductor element are deteriorated, resulting in a decrease in yield and quality.

上述した従来の半導体基板の処理方法に対し、本発明は
、超音波を併用して、弗酸あるいは弗酸を含む混合液中
において半導体基板の処理を行なうという独創的内容を
有する。即ち超音波を併用することによって処理中にお
ける半導体基板表面への微粒子の付着を防ぐことかでき
る。
In contrast to the conventional semiconductor substrate processing method described above, the present invention has an original content in that a semiconductor substrate is processed in hydrofluoric acid or a mixed solution containing hydrofluoric acid using ultrasonic waves in combination. That is, by using ultrasonic waves in combination, it is possible to prevent fine particles from adhering to the surface of the semiconductor substrate during processing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、半導体基板を弗酸あるいは弗酸を含む混合液
に浸漬する半導体基板の処理方法において、超音波を併
用することを特徴とする。
The present invention is characterized in that ultrasonic waves are used in conjunction with a semiconductor substrate processing method in which the semiconductor substrate is immersed in hydrofluoric acid or a mixed solution containing hydrofluoric acid.

〔実施例〕〔Example〕

次に、図面を参照して本発明について説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例により処理した半導体基板表
面での付着微粒子数の測定結果を示す。
FIG. 1 shows the results of measuring the number of fine particles adhering to the surface of a semiconductor substrate treated according to an embodiment of the present invention.

第1図に結果を示す実施例では、半導体基板を浸漬する
処理液中に28kHz、100Wの超音波を発生させて
超音波を併用した処理方法を用いて5分間処理した。こ
の後に半導体基板を純水により10分間リンスを行なっ
た後、半導体表面に付着した微粒子数をレーザ式微粒子
計測装置を用いて測定した。用いた処理液は希弗酸(D
HF)及び弗酸−弗化アンモニウム混合液(’BHF)
である。なお、第1図に超音波を用いない従来の半導体
基板の処理方法による結果を示す。
In the example whose results are shown in FIG. 1, the semiconductor substrate was treated for 5 minutes using a processing method that used ultrasonic waves in combination with 28 kHz and 100 W ultrasonic waves generated in the processing liquid in which the semiconductor substrate was immersed. Thereafter, the semiconductor substrate was rinsed with pure water for 10 minutes, and then the number of particles adhering to the semiconductor surface was measured using a laser particle counting device. The treatment solution used was dilute hydrofluoric acid (D
HF) and hydrofluoric acid-ammonium fluoride mixture ('BHF)
It is. Note that FIG. 1 shows the results of a conventional semiconductor substrate processing method that does not use ultrasonic waves.

従来法の場合、処理後に半導体基板表面に付着している
微粒子数は、DHF液の場合は半導体基板1枚当り約6
0個であり、BHF液の場合は約800個であった。こ
の付着微粒子数の差は処理液中に最初から存在した微粒
子数の差によるものであり、DHF液では1ml当り約
10個、BHF液では1ml!当り約200個であった
。このように、従来法では処理液中の微粒子数が多けれ
ば、半導体基板表面に付着する微粒子も多くなる。
In the conventional method, the number of particles attached to the semiconductor substrate surface after processing is approximately 6 per semiconductor substrate in the case of DHF liquid.
In the case of BHF liquid, it was about 800 pieces. This difference in the number of attached fine particles is due to the difference in the number of fine particles that were originally present in the processing liquid, with the DHF liquid having approximately 10 particles per ml and the BHF liquid having 1 ml! It was about 200 pieces per hit. As described above, in the conventional method, if the number of fine particles in the processing liquid is large, the number of fine particles that adhere to the surface of the semiconductor substrate also increases.

これに対して本発明の場合、DHF液を用いてもBHF
液を用いても半導体基板表面に付着する微粒子数は共に
10個以下であり、処理を行なわない場合と同じ程度の
付着微粒子数となっている。これは、超音波を併用する
ことにより、半導体基板表面への微粒子の付着が妨げら
れると同時に、半導体基板表面に微粒子が付着したとし
ても超音波のキャビテーション効果により、微粒子は直
ちに半導体基板表面から取り除かれるためである。
On the other hand, in the case of the present invention, even if DHF liquid is used, BHF
Even when a liquid is used, the number of particles adhering to the surface of the semiconductor substrate is 10 or less in both cases, which is about the same number as when no treatment is performed. This is because by using ultrasound in combination, the adhesion of fine particles to the semiconductor substrate surface is prevented, and at the same time, even if fine particles do adhere to the semiconductor substrate surface, they are immediately removed from the semiconductor substrate surface due to the cavitation effect of the ultrasonic waves. This is for the purpose of

このように、本実施例により、半導体基板表面は付着微
粒子が少なく清浄な状態に保たれる。
In this way, according to this embodiment, the surface of the semiconductor substrate is kept clean with few attached particles.

なお、超音波の周波数及び出力は本質的なものではない
Note that the frequency and output of the ultrasonic waves are not essential.

第2図の下のグラフは本発明をMO3型ダイオードが設
けられた半導体基板に応用した場合のゲート酸化膜の破
壊電圧の測定結果を示す。図において横軸は破壊電界強
度であり、縦軸は度数を示す。測定に用いた試料のゲー
ト酸化膜厚は約120人であり、ケート酸化膜形成工程
以前の酸化膜エツチング工程をBHF液により処理し、
処理中28kHz、100Wの超音波を併用した。また
第2図上のグラフに処理中、資料を揺動して行った従来
の半導体基板の処理方法による結果を示す。
The lower graph in FIG. 2 shows the measurement results of the breakdown voltage of the gate oxide film when the present invention is applied to a semiconductor substrate provided with an MO3 type diode. In the figure, the horizontal axis represents the breakdown electric field strength, and the vertical axis represents the frequency. The gate oxide film thickness of the sample used for measurement was approximately 120 mm, and the oxide film etching process before the gate oxide film formation process was processed with BHF solution.
Ultrasonic waves of 28 kHz and 100 W were used during the treatment. The graph in the upper part of FIG. 2 shows the results of a conventional semiconductor substrate processing method in which the material was shaken during processing.

従来法の場合、ゲート酸化膜のピンホールに由来すると
考えられる初期不良が多発しており、破壊電界強度分布
も低電界側に分布している。これに対して本発明を応用
した場合、初期不良は大幅に減少しており、破壊電界強
度分布も良好であり、大部分の試料で8 M V / 
cm以上の電界強度を保っている。
In the case of the conventional method, initial failures that are thought to be caused by pinholes in the gate oxide film occur frequently, and the breakdown electric field strength distribution is also distributed on the low electric field side. On the other hand, when the present invention is applied, the initial defects are significantly reduced, and the breakdown electric field strength distribution is also good, with most of the samples reaching 8 M V /
The electric field strength is maintained at over cm.

ゲート酸化膜形成時に半導体基板表面に微粒子か付着し
ていると、形成されたゲート酸化膜にピンホールが発生
したり、酸化膜厚が不均一になるためにゲート酸化膜の
絶縁破壊が起こりやすくなる。このことから、本発明の
場合、従来法と比較して、より付着微粒子が少なくなっ
ていることが分る。
If fine particles adhere to the surface of the semiconductor substrate during gate oxide film formation, pinholes may occur in the formed gate oxide film, and dielectric breakdown of the gate oxide film may occur due to uneven oxide film thickness. Become. From this, it can be seen that in the case of the present invention, there are fewer adhered fine particles than in the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体基板を弗酸あるい
は弗酸を含む混合液によって処理を行なう工程において
、超音波を併用することにより、半導体基板表面に付着
する微粒子を減少させることができ、高品質、高歩留り
の半導体装置を製造することかできる効果がある。
As explained above, the present invention makes it possible to reduce fine particles adhering to the surface of a semiconductor substrate by using ultrasonic waves in the process of treating a semiconductor substrate with hydrofluoric acid or a mixed solution containing hydrofluoric acid. This has the advantage that high-quality, high-yield semiconductor devices can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例および従来の半導体基板の処
理方法により処理した半導体基板表面での付着微粒子数
の測定結果を示すグラフ、第2図はMO3型ダイオード
が設けられた半導体基板に本発明および従来の処理方法
を応用した場合の、ゲート酸化膜の破壊電圧の測定結果
を示すグラフである。 代理人 弁理士 内 原  晋、′2.−、?にべ深 \−一 処理riL       DHE          
BHF表1fJ 石良り1電Jl’4’1ilFi   (Mv/ctn
)訃2習
FIG. 1 is a graph showing the measurement results of the number of particles attached to the surface of a semiconductor substrate processed by an embodiment of the present invention and a conventional semiconductor substrate processing method, and FIG. 2 is a graph showing measurement results of breakdown voltage of a gate oxide film when the present invention and a conventional processing method are applied. Agent: Susumu Uchihara, patent attorney, '2. -,? Nibe deep \-1 processing riL DHE
BHF table 1fJ Ishiyori 1den Jl'4'1ilFi (Mv/ctn
) death 2shu

Claims (1)

【特許請求の範囲】[Claims] 半導体基板を弗酸あるいは弗酸を含む混合液に浸漬する
半導体基板の処理方法において、超音波を併用すること
を特徴とする半導体基板の処理方法。
1. A semiconductor substrate processing method comprising immersing a semiconductor substrate in hydrofluoric acid or a mixed solution containing hydrofluoric acid, the method comprising using ultrasonic waves in combination.
JP4070987A 1987-02-23 1987-02-23 Method for processing semiconductor substrate Pending JPS63207133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4070987A JPS63207133A (en) 1987-02-23 1987-02-23 Method for processing semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4070987A JPS63207133A (en) 1987-02-23 1987-02-23 Method for processing semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS63207133A true JPS63207133A (en) 1988-08-26

Family

ID=12588105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4070987A Pending JPS63207133A (en) 1987-02-23 1987-02-23 Method for processing semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS63207133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164093A (en) * 1991-11-29 1992-11-17 Motorola, Inc. Apparatus and method for removing metallic contamination from fluids using silicon beads

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164093A (en) * 1991-11-29 1992-11-17 Motorola, Inc. Apparatus and method for removing metallic contamination from fluids using silicon beads

Similar Documents

Publication Publication Date Title
JP2581268B2 (en) Semiconductor substrate processing method
KR20060119807A (en) Nitride based compound semiconductor, cleaning method and manufacturing method of the same, and substrate
JPH0345895B2 (en)
KR100558164B1 (en) Etchant for etching nitride and method for removing nitride film of semiconductor device using the same
JPS63207133A (en) Method for processing semiconductor substrate
JPH0795541B2 (en) Processing method
KR20010112355A (en) Method for removing residues with reduced etching of oxide
US5700348A (en) Method of polishing semiconductor substrate
CN107634006A (en) The reworking method of wafer
JPH11154659A (en) Method of removing surface contaminants on substrate and semiconductor substrate
US20020179112A1 (en) Method of cleaning electronic device
JP4541012B2 (en) Surface treatment before bonding of semiconductor wafers
JPH07240394A (en) Surface cleaning method of semiconductor wafer
JPS594117A (en) Manufacture of semiconductor device
JPS63127531A (en) Manufacture of semiconductor device
JPS62165938A (en) Treatment method
JP3134483B2 (en) Processing equipment for semiconductor substrates using liquids
JP3161007B2 (en) Method for manufacturing mirror wafer with InP single crystal
JPH09270407A (en) Manufacture of semiconductor device
KR0168208B1 (en) Polymer removing method
JPH01196129A (en) Formation of thermal oxide film on semiconductor wafer
JPS61270833A (en) Manufacture of semiconductor device
JPS6044397B2 (en) Cleaning method
JPS6020901B2 (en) Manufacturing method of semiconductor device
KR100468691B1 (en) Wafer cleaning method using chemical and physical method