JPS63206657A - Quantitative analysis of protein - Google Patents

Quantitative analysis of protein

Info

Publication number
JPS63206657A
JPS63206657A JP3958087A JP3958087A JPS63206657A JP S63206657 A JPS63206657 A JP S63206657A JP 3958087 A JP3958087 A JP 3958087A JP 3958087 A JP3958087 A JP 3958087A JP S63206657 A JPS63206657 A JP S63206657A
Authority
JP
Japan
Prior art keywords
antibody
amount
protein
monoclonal
polyclonal antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3958087A
Other languages
Japanese (ja)
Other versions
JP2515533B2 (en
Inventor
Kazuyuki Tsubaki
椿 和行
Hiromichi Adachi
足立 広道
Yoshitsugu Sakata
佐方 由嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP62039580A priority Critical patent/JP2515533B2/en
Publication of JPS63206657A publication Critical patent/JPS63206657A/en
Application granted granted Critical
Publication of JP2515533B2 publication Critical patent/JP2515533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To measure protein in a concn. region from low concn. to high concn., by using a bio-specimen as it is without dilution and using one or more kinds of a monoclonal antibody and a polyclonal antibody as the antibodies to protein to be measured in combination. CONSTITUTION:When one or more kinds of a monoclonal antibody and a polyclonal antibody are appropriately combined in use, it is unnecessary to dilute a specimen and proper turbidity is obtained from low concn. to high concn. without using a large amount of a reaction promoter. Therefore, the amount of the reaction promoter is sufficient within a range of 1-4% based on the amount thereof used in a usual dilution PCA method (measuring method for preliminarily diluting a specimen serum before measurement). Further, the use amount of the polyclonal antibody can be reduced to 1/5-1/10 as compared with a direct PCA method (method for measuring immunoglobulin using only the polyclonal antibody without preliminarily diluting a specimen) and turbidity is not also too intensive like the direct PCA method and can be properly adjusted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は生体試料、特に血清、血漿、尿などのヒト体液
中の蛋白を抗原抗体反応を利用した免疫学的測定法によ
り効果的に測定する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention effectively measures proteins in biological samples, particularly human body fluids such as serum, plasma, and urine, by an immunoassay method that utilizes antigen-antibody reactions. Regarding how to.

[従来の技術] 体液中の各種蛋白の含有量を測定することは神々の疾患
の診断や、治療経過を調べる上で重要な手がかりとなる
。体液中の蛋白を測定する方法に関しては、近年その進
歩にめざましいものがあり、測定方法も5RID法、レ
ーザー比朧法、比濁法、RIA法、EIA法、ラテック
ス凝集法等多くの方法が開発され、実用化されている。
[Prior Art] Measuring the content of various proteins in body fluids provides important clues in diagnosing divine diseases and investigating the course of treatment. There have been remarkable advances in methods for measuring proteins in body fluids in recent years, and many measurement methods have been developed, including the 5RID method, laser nephelometric method, turbidimetry, RIA method, EIA method, and latex agglutination method. and has been put into practical use.

特に最近ではレーザーネフェロメーターや、多項目の生
化学的測定を対象に開発された自動分析装置で短時間に
行う方法か開発され、普及しつつある。
Particularly recently, methods have been developed to perform this in a short time using laser nephelometers and automatic analyzers developed for multi-item biochemical measurements, and these methods are becoming popular.

しかしながらこれらの測定に使用する抗体は、通常動物
に免疫をして得たポリクローナル抗体である為、抗原抗
体反応による凝集度が高く、濁りの度合が強過ぎるので
、測定前に予め検体血清を10〜30倍、また場合によ
っては100〜300倍に希釈して測定することが必要
であった(以下、この方法を希釈PCA法と略称する。
However, since the antibodies used in these measurements are usually polyclonal antibodies obtained by immunizing animals, the degree of agglutination due to the antigen-antibody reaction is high and the degree of turbidity is too strong. It was necessary to dilute the sample by ~30 times, and in some cases by 100 to 300 times (hereinafter, this method will be abbreviated as the dilution PCA method).

)。).

ポリクローナル抗体のみを用いて予め検体を希釈せずに
免疫グロブリンを測定する例(以下、この方法を直接P
CA法と略称する。)もあるが、この場合は試料のサン
プリング量の制約や、測定する波長が限定される等の制
約がある。例えば、免疫グロブリンG(IgG)を例に
取れば、試料(血清)のサンプリング量は3〜54で行
い、しかも反応後の濁度が強い為、測定は600nm以
上の長波長で行う事が必要となる。更に測定に使用する
ポリクローナル抗体の蛍は1検体当り約1mgという従
来の希釈PCA法に比べて約10倍量もの抗体が必要と
なり、1検体当りのコストが高くなって経済上問題とな
る。
An example of measuring immunoglobulin using only polyclonal antibodies without diluting the sample in advance (hereinafter, this method will be described directly)
It is abbreviated as the CA method. ), but in this case there are restrictions such as restrictions on the amount of sample sampled and limitations on the wavelength to be measured. For example, taking immunoglobulin G (IgG), the sample (serum) sampling volume is 3 to 54, and the turbidity after the reaction is strong, so measurements must be performed at a long wavelength of 600 nm or more. becomes. Furthermore, the polyclonal antibody Firefly used in the measurement requires about 10 times the amount of antibody per sample compared to the conventional diluted PCA method, which is about 1 mg per sample, which increases the cost per sample and poses an economic problem.

一方、モノクローナル抗体(単クローン性抗体)のみを
用いて免疫グロブリンを測定する例としては、公知文献
であるクリニカル ケミストリー27巻 2044−2
047頁(1981年)にモノクローナル抗体を使用し
た免疫グロブリンの定量法に関する記載がある。しかし
ここで述べられていることは要約すれば、モノクローナ
ル抗体は単独で用いた場合には抗原抗体反応による濁り
が認められず、複数のモノクローナル抗体を組み合せて
用いることにより初めて測定に適用できるというもので
あり、単にポリクローナル抗体と置き換え得るものとし
てモノクローナル抗体の使用を検討しているに過ぎず、
これを積極的に用いることにより新たな効果を引き出そ
うとしているものではない。従って、当然のことながら
、この場合の検体は従来通り希釈したものが用いられて
いる。
On the other hand, as an example of measuring immunoglobulin using only monoclonal antibodies, there is a well-known document Clinical Chemistry Vol. 27, 2044-2.
047 (1981) describes a method for quantifying immunoglobulins using monoclonal antibodies. However, in summary, what is stated here is that monoclonal antibodies do not cause turbidity due to antigen-antibody reactions when used alone, and can only be applied to measurements when multiple monoclonal antibodies are used in combination. Therefore, we are simply considering the use of monoclonal antibodies as a replacement for polyclonal antibodies.
It is not intended to bring out new effects by actively using this. Therefore, as a matter of course, the sample in this case is diluted as usual.

これらの従来技術に対し、本発明者の一部らはモノクロ
ーナル抗体のみを用い、且つ検体を予め希釈することな
く血清中の免疫グロブリンを測定する方法(以下、直接
MCA法と略称する。)を先に見出し、特許出願してい
る(特開昭60−237363号公報)。この方法は、
単独で用いても抗原と反応して濁りを生ずるモノクロー
ナル抗体を単独又は2種以上組み合わせて用いることに
より試料(血清)を希釈することなく測定する方法であ
り、希釈PCA法、直接PCA法等従来法の有する問題
点を一挙に解決した優れた方法である。
In contrast to these conventional techniques, some of the present inventors have developed a method for measuring immunoglobulin in serum using only monoclonal antibodies and without diluting the specimen in advance (hereinafter abbreviated as direct MCA method). They discovered it earlier and filed a patent application (Japanese Patent Application Laid-Open No. 60-237363). This method is
This is a method of measuring a sample (serum) without diluting it by using monoclonal antibodies, which react with antigens and produce turbidity even when used alone, or in combination of two or more, and is a method that can be used to measure samples (serum) without diluting them. This is an excellent method that solves the problems of the law all at once.

しかしなから、モノクローナル抗体のみを用いたこの方
法では、抗原抗体複合物を凝集させる為に、高濃度の凝
集促進剋(ポリエチレングリコール、多糖類等)の使用
が余儀なくされるので、血清によってはその成分の一部
が反応促進剤により非特異的な凝集を起こし、測定値に
影響を与える虞もあり、改善の余地が残されていた。ま
た、この方法を短時間の反応(反応時間が2.5〜10
分程度)で測定することを前提とした生化学自動分析装
置に適用した場合には、低濃度での抗原抗体複合物の凝
集がその反応時間内では光分でなく、正確な測定値を得
る為の適度の濁りが形成されず、低濃度域での測定精度
に問題が生じる場合もあることが新たに明らかとなった
However, this method, which uses only monoclonal antibodies, requires the use of high concentrations of aggregation promoters (polyethylene glycol, polysaccharides, etc.) in order to agglutinate the antigen-antibody complex. There was also a risk that some of the components would cause non-specific aggregation due to the reaction accelerator, which would affect the measured values, so there was still room for improvement. In addition, this method can be used for short-time reactions (reaction time 2.5 to 10
When applied to an automatic biochemistry analyzer that is designed to perform measurements in minutes), the aggregation of antigen-antibody complexes at low concentrations does not result in light minutes within the reaction time, and accurate measurement values can be obtained. It has been newly revealed that there are cases where appropriate turbidity is not formed, causing problems with measurement accuracy in low concentration ranges.

[問題点を解決するための手段] かかる問題点を解決する為、本発明は下記の構成から成
る。
[Means for Solving the Problems] In order to solve the problems, the present invention has the following configuration.

[抗原抗体反応により生成する抗原抗体複合物に光を照
射し、その光学的変化を測定することにより生体試料中
の蛋白を定量する方法に於て、生体試料を希釈せずにそ
のまま使用し、測定対象蛋白に対する抗体として、該蛋
白に対する千ノクローナル抗体1種以上と該蛋白に対す
るポリクローナル抗体とを組み合わせて用いてこれを行
うことを特徴とする生体試料中の蛋白の定量方法。j即
ち、本発明者らは上記問題点を解決すべく鋭意研究の結
果、モノクローナル抗体(MCA)とポリクローナル抗
体(PCA)とを適宜組み合わせて用いることにより意
外にも、PCAのみ或はMCAのみを用いて測定法を組
み立てた場合の問題点、即ち直接PCA法の場合は多量
の抗体が必要となり、形成される濁度も必要以上に高く
測定時に試料のサンプリング量を最小限(3〜44)に
しなければならない点や、測定波長として600nm以
上で行わなければならない等の制約、また直接MCA法
の場合には、短時間では抗原抗体複合物の凝集の程度が
低い為その凝集を促進する目的で多量の反応促進剤を使
用しなければならない点、及び多量の反応促進剤を使用
する為に、血中成分の一部が非特異的凝集を起こし測定
値に影響を与える虞がある点、更には直接MCA法によ
り測定を行う場合、低濃度での濁度形成が不充分な為に
低濃度域での測定粒度が低下するという点等、従来の技
術では解決出来なかった数多くの問題点が一挙に解決し
得ることを見出し、本発明を完成するに到った。
[In a method for quantifying proteins in a biological sample by irradiating light onto an antigen-antibody complex generated by an antigen-antibody reaction and measuring its optical change, the biological sample is used as it is without dilution, 1. A method for quantifying a protein in a biological sample, which is carried out using a combination of one or more monoclonal antibodies against the protein and a polyclonal antibody against the protein as antibodies against the protein to be measured. In other words, as a result of intensive research to solve the above problems, the present inventors unexpectedly found that by using monoclonal antibodies (MCA) and polyclonal antibodies (PCA) in appropriate combinations, it was possible to use only PCA or only MCA. Problems when assembling a measurement method using the direct PCA method: A large amount of antibody is required in the case of the direct PCA method, and the turbidity formed is also higher than necessary, making it necessary to minimize the amount of sample sampled during measurement (3-44). In addition, in the case of the direct MCA method, the purpose of promoting aggregation is that the degree of agglutination of the antigen-antibody complex is low in a short time. A large amount of reaction accelerator must be used in this method, and because a large amount of reaction accelerator is used, some blood components may cause non-specific aggregation, which may affect the measured value. Furthermore, when measuring directly using the MCA method, there are many problems that could not be solved with conventional techniques, such as the fact that the measured particle size in the low concentration range decreases due to insufficient turbidity formation at low concentrations. The inventors have discovered that these problems can be solved all at once, and have completed the present invention.

本発明の方法によりモノクローナル抗体の1種又は2種
以上とポリクローナル抗体とを適宜組み合わせて用いれ
ば、検体の希釈をする必要がなく、また多量の反応促進
剤を用いることもなく、低濃度から高濃度迄適度な濁度
が得られる。従って、反応促進剤の量は通常希釈PCA
法で使用される、1〜4%の範囲で充分であり、直接M
CA法で使用される濃度である5〜10%に比べて大巾
に低減が可能となる。その結果血中成分の一部が非特異
的凝集を起こし、測定値に影響を与えるといったような
ことも回避され、正確な測定が可能となった。更に使用
するポリクローナル抗体の使用量は、直接PCA法の場
合の175〜1/10に低減が可能で、直接PCA法に
比べて経済性が改善でき、更に濁度も直接PCA法の様
に強過ぎることもなく、適度な濁度に調整可能となり、
測定波長は通常生化学自動分析装置で汎用される340
〜700nmの任意の波長を選ぶことができ、試料のサ
ンプリング量も生化学自動分析装置で通常汎用される5
〜10IL!での測定が可能となった。
If one or more monoclonal antibodies and polyclonal antibodies are used in appropriate combination according to the method of the present invention, there is no need to dilute the sample, and there is no need to use a large amount of reaction accelerator. Appropriate turbidity can be obtained up to the concentration. Therefore, the amount of reaction accelerator is usually diluted with PCA.
The range of 1 to 4% used in the method is sufficient and direct M
The concentration can be significantly reduced compared to the 5 to 10% concentration used in the CA method. As a result, it was possible to avoid non-specific agglutination of some of the blood components and affect the measured values, making it possible to perform accurate measurements. Furthermore, the amount of polyclonal antibody used can be reduced to 175 to 1/10 of that in the case of the direct PCA method, improving economic efficiency compared to the direct PCA method, and the turbidity is also less strong than the direct PCA method. It is possible to adjust the turbidity to the appropriate level without overdoing it.
The measurement wavelength is 340, which is commonly used in automatic biochemical analyzers.
Any wavelength of ~700 nm can be selected, and the sample sampling amount is 5, which is commonly used in automatic biochemical analyzers.
~10IL! It is now possible to measure

以上述べた如く、本発明の方法によれば体液中の蛋白を
予め希釈することなく、またサンプリンク量や測定波長
で特定の制約を受けることもなく、生化学分析を主体と
した自動分析装置へ適用可能となり、迅速に低濃度から
高濃度迄正確な測定が可能となった。
As described above, the method of the present invention does not require pre-dilution of proteins in body fluids, nor is it subject to any specific restrictions on the amount of sample or measurement wavelength. It has become possible to quickly and accurately measure from low to high concentrations.

本発明の方法により体液中の蛋白を定量する場合の具体
的な測定手段としては、比濁法、比朧法等の光学的測定
法が挙げられる。比濁法で測定する場合は、既存の自動
分析装置や分光光度計が使用でき、波長としては好まし
くは340〜800nmの範囲であるが特に限定される
ものではない。また比朧法で測定する場合は、現在普及
しているレーザー光源を使用したもの等が利用できるが
、本発明は光源及び検出方法によって特に限定されるも
のではない。
Specific measuring means for quantifying protein in body fluids by the method of the present invention include optical measuring methods such as nephelometry and nephelometric method. When measuring by turbidimetry, existing automatic analyzers and spectrophotometers can be used, and the wavelength is preferably in the range of 340 to 800 nm, but is not particularly limited. Furthermore, when measuring by the Hiroki method, one using a currently popular laser light source can be used, but the present invention is not particularly limited by the light source and detection method.

測定に使用する緩衝液としてはトリス緩衝液、リン酸緩
衝液、ベロナール緩衝液、ホウ酸M衝液等通常抗原抗体
反応を利用した測定法に用いられている緩衝液は全て使
用でき、pHは抗原抗体反応を阻害しない範囲であれば
特に限定されないが、通常6.0〜9.0の範囲が好ま
しく用いられる。
As for the buffer used in the measurement, all buffers that are normally used in measurement methods that utilize antigen-antibody reactions, such as Tris buffer, phosphate buffer, veronal buffer, and boric acid M buffer, can be used, and the pH is adjusted to match the antigen. Although it is not particularly limited as long as it does not inhibit the antibody reaction, a range of 6.0 to 9.0 is usually preferably used.

本発明で用いられるモノクローナル抗体は、常法、即ち
ケラ−、ミルスタイン(G、にδ旧er andC,M
ilstein:Nature、 256.495(1
975) )により確立された細胞融合法に従い、マウ
スの腫瘍ラインからの細胞と、測定対象のヒト蛋白で予
め免疫されたマウスの脾細胞とを融合させてモノクロー
ナルハイブリドーマを作製し、該ハイブリドーマから産
生されるモノクローナル抗体を常法により採取すればよ
い。
The monoclonal antibodies used in the present invention can be prepared using conventional methods, namely, Keller, Milstein (G., and C, M.
ilstein:Nature, 256.495(1
According to the cell fusion method established by (975)), cells from a mouse tumor line are fused with mouse splenocytes that have been previously immunized with the human protein to be measured to create a monoclonal hybridoma, and the hybridoma is then used to produce monoclonal hybridomas. The monoclonal antibody to be used may be collected by a conventional method.

本発明の定量方法で用いられるモノクローナル抗体の種
類、及び数は限定されるものではなく、必要な感度に合
わせて1種或は2種以上が適宜選択され用いられる。ま
た、モノクローナル抗体と組み合わせて使用するポリク
ローナル抗体の種類(動物の種類)、由来等は特に限定
されるもので用いれば足りる。
The type and number of monoclonal antibodies used in the quantitative method of the present invention are not limited, and one or more types may be appropriately selected and used depending on the required sensitivity. Further, the type (type of animal), origin, etc. of the polyclonal antibody used in combination with the monoclonal antibody are not particularly limited, and it is sufficient to use them.

モノクローナル抗体の使用量は特に限定されるものでは
ないが、通常測定試薬としての抗体溶液1rn!中当り
0.05〜5mgの濃度範囲で用いられる。
The amount of monoclonal antibody used is not particularly limited, but 1 rn of antibody solution is usually used as a measurement reagent! It is used in a concentration range of 0.05 to 5 mg per serving.

ポリクローナル抗体の使用量についても特に限定される
ものではないが、通常抗体溶液1m!中当り0.01〜
0.8mgの濃度範囲で用いられ、モノクローナル抗体
とポリクローナル抗体の組み合わせの割合は通常モノク
ローナル抗体1に対してポリクローナル抗体0.02〜
0.4の比率で用いられる。
The amount of polyclonal antibody used is not particularly limited, but usually 1 ml of antibody solution! Medium hit 0.01~
It is used in a concentration range of 0.8 mg, and the ratio of the combination of monoclonal antibody and polyclonal antibody is usually 1 monoclonal antibody to 0.02 to 0.02 mg of polyclonal antibody.
A ratio of 0.4 is used.

本発明の方法により測定可能なヒト体液中の蛋白として
は例えば、免疫グロブリンG(IgG)、免疫グロブリ
ンA(IgA)、免疫グロブリンM(IgM)、補体C
3、トランスフェリン、ハプトグロビン、α1−アンチ
トリプシン、アルブミン、アポリポ蛋白AI、アポリポ
蛋白AU、α2−マクログロブリン等が挙げられる。
Examples of proteins in human body fluids that can be measured by the method of the present invention include immunoglobulin G (IgG), immunoglobulin A (IgA), immunoglobulin M (IgM), and complement C.
3, transferrin, haptoglobin, α1-antitrypsin, albumin, apolipoprotein AI, apolipoprotein AU, α2-macroglobulin, and the like.

以下に参考例及び実施例を挙げて本発明を更に詳細に説
明するが、本発明はこれら参考例、実施例により何ら限
定されるものではない。
The present invention will be explained in more detail with reference to Reference Examples and Examples below, but the present invention is not limited by these Reference Examples and Examples.

[実施例] 参考例1.モノクローナル抗1gG抗体及びこれを産生
ずるハイブリドーマの作製 +1)免疫 ヒトIgG100p、を溶解したO、]55M塩化ナト
リウム溶液01rnlとフロイントコンプリートアジュ
バント 0.1rrI!を混合してエマルジョン抗原液
とし、その0.2rrLlをB A L B / cマ
ウス(雌、6週齢)の腹腔内に投与した。4週後、ヒト
IgG100p9を0.]55M塩化ナトリウム溶液0
.2rnに溶解し、尾静脈に注射した。
[Example] Reference example 1. Preparation of monoclonal anti-1gG antibody and hybridoma producing it +1) O in which immunized human IgG100p was dissolved,] 55M sodium chloride solution 01rnl and Freund's complete adjuvant 0.1rrI! were mixed to form an emulsion antigen solution, and 0.2rrLl of the emulsion was administered intraperitoneally to a BALB/c mouse (female, 6 weeks old). After 4 weeks, human IgG100p9 was added to 0. ]55M sodium chloride solution 0
.. 2rn and injected into the tail vein.

(2)細胞融合 最終免疫より3日後、免疫マウスの牌臓を摘出し、10
m1のRPMI−1640の培地を入れたプラスチック
シャーレ中で、牌リンパ球をほぐし、牌リンパ球を遠心
操作(1000回転、10分)を緑返むTRPMI−1
640培地で3回洗浄した。牌リンパ球I X 10’
個とマウス骨髄腫細胞P3−NSI−11XIO’個を
試験管中で混合し、遠心操作で沈殿とした。上滑を吸引
除去した後沈殿をかるくほぐした。50%ポリエチレン
グリコール(平均分子量6,000) I Fnlをほ
ぐした沈殿に加え、試験管をまわしながら室温で1分間
融合反応を行った。その後30秒毎にRPMI−164
0培地1mlを5分間加え反応を停止した。
(2) Cell fusion Three days after the final immunization, the spleen of the immunized mouse was removed and
Loosen the tile lymphocytes in a plastic petri dish containing 1 m of RPMI-1640 medium, and centrifuge the tile lymphocytes (1000 rpm, 10 minutes) to turn them green.
Washed three times with 640 medium. Tile lymphocytes I x 10'
cells and mouse myeloma cells P3-NSI-11XIO' were mixed in a test tube and precipitated by centrifugation. After removing the supernatant by suction, the precipitate was slightly loosened. 50% polyethylene glycol (average molecular weight 6,000) I Fnl was added to the loosened precipitate, and a fusion reaction was performed at room temperature for 1 minute while rotating the test tube. RPMI-164 every 30 seconds thereafter
The reaction was stopped by adding 1 ml of 0 medium for 5 minutes.

直ちに遠心分H枇(1000回転、5分)し、上滑を除
き、フィーダー細胞を1×1067m!、Fe2(牛胎
児血清)を20%含むRPMI−1640培地50rn
l中に細胞を懸濁した。24穴プレ一ト2枚に細胞懸濁
液を1穴当り1m1分注しCO2インキュベーター内で
培養した。
Immediately centrifuge for 1 minute (1000 rpm, 5 minutes), remove the supernatant, and feeder cells at 1 x 1067 m! , 50rn RPMI-1640 medium containing 20% Fe2 (fetal bovine serum)
The cells were suspended in l. The cell suspension was dispensed into two 24-well plates at 1 ml per well and cultured in a CO2 incubator.

24時間後、HAT培地(ヒボキサンチン1×10−’
M、アミノプテリン4X10−’M、チミジン1.6X
 10−5Mを含む20%FC3添加RPM 1−16
40培地)を1穴当り1rnlずづ加えた。
After 24 hours, HAT medium (hyboxanthin 1 x 10-'
M, aminopterin 4X10-'M, thymidine 1.6X
20% FC3 containing 10-5M RPM 1-16
40 medium) was added at 1 rnl per well.

2日目、3日目更に2日毎に培地の半量をHAT培地に
交換した。100日目培地の半量を上記のHAT培地よ
りアミノプテリンを除いたHT培地で交換した。翌日か
ら2日毎に通常の培地、即ち】0%FC5添加RPMI
−1640培地に半量ずつ交換し、188日目培養上清
を抗TgG抗体産生の検定に供した。
On the second and third days, half of the medium was replaced with HAT medium every two days. On day 100, half of the medium was replaced with HT medium obtained by removing aminopterin from the above HAT medium. From the next day onwards, add normal medium, i.e. RPMI supplemented with 0% FC5, every 2 days.
-1640 medium was exchanged in half, and the culture supernatant on day 188 was subjected to assay for anti-TgG antibody production.

(3)ハイブリドーマの選択 抗1gG抗体産生ハイブリドーマ選択の為に48穴の各
細胞培養上清をELISAにて分析した。
(3) Selection of hybridomas To select anti-1gG antibody-producing hybridomas, each cell culture supernatant from 48 wells was analyzed by ELISA.

まずELISA用96穴プレートにIgGを10py/
mlの濃度で0.1mlずづ分注し、4℃、16時間静
置してヒトIgGをプレートに固定した。Tween2
0(ノニオン系界面活性剤、アトラス社商品名)を0.
05%含む10mMリン酸緩衝液pH7,4(洗浄液)
で3回洗浄した後、培養上滑中の蛋白質の非特異的吸着
を避ける為に、1%牛血清アルブミン溶液を0.2ml
ずつ分注し、37℃、2時間静置した。次に洗浄液で3
回洗浄後細胞培養上清を0.1 m7分注し、37℃、
2時間静置した。陰性対照として20%FC3添加RP
MI−1640培地を0.1 rn1分注した。更に洗
浄液で3回洗浄後、ペルオキシダーゼ標識抗マウス免疫
グロブリン抗体溶液0.1mlを分注し、37℃、2時
間静置した。
First, add 10 py/g of IgG to a 96-well plate for ELISA.
The human IgG was dispensed in 0.1 ml portions at a concentration of 0.1 ml and left at 4° C. for 16 hours to immobilize human IgG on the plate. Tween2
0 (nonionic surfactant, Atlas Co., Ltd. brand name) to 0.
10mM phosphate buffer containing 0.05% pH 7.4 (washing solution)
After washing three times with
The mixture was divided into portions and allowed to stand at 37°C for 2 hours. Next, use cleaning solution for 3
After washing twice, dispense the cell culture supernatant into 0.1 m7 portions and store at 37°C.
It was left to stand for 2 hours. RP with 20% FC3 as a negative control
MI-1640 medium was dispensed at 0.1 rn1. After further washing three times with a washing solution, 0.1 ml of peroxidase-labeled anti-mouse immunoglobulin antibody solution was dispensed and left at 37° C. for 2 hours.

胱酸0.05mJを加え反応を停止させ、OD490n
mを測定した。陰性対照の2倍以上のODを示す培養上
清中で増殖しているハイブリドーマを抗IgG抗体産生
ハイブリドーマとして選択した。48穴中3穴に抗Jg
G抗体産生を認めた。
The reaction was stopped by adding 0.05 mJ of cystic acid, and the OD490n
m was measured. Hybridomas growing in the culture supernatant showing an OD that was twice or more that of the negative control were selected as anti-IgG antibody-producing hybridomas. Anti-Jg in 3 out of 48 holes
G antibody production was observed.

(4)単クローン化 B A L B / cマウス(雌、6週齢)の胸腺を
摘出し、10m/のRpyr−ts4o@地をいわたプ
ラスチックシャーレ中で胸腺リンパ球をほぐした。胸腺
リンパ球を遠心操作(tooo回転、10分)を繰返し
RPMI−1640培地で3回洗浄した。胸腺リンパ球
を20%FC3添加、RPM l−1640培地50m
Jに浮遊させた。この浮遊液に抗1gG抗体産生バイブ
リドー7500個/mlの溶液0.1 rnlを加え、
よく混合後、96穴培養プレートに1穴当り 0.2m
lずつ分注しlO日日間CO2インキュベーター内で培
養した。細胞増殖の認められる培養上清をELISAに
て分析の結果、抗1gG抗体産生ハイブリドーマ7クロ
ーンを得た。このうちの1クローンを更に同上操作を行
い、抗1gG抗体産生ハイブリドーマ6クローンを得、
単クローン化を完全なものとした。
(4) The thymus of a monocloned BALB/c mouse (female, 6 weeks old) was removed, and the thymus lymphocytes were loosened in a plastic petri dish lined with 10 m/ml of Rpyr-ts4o. The thymic lymphocytes were washed three times with RPMI-1640 medium by repeating centrifugation (too many rotations, 10 minutes). Thymus lymphocytes with 20% FC3 added, RPM l-1640 medium 50ml
I let J levitate. To this suspension, 0.1 rnl of a solution containing 7500 anti-1gG antibody producing hybrids/ml was added,
After mixing well, add 0.2 m per hole to a 96-well culture plate.
The mixture was dispensed into 1 portions and cultured in a CO2 incubator for 10 days. As a result of ELISA analysis of the culture supernatant in which cell proliferation was observed, 7 anti-1gG antibody-producing hybridoma clones were obtained. One of these clones was further subjected to the same procedure as above to obtain 6 anti-1gG antibody-producing hybridoma clones.
Perfected monocloning.

(5)モノクローナル抗体の作製 (4)までの操作で得られたクローンG〜2−32X1
06個をRPMI−1640培地0.2rnlに浮遊さ
せ、B A L B/cマウス(雄、6週齢)の腹腔内
に投与し、所定日数経過後、腹水を回収した。腹水4W
Ltに飽和硫安溶液を徐々に加え、最終硫安飽和濃度を
50%とし、室温で2時間撹拌した後、遠心操作(30
00回転、10分)で沈殿を回収し、生理食塩水5rn
lを加え溶解した。こわを生理食塩水で10倍ずつ段階
希釈してゆきELISAにて分析し、抗体活性の認めら
れる希釈倍数を求めたところ、106であった。尚、マ
ウスTgG含量(抗体の力価の目安)を抗マウスTgG
のウサギ血清を含有するアガロースプレートにより測定
(SRID法)したところ23n+g/mlであった。
(5) Production of monoclonal antibody Clone G~2-32X1 obtained by the operations up to (4)
06 were suspended in 0.2 rnl of RPMI-1640 medium and administered intraperitoneally to BALB/c mice (male, 6 weeks old), and ascites was collected after a predetermined number of days. Ascites 4W
Saturated ammonium sulfate solution was gradually added to Lt to give a final ammonium sulfate saturation concentration of 50%, and after stirring at room temperature for 2 hours, centrifugation was performed (30%).
00 rpm for 10 minutes), collect the precipitate and add 5 rn of physiological saline.
1 was added and dissolved. The sample was serially diluted with physiological saline in 10-fold increments and analyzed by ELISA, and the dilution factor at which antibody activity was observed was determined to be 106. In addition, the mouse TgG content (a guideline for antibody titer)
When measured using an agarose plate containing rabbit serum (SRID method), it was 23n+g/ml.

(6)(4)までの操作で得られたクローンG−3につ
いて(5)と同様の操作を行いモノクローナル抗体5w
Llを得た。また、(5)と同様の方法で抗体活性及び
マウスIgG含量を求めたところ、抗体活性は106、
マウスIgG含量は22[I1g/rnlであった。
(6) For clone G-3 obtained through the procedure up to (4), perform the same procedure as in (5) to obtain monoclonal antibody 5w.
I got Ll. In addition, when the antibody activity and mouse IgG content were determined using the same method as in (5), the antibody activity was 106,
Mouse IgG content was 22 [I1g/rnl.

け)体)までの操作で得られたクローンG−5について
(5)と同様の操作を行いモノクローナル抗体5mlを
得た。また、(5)と同様の方法で抗体活性及びマウス
IgG含量を求めたところ、抗体活性は105、マウス
IgG含量は20mg/Fn!であった。
Clone G-5 obtained in step (5) was subjected to the same procedure as in (5) to obtain 5 ml of monoclonal antibody. In addition, when the antibody activity and mouse IgG content were determined using the same method as in (5), the antibody activity was 105 and the mouse IgG content was 20 mg/Fn! Met.

参考例2.モノクローナル抗IgA抗体及びこれを産生
ずるハイブリドーマの作製 ヒトIgA  200ppを溶解した0、15M塩化ナ
トリウム溶液0.1mJとフロイントコンプリートアジ
ュバント O,1mlを混合してエマルジョン抗原液と
し、その0.2mlを、B A L B / c vウ
ス(雄、5週齢)の腹腔内に投与した。4週後、ヒトI
gA100pjlを0.15M塩化ナトリウム溶液0.
2−に溶解し、尾静脈に注射した。以後参考例1の(2
)〜&4)の操作を行い抗IgA抗体産生ハイブリドー
マ5クローンを得た。更に参考例1の(5)の操作を行
い抗IgAモノクローナル抗体5種類(A −2、A−
37゜A−64,A−206,A−215)を得た。各
クローンの抗体活性及びマウスIgG量(抗体の力価の
目安)は表1の通りであった。
Reference example 2. Preparation of monoclonal anti-IgA antibody and hybridoma producing it Mix 0.1 mJ of a 0.15M sodium chloride solution in which 200 pp of human IgA has been dissolved and 1 ml of Freund's complete adjuvant O to prepare an emulsion antigen solution, and 0.2 ml of this is mixed with B. It was administered intraperitoneally to ALB/CV mice (male, 5 weeks old). After 4 weeks, human I
100 pjl of gA was added to 0.15M sodium chloride solution.
2- and injected into the tail vein. Hereinafter, reference example 1 (2
) to &4) were performed to obtain 5 anti-IgA antibody-producing hybridoma clones. Furthermore, the operation (5) of Reference Example 1 was performed to prepare 5 types of anti-IgA monoclonal antibodies (A-2, A-
37°A-64, A-206, A-215) were obtained. The antibody activity and mouse IgG amount (a measure of antibody titer) of each clone were as shown in Table 1.

表  1 参考例3.モノクローナル抗ヒトC3抗体及びこれを産
生ずるバイブリド−7の作製 ヒトCC550pを溶解したO、15M塩化ナトリウム
溶液0.1mlとフロイントコンブリードアシュハント
0.1m/を混合してエマルジョン抗原液とし、その0
.2mJを、B A L B / cマウス(#、6週
齢)の腹腔内に投与した。3週後、ヒト03100p9
を0.15M塩化ナトリウム溶液0.2mlに溶解し、
尾静脈に注射した。
Table 1 Reference example 3. Preparation of monoclonal anti-human C3 antibody and hybrid-7 that produces it Mix 0.1 ml of O, 15M sodium chloride solution in which human CC550p has been dissolved and 0.1 ml of Freund's combined Ashhant to prepare an emulsion antigen solution.
.. 2 mJ was administered intraperitoneally to BALB/c mice (#, 6 weeks old). After 3 weeks, human 03100p9
was dissolved in 0.2 ml of 0.15 M sodium chloride solution,
injected into the tail vein.

以後参考例1の(2)〜(4)の操作を行い、抗ヒトC
3抗体産生ハイブリドーマ4クローンを得た。
Thereafter, operations (2) to (4) of Reference Example 1 were performed to obtain anti-human C.
3 antibody-producing hybridoma clones were obtained.

更に参考例1の(5)の操作を行い抗ヒトC3モノクロ
一ナル抗体4種類(C3−1,C3−7,、C3−9,
C5−10)を得た。各クローンの抗体活性及びマウス
IgG量(抗体の力価の目安)は表2の通りであった。
Furthermore, the operation (5) of Reference Example 1 was carried out to obtain four types of anti-human C3 monoclonal antibodies (C3-1, C3-7, C3-9,
C5-10) was obtained. The antibody activity and mouse IgG amount (a measure of antibody titer) of each clone were as shown in Table 2.

表 2.抗体活性とマウスIgG量 参考例4.モノクローナル抗ヒトトランスフェリン抗体
及びこれを産生ずるパイプリドニマの作製ヒトトランス
フェリン] OOPflを溶解した0、15M塩化ナト
リウム溶液0.1rnlとフロイントコンプリートアジ
ュバント 0.]m/を混合しTエマルジョン抗原液と
し、その0.2mlを、B A L B / cマウス
(雌、6週齢)の腹腔内に投与した。3週後、ヒトトラ
ンスフェリン] 00 p、を0.15M塩化ナトリウ
ム溶液0.2rnlに溶解し、尾静脈に注射した。
Table 2. Antibody activity and mouse IgG amount reference example 4. Preparation of monoclonal anti-human transferrin antibody and pipulidonima used to produce it Human transferrin] 0.1 rnl of 0.15M sodium chloride solution in which OOPfl was dissolved and Freund's complete adjuvant 0. ] m/ was mixed to prepare a T emulsion antigen solution, and 0.2 ml of the solution was intraperitoneally administered to a BALB/c mouse (female, 6 weeks old). After 3 weeks, human transferrin [00 p] was dissolved in 0.2 rnl of 0.15 M sodium chloride solution and injected into the tail vein.

以後参考例1の(2)〜(4)の操作を行い、抗ヒトト
ランスフェリン抗体産生ハイブリドーマ4クローンを得
た。更に参考例1の(5)の操作を行い抗ヒトトランス
フェリンモノクローナル抗体4種類(TF−1,TF−
2,TF−3,TF−5)を得た。各クローンの抗体活
性及びマウスIgGffi(抗体の力価の目安)は表3
の通りであった。
Thereafter, operations (2) to (4) of Reference Example 1 were performed to obtain four anti-human transferrin antibody-producing hybridoma clones. Furthermore, the procedure (5) of Reference Example 1 was carried out to prepare four kinds of anti-human transferrin monoclonal antibodies (TF-1, TF-
2, TF-3, TF-5) were obtained. Table 3 shows the antibody activity and mouse IgGffi (approximate antibody titer) of each clone.
It was as follows.

表 3  抗体活性とマウスIgG量 実施例1.モノクローナル抗体とポリクローナル抗体を
用いたヒト血清IgGの測定 試薬:次の各試薬を調製した。
Table 3 Antibody activity and mouse IgG amount Example 1. Reagents for measuring human serum IgG using monoclonal and polyclonal antibodies: The following reagents were prepared.

■ 緩衝液(R1) ポリエチレングリコール8000    2.5gO,
+Mトリス塩酸緩衝液、 pH7,4100m1■ 抗
体溶液(R2) 参考例1で得たモノクローナル抗体G−52mjポリク
ローナル抗体(牛、5mgAb/ml)   1rnl
上記緩衝液(R’)            20rn
l試料:次の各ヒト血清を使用した。
■ Buffer (R1) Polyethylene glycol 8000 2.5gO,
+M Tris-HCl buffer, pH 7,4100ml Antibody solution (R2) Monoclonal antibody G-52mj polyclonal antibody obtained in Reference Example 1 (cow, 5mgAb/ml) 1rnl
The above buffer (R') 20rn
Sample: The following human sera were used.

IgG含量400.800.1200.1600.20
00又は3000mg/ dlのヒト血清。
IgG content 400.800.1200.1600.20
00 or 3000 mg/dl human serum.

使用機器:日立705型自動分析装置 パラメータ設定条件二表4に示す条件で設定した。Equipment used: Hitachi 705 automatic analyzer Parameter setting conditions 2 The conditions shown in Table 4 were used.

表4 RI、緩衝液 R2:抗体溶液 操作法:日立705型自動分析装置を上記条件でパラメ
ータ設定して常法により測定操作を行った。
Table 4 RI, Buffer R2: Antibody solution Operation method: Measurement operations were carried out in a conventional manner by setting the parameters of a Hitachi 705 automatic analyzer under the above conditions.

結果:得られた吸光度(OD)を横軸の各IgG i(
mg/dl)に対して縦軸にプロットして得た検量線を
第1図に示す。
Result: The obtained absorbance (OD) is plotted on the horizontal axis for each IgG i (
Fig. 1 shows a calibration curve obtained by plotting the vertical axis against (mg/dl).

比較例1゜ 実施例1で用いた抗体溶液からポリクローナル抗体のみ
を除いたものを抗体溶液として用いた以外は実施例1と
同一条件で測定して得た結果を実施例1と同様にして第
2図に示す。
Comparative Example 1 The results obtained by measuring under the same conditions as in Example 1 were obtained in the same manner as in Example 1, except that the antibody solution used in Example 1 except that only the polyclonal antibody was removed was used as the antibody solution. Shown in Figure 2.

第1図から明らかな如く、本発明の方法により得られた
検量線は、低濃度から高濃度まで良好な直線性を示して
いた。一方、モノクローナル抗体のみを抗体として用い
た比較例1の場合には、第2図から明らかな如く、低濃
度(1000mg/ dl以下)では殆ど濁度が得られ
ず、またそれ以上の濃度に於ても検量線に直線性のない
ことが判フた。
As is clear from FIG. 1, the calibration curve obtained by the method of the present invention showed good linearity from low to high concentrations. On the other hand, in the case of Comparative Example 1 in which only a monoclonal antibody was used as the antibody, as is clear from Figure 2, almost no turbidity was obtained at low concentrations (1000 mg/dl or less), and at higher concentrations However, it was found that the calibration curve was not linear.

実施例2.モノクローナル抗体とポリクローナル抗体を
用いたヒト血清1gAの測定 試薬:次の各試薬を調製した。
Example 2. Reagents for measuring 1 gA of human serum using monoclonal and polyclonal antibodies: The following reagents were prepared.

■ 緩衝液(R1) ポリエチレングリコール6000     4g塩化ナ
トリウム           0.8g0.05Mリ
ン酸緩衝液、 pH7,2]00m/■ 抗体溶液(R
2) 参考例2で得たモノクローナル抗体A−370,4ml
参考例2で得たモノクローナル抗体A−640,5ml
ポリクローナル抗体(羊、3mgAb/!nり  0.
5m!上記緩衝液(R’ )            
1ornt■ 標準血清 IgA含量740mg/dfの標準血清を使用した。
■ Buffer (R1) Polyethylene glycol 6000 4g Sodium chloride 0.8g 0.05M phosphate buffer, pH 7.2]00m/■ Antibody solution (R
2) Monoclonal antibody A-370 obtained in Reference Example 2, 4 ml
Monoclonal antibody A-640 obtained in Reference Example 2, 5 ml
Polyclonal antibody (sheep, 3mgAb/!nri 0.
5m! The above buffer (R')
1ornt■ Standard Serum A standard serum with an IgA content of 740 mg/df was used.

試料:ヒト血清15検体を使用した。Samples: 15 human serum samples were used.

使用機器:日立736型自動分析装置 パラメータ設定条件二表5に示す条件で設定した。Equipment used: Hitachi 736 automatic analyzer Parameter setting conditions 2 The conditions shown in Table 5 were used.

R1,緩衝液 R2,抗体溶液 操作法:日立736型自動分析装置を上記条件でパラメ
ータ設定して常法により測定操作を行った。
R1, buffer solution R2, antibody solution operation method: Hitachi 736 automatic analyzer was set with parameters under the above conditions and measurement operations were carried out in a conventional manner.

比較例2゜ 実施例2で用いた抗体溶液からポリクローナル抗体のみ
を除いたものを抗体溶液として用いた以外は実施例2と
同一条件で同一試料を測定した。
Comparative Example 2 The same sample was measured under the same conditions as in Example 2, except that the antibody solution used in Example 2 except that only the polyclonal antibody was removed was used as the antibody solution.

キスト・ジャパン製)を用いてIgA濃度の測定を行っ
た。
The IgA concentration was measured using a method (manufactured by Kist Japan).

実施例2、比較例2及び参考例5により得られた結果を
表6に併せて示す。
The results obtained in Example 2, Comparative Example 2, and Reference Example 5 are also shown in Table 6.

表  6 y+=+、ooM + 2.71、r=0.999Y2
=1.04X −24,7、と=0.998表6から明
らかな如く、本発明の方法で得られた測定値は5RrD
法によるそれと低濃度から高濃度まで良い相関を示して
いることが判る。また、モノクローナル抗体のみを抗体
として用いた比較例2の場合はI gA 量100mg
/dZ以下の検体での測定値が低い。即ち、反応が充分
進行しておらず、低濃度(100mg/d1以下)で濁
度の形成が不充分な為に測定値が5RID法に比べて低
値に測定されていることが判る。
Table 6 y+=+, ooM+2.71, r=0.999Y2
= 1.04
It can be seen that there is a good correlation with that obtained by the method from low to high concentrations. In addition, in the case of Comparative Example 2 in which only a monoclonal antibody was used as an antibody, the amount of IgA was 100 mg.
Measured values for samples below /dZ are low. That is, it can be seen that the measured value is lower than that obtained by the 5RID method because the reaction has not progressed sufficiently and turbidity is insufficiently formed at a low concentration (100 mg/d1 or less).

実施例3.モノクローナル抗体とポリクローナル抗体を
用いたヒト血清C3の測定 試薬二次の各試薬を調製した。
Example 3. Reagents for measuring human serum C3 using monoclonal antibodies and polyclonal antibodies The following reagents were prepared.

■ 緩衝液(R’) ポリエチレングリコール6000    3.5g塩化
ナトリウム           0.9g10mMベ
ロナール緩衝液、 pH7,5]00rff■ 抗体溶
液(R2) 参考例3で得たモノクローナル抗体C3−10,2rn
!参考例3で得たモノクローナル抗体(:3−7  0
.2mZポリクローナル抗体(兎、2mgAb/mt)
   1m1上記緩衝液(R’)          
  5oynt試料二次の各ヒト血清を使用した。
■ Buffer (R') Polyethylene glycol 6000 3.5g Sodium chloride 0.9g 10mM Veronal buffer, pH 7,5]00rff■ Antibody solution (R2) Monoclonal antibody C3-10,2rn obtained in Reference Example 3
! Monoclonal antibody obtained in Reference Example 3 (:3-70
.. 2mZ polyclonal antibody (rabbit, 2mgAb/mt)
1ml of the above buffer (R')
Five oynt samples of each human serum were used.

C3合量20,110,80,120,160,200
又は240mg/dllのヒト血清。
C3 total amount 20,110,80,120,160,200
or 240 mg/dll human serum.

操作法:試験管に試料をそのまま20IL!をとり、こ
れに抗体溶液2rn!を添加して37℃で10分間反応
させた後、分光光度計で層長10mm、波長505nm
に於ける吸光度を測定した。
Procedure: Pour 20IL of sample directly into the test tube! Take this and add 2rn! of antibody solution to it! After adding and reacting at 37°C for 10 minutes, the layer length was 10 mm and the wavelength was 505 nm using a spectrophotometer.
The absorbance was measured at

比較例3゜ 実施例3で用いた抗体溶液からポリクローナル抗体のみ
を除いたものを抗体溶液として用いた以外は実施例3と
同一条件で同一試料を測定した。
Comparative Example 3 The same sample was measured under the same conditions as in Example 3, except that the antibody solution used in Example 3 except that only the polyclonal antibody was removed was used as the antibody solution.

実施例3及び比較例3により得られた結果を併せて第3
図に示す。ここで−・−は実施例3により得られた測定
結果を、−〇−は比較例3により得られた測定結果を示
し、夫々横軸の各C3量(mg/d1 )について得ら
れた吸光度(OD)を縦軸に沿ってプロットした点を結
んだものである。
Combining the results obtained in Example 3 and Comparative Example 3,
As shown in the figure. Here, -・- indicates the measurement results obtained in Example 3, -〇- indicates the measurement results obtained in Comparative Example 3, and the absorbances obtained for each amount of C3 (mg/d1) on the horizontal axis. It connects the points where (OD) is plotted along the vertical axis.

第3図から明らかな如く、モノクローナル抗体とポリク
ローナル抗体を組み合わせて用いた実施g1I3(D場
合、03 J!2(1〜240mg/dl(D範囲で検
itaは直線性を示し、C3低濃度から高濃度の広い範
囲で良好な定量性を示すか、モノクローナル抗体のみを
用いた比較例3の場合は、c33低濃域での定量性が著
しく悪く、充分な濁度が形成されていないことが判る。
As is clear from Figure 3, the test using a combination of monoclonal and polyclonal antibodies was carried out using a combination of monoclonal and polyclonal antibodies. Either it shows good quantitative performance over a wide range of high concentrations, or in the case of Comparative Example 3 using only a monoclonal antibody, quantitative performance at low c33 concentration ranges is extremely poor, indicating that sufficient turbidity is not formed. I understand.

実施例4.モノクローナル抗体とポリクローナル抗体を
用いたヒト血清トランスフェリンの測定試薬二次の各試
薬を調製した。
Example 4. Reagents for measuring human serum transferrin using monoclonal and polyclonal antibodies The following reagents were prepared.

■ 緩衝液(R1) ポリエチレングリコール6000     3g塩化ナ
トリウム           0.9g0.05Mホ
ウ酸M#液、 pH7,4100m1■ 抗体溶液(R
2) 参考例4で得たモノクローナル抗体TF−21rnl参
考例斗で得たモノクローナル抗体TF−5lIn!ポリ
クローナル抗体(山羊、3.4mgAb/++Ll) 
   1ml上書と緩衝*(R950m1 試料:次の各ヒト血清を使用した。
■ Buffer solution (R1) Polyethylene glycol 6000 3g Sodium chloride 0.9g 0.05M boric acid M# solution, pH 7,4100ml ■ Antibody solution (R
2) Monoclonal antibody TF-21rnl obtained in Reference Example 4 Monoclonal antibody TF-5lIn! obtained in Reference Example 2) Polyclonal antibody (goat, 3.4mgAb/++Ll)
1 ml overlay and buffer* (R950m1 sample: The following human sera were used.

トランス7 y−リン含量50,100,200,30
0,400,800又は800mg/d9のヒト血清。
Trans 7 y-phosphorus content 50, 100, 200, 30
0,400,800 or 800 mg/d9 human serum.

操作法:レーザーネフェロメーターZD−801(和光
純薬工業■製)用キュベツトに試料をそのまま10pl
とり、これに抗体溶液5004を添加して室温で15分
間反応させた後、レーザーネフェロメーターZD−80
1で、波長633nmに於ける光散乱強度を測定した。
Operation method: Place 10 pl of sample directly into a cuvette for laser nephelometer ZD-801 (manufactured by Wako Pure Chemical Industries, Ltd.)
After adding antibody solution 5004 to this and reacting at room temperature for 15 minutes, the laser nephelometer ZD-80
1, the light scattering intensity at a wavelength of 633 nm was measured.

比較例4゜ 実施例4で用いた抗体溶液からポリクローナル抗体のみ
を除いたものを抗体溶液として用いた以外は実施例4と
同一条件で同一試料を測定した。
Comparative Example 4 The same sample was measured under the same conditions as in Example 4, except that the antibody solution used in Example 4 from which only the polyclonal antibody was removed was used as the antibody solution.

比較例5゜ 実施例4で用いた抗体溶液からモノクローナル抗体のみ
を除いたものを抗体溶液として用いた以外は実施例4と
同一条件で同一試料を測定した。
Comparative Example 5 The same sample was measured under the same conditions as in Example 4, except that the antibody solution used in Example 4 with only the monoclonal antibody removed was used as the antibody solution.

実施例4、比較例4、及び比較例5により得られた結果
を第4図に併せて示す。ここで−・−は実施例4により
得られた測定結果を、−〇−は比較例4により得られた
結果を、−×−は比較例5で得られた結果を示し、夫々
横軸の各トランスフェリン量(Il1g/a )につい
て得られた光散乱強度(m V )を縦軸に沿ってプロ
ットした点を結んだものである。
The results obtained in Example 4, Comparative Example 4, and Comparative Example 5 are also shown in FIG. Here, -・- indicates the measurement results obtained in Example 4, -〇- indicates the results obtained in Comparative Example 4, and -×- indicates the results obtained in Comparative Example 5. The light scattering intensity (m V ) obtained for each amount of transferrin (Il1 g/a ) is plotted along the vertical axis and the points are connected.

第4図から明らかな如く、モノクローナル抗体とポリク
ローナル抗体を組み合わせて用いた実施例4の場合はト
ランスフェリン量と光散乱強度はほぼ比例的に増加する
が、モノクローナル抗体のみを用いた比較例4の場合、
トランスフェリン量の低い試料(50,100,20(
l mg/dl)では濁度の形成が殆ど起こらなかった
As is clear from FIG. 4, in the case of Example 4 in which a combination of monoclonal and polyclonal antibodies was used, the amount of transferrin and the light scattering intensity increased almost proportionally, but in the case of Comparative Example 4 in which only monoclonal antibodies were used. ,
Samples with low transferrin content (50, 100, 20 (
1 mg/dl), almost no turbidity formation occurred.

またポリクロナール抗体のみを用いた比較例5の場合は
、トランスフェリン量]00mg/dJ以上で抗原過剰
による濁度形成の抑制が起こり、濁度低下が起こったこ
とが判る。
In addition, in the case of Comparative Example 5 using only a polyclonal antibody, it can be seen that turbidity formation due to excess antigen was suppressed and turbidity decreased when the amount of transferrin was 00 mg/dJ or more.

[発明の効果] 以上述べた如く、本発明は、血清、血漿、尿等ヒト体液
中の蛋白を抗原抗体反応を利用した免疫学的測定法によ
り効果的に判定する方法を提供するものであり、本発明
の方法によれば、(1)試料を希釈せずにそのまま測定
に供することができるので、希釈操作に伴う煩雑さ及び
誤差を排除できる。
[Effects of the Invention] As described above, the present invention provides a method for effectively determining proteins in human body fluids such as serum, plasma, and urine by immunoassay using antigen-antibody reactions. According to the method of the present invention, (1) the sample can be directly used for measurement without being diluted, thereby eliminating the complexity and errors associated with the dilution operation.

(2)ポリエチレングリコール等の凝集促進剤を大量に
使用する必要がないので、不所望の非特異的凝集反応が
起こることもなく、それにより測定値が影響を受けるこ
ともない。
(2) Since it is not necessary to use a large amount of an aggregation promoter such as polyethylene glycol, undesired non-specific agglutination reactions do not occur, and measurement values are not affected thereby.

(3)低濃度から高濃度まで広い濃度域に於て結反の高
い測定を行うことができる。
(3) Measurements with high retardation can be performed in a wide concentration range from low to high concentrations.

(4)同一試料について多項目の測定を行う自動分析装
置への適用が極めて容易である。
(4) It is extremely easy to apply to automatic analyzers that measure multiple items on the same sample.

等の点に顕著な効果を奏するものであり、斯業に貢献す
るところ甚だ大なる発明である。
This invention has remarkable effects in these respects, and is a great invention in terms of its contribution to this industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1に於て得られた検量線を表わし、横
軸の各1gG量(rng/dl>について得られた吸光
度(OD)を縦軸に沿ってプロットした点を結んだもの
である。 第2図は、比較例1に於て得られた検量線を表わし、横
軸の各IgG量(mg/df)について得られた吸光度
(OD)を縦軸に沿ってプロットした点を結んだもので
ある。 第3図は実施例3及び比較例3に於て得られた検量線を
表わし、横軸の各C3M (mg/dl)について得ら
れた吸光度(OD)を縦軸に沿ってプロットした点を結
んだものである。但し、−・−は実施例3に於て得られ
た結果を、また−〇−は比較例3に於て得られた結果を
示す。 第4図は実施例4、比較例4及び比較例5に於て得られ
た検量線を表わし、横軸の各トランスフェリン量(mg
/dl)について得られた光散乱強度(mV)を縦軸に
沿ってプロットした点を結んだものである。但し、−・
−は実施例4に於て得られた結果を、また−〇−は比較
例4に於て得られた結果を、また、−×−は比較例5に
於て得られた結果を夫々示す。 特許出願人 和光純薬工業株式会社 第2図 IvG量(す/d1) 第3図 C3量(m引/dQ )
Figure 1 shows the calibration curve obtained in Example 1, connecting the points where the absorbance (OD) obtained for each 1 gG amount (rng/dl> on the horizontal axis) was plotted along the vertical axis. Figure 2 shows the calibration curve obtained in Comparative Example 1, in which the absorbance (OD) obtained for each IgG amount (mg/df) on the horizontal axis is plotted along the vertical axis. Figure 3 shows the calibration curves obtained in Example 3 and Comparative Example 3, and the absorbance (OD) obtained for each C3M (mg/dl) on the horizontal axis is plotted vertically. It connects the points plotted along the axis. However, -.- indicates the results obtained in Example 3, and -0- indicates the results obtained in Comparative Example 3. FIG. 4 shows the calibration curves obtained in Example 4, Comparative Example 4, and Comparative Example 5, and the horizontal axis shows the amount of transferrin (mg
It connects the points where the light scattering intensity (mV) obtained for /dl) was plotted along the vertical axis. However, -・
- indicates the results obtained in Example 4, -〇- indicates the results obtained in Comparative Example 4, and -x- indicates the results obtained in Comparative Example 5. . Patent applicant: Wako Pure Chemical Industries, Ltd. Figure 2: IvG amount (S/d1) Figure 3: C3 amount (m/dQ)

Claims (6)

【特許請求の範囲】[Claims] (1)抗原抗体反応により生成する抗原抗体複合物に光
を照射し、その光学的変化を測定することにより生体試
料中の蛋白を定量する方法に於て、生体試料を希釈せず
にそのまま使用し、測定対象蛋白に対する抗体として、
該蛋白に対するモノクローナル抗体1種以上と該蛋白に
対するポリクローナル抗体とを組み合わせて用いてこれ
を行うことを特徴とする生体試料中の蛋白の定量方法。
(1) In a method for quantifying proteins in a biological sample by irradiating the antigen-antibody complex generated by an antigen-antibody reaction with light and measuring its optical change, the biological sample is used as it is without dilution. As an antibody against the protein to be measured,
1. A method for quantifying a protein in a biological sample, which is carried out using a combination of one or more monoclonal antibodies against the protein and a polyclonal antibody against the protein.
(2)モノクローナル抗体がマウスの腫瘍ラインからの
細胞と、測定対象のヒト蛋白で予め免疫されたマウスの
脾細胞との融合により形成されたハイブリドーマより産
生されるモノクローナル抗ヒト該蛋白抗体である特許請
求の範囲第1項に記載の定量方法。
(2) A patent in which the monoclonal antibody is a monoclonal anti-human protein antibody produced by a hybridoma formed by fusion of cells from a mouse tumor line and mouse splenocytes that have been previously immunized with the human protein to be measured. Quantification method according to claim 1.
(3)ポリクローナル抗体が測定対象蛋白を免疫して得
た、兎、山羊、羊、馬、牛から得たポリクローナル抗体
である特許請求の範囲第1項又は第2項に記載の定量方
法。
(3) The quantitative method according to claim 1 or 2, wherein the polyclonal antibody is a polyclonal antibody obtained from a rabbit, goat, sheep, horse, or cow by immunization with the protein to be measured.
(4)光学的変化量が光散乱強度の変化量である、特許
請求の範囲第1項から第3項のいずれかに記載の定量方
法。
(4) The quantitative method according to any one of claims 1 to 3, wherein the amount of optical change is the amount of change in light scattering intensity.
(5)光学的変化量が透過光量の変化量である特許請求
の範囲第1項から第3項のいずれかに記載の定量方法。
(5) The quantitative method according to any one of claims 1 to 3, wherein the amount of optical change is the amount of change in the amount of transmitted light.
(6)測定対象が免疫グロブリンG(IgG)、免疫グ
ロブリンA(IgA)、免疫グロブリンM(IgM)、
補体C3、トランスフェリン、ハプトグロビン、α_1
−アンチトリプシン、アルブミン、アポリポ蛋白A I
、アポリポ蛋白AII又はα_2−マクログロブリンであ
る特許請求の範囲第1項から第5項のいずれかに記載の
定量方法。
(6) The measurement target is immunoglobulin G (IgG), immunoglobulin A (IgA), immunoglobulin M (IgM),
Complement C3, transferrin, haptoglobin, α_1
-antitrypsin, albumin, apolipoprotein A I
, apolipoprotein AII, or α_2-macroglobulin.
JP62039580A 1987-02-23 1987-02-23 Protein quantification method Expired - Lifetime JP2515533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62039580A JP2515533B2 (en) 1987-02-23 1987-02-23 Protein quantification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62039580A JP2515533B2 (en) 1987-02-23 1987-02-23 Protein quantification method

Publications (2)

Publication Number Publication Date
JPS63206657A true JPS63206657A (en) 1988-08-25
JP2515533B2 JP2515533B2 (en) 1996-07-10

Family

ID=12557025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62039580A Expired - Lifetime JP2515533B2 (en) 1987-02-23 1987-02-23 Protein quantification method

Country Status (1)

Country Link
JP (1) JP2515533B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120664A (en) * 1988-10-31 1990-05-08 Tetsuo Tomiyama Immunological detection of antigen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045384A (en) 2002-05-22 2004-02-12 Matsushita Electric Ind Co Ltd Immunological measurement method, immunological measuring apparatus, tray for measuring organism component antialbuminmonoclonal antibody, cell for producing the antialubminmonoclonal antibody, and albumin detection kit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163565A (en) * 1983-03-08 1984-09-14 Toray Ind Inc Microdetermination method of high molecular antigen
JPS60237363A (en) * 1984-05-11 1985-11-26 Wako Pure Chem Ind Ltd Assay of immunoglobulin
JPS60259963A (en) * 1984-04-12 1985-12-23 ゼネラル、ホスピタル、コ−ポレ−シヨン Multiple section immunometric assay method
JPS6140568A (en) * 1984-07-31 1986-02-26 Kyowa Hakko Kogyo Co Ltd Enzyme-immunoassay
JPS61202162A (en) * 1985-03-06 1986-09-06 Fuji Yakuhin Kogyo Kk Enzyme immunoassay for human prolylhydroxylase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163565A (en) * 1983-03-08 1984-09-14 Toray Ind Inc Microdetermination method of high molecular antigen
JPS60259963A (en) * 1984-04-12 1985-12-23 ゼネラル、ホスピタル、コ−ポレ−シヨン Multiple section immunometric assay method
JPS60237363A (en) * 1984-05-11 1985-11-26 Wako Pure Chem Ind Ltd Assay of immunoglobulin
JPS6140568A (en) * 1984-07-31 1986-02-26 Kyowa Hakko Kogyo Co Ltd Enzyme-immunoassay
JPS61202162A (en) * 1985-03-06 1986-09-06 Fuji Yakuhin Kogyo Kk Enzyme immunoassay for human prolylhydroxylase

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120664A (en) * 1988-10-31 1990-05-08 Tetsuo Tomiyama Immunological detection of antigen

Also Published As

Publication number Publication date
JP2515533B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
AU2016203292B2 (en) Monoclonal antibody, and immunoassay using same
JP5807300B2 (en) Method and reagent for measuring C-reactive protein in sample
EP3361252A1 (en) Pivka-ii assay method and method for manufacturing reagent or kit for pivka-ii immunoassay
US20090117668A1 (en) Immune Agglutination Reagent Kit and Method of Measuring Antigen
EP2413144A2 (en) Reagent and kit for assaying D-Dimer
JPS60237363A (en) Assay of immunoglobulin
US5583055A (en) Initial rate photometric method for immunoassay
EP3865873A1 (en) Method and assay reagent for immunoassay of leucine-rich ?2 glycoprotein
WO2022163605A1 (en) Immunological assay method
JPS63206657A (en) Quantitative analysis of protein
JP2001337092A (en) Immunological measuring method and reagent for measurement
JPH01301165A (en) Immunoassay
JP2004325192A (en) Measuring method and measuring kit of hapten by gold colloid aggregation method
JPS62239056A (en) Quantitative determination method of transferrin
JP2001021557A (en) Method for immunologically analyzing d-dimer and dd/e complex and analytical kit therefor
JP2002071691A (en) Immunoassay and reagent
JP7313659B2 (en) Method and reagent for measuring HMGB1 in sample
EP4382908A1 (en) Immunoassay for thyroglobulin and kit therefor
JP2678273B2 (en) Immunoassay
WO2024048583A1 (en) Immunoassay method, non-specific reaction suppression method, immunoassay reagent, immunoassay reagent kit, composition, non-specific reaction suppressing agent, and use
JPS62238461A (en) Quantitative analysis of complement
Kennel et al. Solid-phase radioimmunoassay of fragment D of human fibrinogen by use of a low-affinity monoclonal antibody.
JP2010271270A (en) Reagent for measuring fatty-acid-binding protein derived from human cardiac muscle tissue
JP2004012170A (en) Method for immunological measurement and measuring kit
JPH0980053A (en) Improved immunoassay

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term