JP2678273B2 - Immunoassay - Google Patents

Immunoassay

Info

Publication number
JP2678273B2
JP2678273B2 JP62193706A JP19370687A JP2678273B2 JP 2678273 B2 JP2678273 B2 JP 2678273B2 JP 62193706 A JP62193706 A JP 62193706A JP 19370687 A JP19370687 A JP 19370687A JP 2678273 B2 JP2678273 B2 JP 2678273B2
Authority
JP
Japan
Prior art keywords
antibody
antigen
amount
sample
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62193706A
Other languages
Japanese (ja)
Other versions
JPS6438654A (en
Inventor
正人 樋口
隆 瓶子
修一 目黒
盛 関根
昭策 元田
Original Assignee
デンカ生研 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ生研 株式会社 filed Critical デンカ生研 株式会社
Priority to JP62193706A priority Critical patent/JP2678273B2/en
Publication of JPS6438654A publication Critical patent/JPS6438654A/en
Application granted granted Critical
Publication of JP2678273B2 publication Critical patent/JP2678273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、検体中の抗原を定量するための、抗原抗
体反応を用いた光学的免疫定量法に関する。 [従来の技術] 検体中の抗原を測定する免疫定量法として、一元放射
免疫拡散法、レーザー比朧法、比濁法、放射免疫測定
法、酵素免疫測定法、ラテックス凝集法等種々のものが
実用化されている。最近はこれらのうち、特に測定が迅
速で感度が高く、自動化が容易な、レーザー比朧法、比
濁法のような光学的免疫定量法が広く用いられるように
なった。これらの光学的免疫定量法では、測定すべき抗
原を含む検体と、該抗原に対応する抗体を含有する抗体
溶液とを混合して不溶性の抗原抗体複合物を生成させ、
その際の吸光度や散乱光強度の変化を測定する。抗原抗
体複合物の生成は、検体中の抗原量が多いほど多いの
で、光学的変化量の大小により、検体中の抗原量を測定
することができる。抗原量の測定は、レーザーネフェロ
メーターや多項目の生化学的測定を対象に開発された自
動分析装置を用いて短時間内に自動的に行なわれてい
る。 [従来技術の欠点] 現実の診断において、検体中の測定すべき抗原量は測
定前には未知であり、多数の検体を処理する場合に、各
検体に加えられる抗体溶液の濃度及び量は同一である。
抗体溶液の濃度及び量は検体中の抗原量が多い場合でも
正確に抗原量を測定できるように選択される。従って、
抗原量が少ない検体では、抗体が過剰となって抗原抗体
複合物が形成されにくくなり、その結果、抗原の定量が
正確に行なわれないという欠点があった。さらに、検体
中の抗原を免疫定量する際、検体を希釈することなく原
液のままで測定する要望があるが、原液のまま測定する
場合には多量の抗体を作用させる。従って、上記した抗
体過剰の問題がより一層深刻となる。 [発明が解決しようとする問題点] 従って、この発明の目的は、測定すべき抗原が検体中
に低濃度に含まれる場合であっても、抗原を正確に定量
することができる光学的免疫定量法を提供することであ
る。 [問題点を解決するための手段] 本願発明者らは、鋭意研究の結果、従来の光学的免疫
定量法において、検体に抗体を作用させる前に、測定す
べき抗原に対応する抗体を作用させて予め抗原抗体複合
物を形成しておくことにより、測定すべき抗原が検体中
に低濃度に含まれる場合であっても、抗原を正確に定量
することができることを見出しこの発明を完成した。 すなわち、この発明は、検体中の測定すべき抗原と、
該抗原に対応する第1の抗体とを反応させて抗原抗体複
合物を生成させ、その後、該抗原抗体複合物と前記抗原
に対応する第2の抗体を反応させ、形成される抗原抗体
複合物に光を照射して光学的変化量を測定することから
成る免疫定量法を提供する。 [発明の効果] この発明の方法によると、検体中の測定すべき抗原の
濃度が各検体間で低濃度から高濃度の広範囲にわたって
いる場合であっても、各検体に対し同一濃度及び量の抗
体溶液を用いて各検体中の抗原量を正確に測定すること
ができる。 [発明の具体的説明] この発明では、まず、測定すべき抗原を含む検体に、
該測定すべき抗原に対する第1の抗体を作用させ、抗原
抗体複合物を生成させる。第1の抗体は測定すべき抗原
に対応するものであればいずれのものであってもよく、
モノクローナル抗体でもポリクローナル抗体でもよい。
また、抗体の供給源となる動物種は限定されず、後述の
第2抗体と同種の動物であっても異種の動物であっても
よい。また、第1の抗体は単独の抗体を用いることもで
きるし、複数の抗体を混合して用いることもできる。 検体に加える第1抗体量は、抗原抗体複合物の形成に
よって凝集が実質的に起こらない程度の量である。ま
た、その対応する抗原決定基が後述する第2抗体と同一
である場合には、第1抗体との反応後に遊離の抗原決定
基が残る程度の量である。すなわち、第1の抗体は通
常、溶液の形態で検体と混合されるが、この場合に第1
抗体溶液の濃度は、特に限定されるわけではないが、通
常、5mg/mlないし30mg/ml程度である。また、第1抗体
溶液と検体との混合割合は、第2抗体量、第1抗体がポ
リクローナル抗体かモノクローナル抗体か、さらに第1
抗体と第2抗体とが同種動物由来か異種動物由来かによ
って異なるが、通常、第1抗体溶液と検体との混合液
中、第1抗体溶液の含量は0.01v/v%ないし5.0v/v%で
ある。もっとも、第1抗体溶液の混合割合は、第2抗体
量が多い場合には多く、第1抗体がモノクローナル抗体
である場合には多く、第1抗体と第2抗体の由来動物が
同種である場合には少なくなり、必ずしも上記範囲内に
限定されるわけではない。 第1抗体と検体との反応条件は抗原抗体反応が起きる
条件であればいずれの条件でもよく、通常30℃ないし37
℃で1分間ないし10分間程度である。 また、この発明の方法に供することができる検体は、
抗原を含んでいるかもしれないものであればいずれのも
のでもよく、例えば、血清、尿、唾液等の体液を挙げる
ことができる。これらの体液は希釈することなく測定に
供することができる。また、定量すべき抗原は抗原性を
有するものであれば何でもよく、例えば免疫グロブリ
ン、補体、C反応蛋白、α−フェトプロテイン、ハプト
グロビン及びトランスフェリン等を挙げることができ
る。 次に、第2の抗体を上記検体と第1抗体との混合物に
加える。第2の抗体は測定すべき抗原に対応するもので
あればいずれのものであってもよく、モノクローナル抗
体でもポリクローナル抗体でもよい。第2の抗体の抗原
決定基は第1の抗体の抗原決定基と同一でも異なってい
てもよい。従って、第2の抗体は第1の抗体と同一の抗
体であってもよい。また、抗体の供給源となる動物種は
限定されず、上記第1抗体と同種の動物であっても異種
の動物であってもよい。また、第2の抗体は単独の抗体
を用いることもできるし、複数の抗体を混合して用いる
こともできる。 第2の抗体は通常、溶液の形態で検体と混合される。
この場合に第1抗体溶液の濃度は、特に制限はないが、
通常、5mg/mlないし30mg/ml程度である。また、第1抗
体溶液と検体との混合割合は、第1抗体量、第2抗体が
ポリクローナル抗体かモノクローナル抗体か、さらに第
1抗体と第2抗体とが同種動物由来か異種動物由来かに
よって異なるが、通常、第1抗体溶液と検体との混合液
中、第1抗体溶液の含量は0.01v/v%ないし5v/v%であ
る。第1抗体溶液の混合割合は、第2抗体量が多い場合
には多く、第2抗体がモノクローナル抗体である場合に
は少なく、第1抗体と第2抗体の由来動物が同種である
場合には少なくなり、必ずしも上記範囲内に限定される
わけではない。 第2抗体と検体との反応条件は抗原抗体反応が起きる
条件であればいずれの条件でも良く、通常30℃ないし37
℃で1分間ないし10分間程度である。 第2抗体を添加した直後から、反応系に光を照射し、
その光学的変化量を測定する。光学的変化量は、透過光
量の変化量(すなわち吸光度の変化量)又は散乱光強度
の変化量である。光学的変化量の測定は、従来からこの
分野において用いられている市販の自動分析装置を用い
て自動的に行なうことができる。検体中の抗原量が多い
と抗原抗体複合物が多く生成され、凝集が速やかに起き
るので光学的変化量は大きくなる。従って、既知濃度の
試料に基づいて検量線を作成しておくと、未知濃度の検
体中の抗原を定量することができる。 [発明の実施例] 実施例1 濃度0〜3200mg/dlのヒトIgGの生理食塩水溶液5μl
に、第1抗体として濃度12.8mg/ml(ELISA法による抗体
価10,000倍)の抗ヒトIgGモノクローナル抗体溶液*1
を1.0v/v%含む20mMグリシン緩衝液(pH9.5)300μlを
加え、37℃で5分間反応させた。一方、対照として、上
記ヒトIgG溶液に第1抗体としての抗ヒトIgGモノクロー
ナル抗体を含まない同緩衝液300μlを加え、同様に反
応させた。第2抗体として抗ヒトIgG血清300μlをそれ
ぞれの混合物に加え、37℃で反応させながら自動分析装
置(東芝TBA−480)を用いて、反応開始後1分〜3分の
間の吸光度の変化を波長340nmで測定し、その測定結果
から計算により1分間当たりの吸光度の変化率を求め
た。 結果を第1図に示す。第1図中、実線は本願発明の方
法に従って第1抗体及び第2抗体の両方を作用させた場
合についての結果を、破線は従来の方法に従い第2抗体
のみを作用させた場合についての結果を示す。第1図か
ら明らかなように、第1抗体を添加しない場合には抗体
過剰によりIgG濃度が1600mg/dl以下ではIgG濃度に比例
した吸光度変化率は得られなかったが、モノクローナル
抗体を添加した場合にはIgG濃度に比例した吸光度変化
率が得られた。このように、この発明の方法によると、
従来の免疫比濁法及びその他の免疫定量法では測定が困
難であって低濃度から高濃度までの抗原を正確に定量す
ることが可能になることがわかる。 *1ヒトIgGで免疫したBALB/cマウス脾臓細胞とマウス
骨髄腫細胞P3U1を常法により融合して得られたハイブリ
ドーマをBALB/cマウスの腹腔内で増殖させて得たモノク
ローナル抗体。 実施例2 濃度0〜3200mg/dlのヒトIgGの生理食塩水溶液5μl
に、第1抗体として濃度15mg/mlの抗ヒトIgGポリクロー
ナル抗体溶液を0.4v/v%含む20mMグリシン緩衝液(pH9.
5)300μlを加え、37℃で5分間反応させた。一方、対
照として、上記ヒトIgG溶液に第1抗体としての抗ヒトI
gGポリクローナル抗体を含まない同緩衝液300μlを加
え、同様に反応させた。第2抗体として、上記第1抗体
と同一の抗体を含む抗ヒトIgG血清300μlをそれぞれの
混合物に加え、37℃で反応させながら自動分析装置(東
芝TBA−480)を用いて、反応開始後1分〜3分の間の吸
光度の変化を波長340nmで測定し、その測定結果から計
算により1分間当たりの吸光度の変化率を求めた。 結果を第2図に示す。第2図中、実線は本願発明の方
法に従って第1抗体及び第2抗体の両方を作用させた場
合についての結果を、破線は従来の方法に従い第2抗体
のみを作用させた場合についての結果を示す。第2図か
ら明らかなように、実施例1の場合と同様、抗ヒトIgG
ポリクローナル抗体を添加した場合にはIgG濃度に比例
した吸光度変化率が得られた。また、この発明の方法に
おいて、第1抗体として実施例1で用いたモノクローナ
ル抗体のみでなく、ポリクローナル抗体を用いても同様
に正確な免疫定量が可能であることがわかった。 実施例3 この実施例は、第1抗体の存在により測定精度及び確
度が落ちないことを示すためのものである。 既知濃度のIgG標準試料を用いて、実施例2と同様な
操作を行ない検量線を作成した。次に種々の未知濃度の
IgG抗体を含む検体を原液のまま用いて実施例1及び実
施例2と同様な操作を行ない、その測定結果と上記検量
線とから検体中のIgG濃度を求めた。 一方、従来から広く知られている一元放射免疫拡散法
の常法に基づき、同検体についてその濃度を測定し、上
記の発明の方法により得られた結果と比較した。 上記2法による測定値の相関図を第3図に示す。この
相関図の相関係数は0.958であり、上記2法による測定
値がほぼ一致していることがわかった。すなわち、この
発明の方法において、第1抗体の存在により測定精度及
び正確度に悪影響が及ぼされないことが明らかになっ
た。
TECHNICAL FIELD The present invention relates to an optical immunoassay method using an antigen-antibody reaction for quantifying an antigen in a specimen. [Prior Art] Various immunoassays for measuring an antigen in a sample, such as a single radial immunodiffusion method, a laser nephelometric method, a nephelometric method, a radioimmunoassay method, an enzyme immunoassay method, and a latex agglutination method, are available. It has been put to practical use. Recently, among these methods, optical immunoassay methods such as laser nephelometry and nephelometry have come into widespread use because of their rapid measurement, high sensitivity, and easy automation. In these optical immunoassays, an insoluble antigen-antibody complex is produced by mixing a sample containing an antigen to be measured with an antibody solution containing an antibody corresponding to the antigen,
At that time, changes in absorbance and scattered light intensity are measured. Since the amount of the antigen-antibody complex is increased as the amount of the antigen in the sample increases, the amount of the antigen in the sample can be measured by the magnitude of the optical change amount. The measurement of the amount of antigen is automatically performed within a short time using a laser nephelometer or an automatic analyzer developed for biochemical measurement of multiple items. [Disadvantages of Prior Art] In actual diagnosis, the amount of antigen to be measured in a sample is unknown before measurement, and when processing a large number of samples, the concentration and amount of the antibody solution added to each sample are the same. Is.
The concentration and amount of the antibody solution are selected so that the amount of antigen can be accurately measured even when the amount of antigen in the sample is large. Therefore,
In a sample with a small amount of antigen, the amount of antibody becomes excessive and it becomes difficult to form an antigen-antibody complex, and as a result, there is a drawback that the antigen cannot be quantified accurately. Further, when immunoassaying an antigen in a sample, there is a demand to measure the sample as it is without diluting the sample, but when measuring as it is, a large amount of antibody acts. Therefore, the problem of antibody excess described above becomes even more serious. [Problems to be Solved by the Invention] Accordingly, an object of the present invention is to provide an optical immunoassay for accurately quantifying an antigen even when the antigen to be measured is contained in a sample at a low concentration. To provide the law. [Means for Solving Problems] As a result of earnest research, the inventors of the present invention have made an antibody corresponding to an antigen to be measured act on an analyte in the conventional optical immunoassay method. By forming an antigen-antibody complex in advance, it was found that the antigen can be accurately quantified even when the sample to be measured contains a low concentration of the antigen, and the present invention was completed. That is, the present invention, the antigen to be measured in the sample,
An antigen-antibody complex formed by reacting a first antibody corresponding to the antigen to produce an antigen-antibody complex, and then reacting the antigen-antibody complex with a second antibody corresponding to the antigen An immunoassay method is provided, which comprises irradiating the skin with light and measuring the amount of optical change. [Effects of the Invention] According to the method of the present invention, even when the concentration of the antigen to be measured in a sample is wide ranging from low to high, the same concentration and amount of each sample can be obtained. The amount of antigen in each sample can be accurately measured using the antibody solution. DETAILED DESCRIPTION OF THE INVENTION In the present invention, first, a sample containing an antigen to be measured is
The first antibody against the antigen to be measured is allowed to act to form an antigen-antibody complex. The first antibody may be any as long as it corresponds to the antigen to be measured,
It may be a monoclonal antibody or a polyclonal antibody.
Further, the animal species serving as the source of the antibody is not limited, and it may be the same animal as the second antibody described below or a different animal. In addition, as the first antibody, a single antibody can be used, or a plurality of antibodies can be mixed and used. The amount of the first antibody added to the sample is such that aggregation does not substantially occur due to the formation of the antigen-antibody complex. Further, when the corresponding antigenic determinant is the same as the second antibody described later, the amount is such that the free antigenic determinant remains after the reaction with the first antibody. That is, the first antibody is usually mixed with the analyte in the form of a solution, in which case the first antibody
The concentration of the antibody solution is not particularly limited, but is usually about 5 mg / ml to 30 mg / ml. In addition, the mixing ratio of the first antibody solution and the sample is the amount of the second antibody, whether the first antibody is a polyclonal antibody or a monoclonal antibody, and
The content of the first antibody solution in the mixed solution of the first antibody solution and the specimen is usually 0.01 v / v% to 5.0 v / v, although it depends on whether the antibody and the second antibody are derived from the same animal or different animals. %. However, the mixing ratio of the first antibody solution is large when the amount of the second antibody is large, it is large when the first antibody is a monoclonal antibody, and the origin of the first antibody and the second antibody is the same species. However, it is not necessarily limited to the above range. The reaction condition between the first antibody and the sample may be any condition as long as an antigen-antibody reaction occurs, and usually 30 ° C to 37 ° C.
It is about 1 to 10 minutes at ℃. Further, the sample that can be used in the method of the present invention,
Any substance may be used as long as it may contain an antigen, and examples thereof include body fluids such as serum, urine and saliva. These body fluids can be used for measurement without being diluted. The antigen to be quantified may be any antigen as long as it has antigenicity, and examples thereof include immunoglobulin, complement, C-reactive protein, α-fetoprotein, haptoglobin and transferrin. Next, the second antibody is added to the mixture of the sample and the first antibody. The second antibody may be any antibody as long as it corresponds to the antigen to be measured, and may be a monoclonal antibody or a polyclonal antibody. The antigenic determinant of the second antibody may be the same as or different from the antigenic determinant of the first antibody. Therefore, the second antibody may be the same antibody as the first antibody. Further, the animal species serving as the source of the antibody is not limited, and it may be an animal of the same species as the first antibody or an animal of a different species. The second antibody may be a single antibody or a mixture of a plurality of antibodies. The second antibody is usually mixed with the analyte in the form of a solution.
In this case, the concentration of the first antibody solution is not particularly limited,
Usually, it is about 5 mg / ml to 30 mg / ml. Further, the mixing ratio of the first antibody solution and the sample varies depending on the amount of the first antibody, whether the second antibody is a polyclonal antibody or a monoclonal antibody, and whether the first antibody and the second antibody are derived from the same animal or different animals. However, the content of the first antibody solution is usually 0.01 v / v% to 5 v / v% in the mixed solution of the first antibody solution and the specimen. The mixing ratio of the first antibody solution is large when the amount of the second antibody is large, is small when the second antibody is a monoclonal antibody, and is small when the animal from which the first antibody and the second antibody are derived is the same species. However, the number is not necessarily limited to the above range. The reaction condition between the second antibody and the sample may be any condition as long as an antigen-antibody reaction occurs, and it is usually 30 ° C to 37 ° C.
It is about 1 to 10 minutes at ℃. Immediately after adding the second antibody, the reaction system is irradiated with light,
The amount of optical change is measured. The optical change amount is the change amount of the transmitted light amount (that is, the change amount of the absorbance) or the change amount of the scattered light intensity. The measurement of the amount of optical change can be automatically performed using a commercially available automatic analyzer conventionally used in this field. When the amount of the antigen in the sample is large, a large amount of the antigen-antibody complex is generated and aggregation rapidly occurs, so that the optical change amount becomes large. Therefore, if a calibration curve is prepared based on a sample of known concentration, the antigen in the sample of unknown concentration can be quantified. [Examples of the Invention] Example 1 5 μl of a physiological saline solution of human IgG having a concentration of 0 to 3200 mg / dl.
In addition, as the first antibody, a solution of anti-human IgG monoclonal antibody with a concentration of 12.8 mg / ml (antibody titer 10,000 times by ELISA method) * 1
Was added to 300 μl of a 20 mM glycine buffer solution (pH 9.5) containing 1.0 v / v% of the mixture, and the mixture was reacted at 37 ° C. for 5 minutes. On the other hand, as a control, 300 μl of the same buffer solution containing no anti-human IgG monoclonal antibody as the first antibody was added to the above human IgG solution, and the same reaction was performed. 300 μl of anti-human IgG serum was added to each mixture as the second antibody, and the change in the absorbance during 1 to 3 minutes after the reaction was started using an automatic analyzer (Toshiba TBA-480) while reacting at 37 ° C. The measurement was carried out at a wavelength of 340 nm, and the rate of change in absorbance per minute was calculated from the measurement results. The results are shown in FIG. In FIG. 1, the solid line shows the result when both the first antibody and the second antibody were acted according to the method of the present invention, and the broken line is the result when only the second antibody was acted according to the conventional method. Show. As is apparent from FIG. 1, when the first antibody was not added, the absorbance change rate proportional to the IgG concentration could not be obtained when the IgG concentration was 1600 mg / dl or less due to excess antibody, but when the monoclonal antibody was added. A change rate in absorbance proportional to the IgG concentration was obtained. Thus, according to the method of the present invention,
It can be seen that it is difficult to measure by the conventional immunoturbidimetric method and other immunoassay methods, and it becomes possible to accurately quantify the antigen from low concentration to high concentration. * 1 A monoclonal antibody obtained by proliferating a hybridoma obtained by fusing BALB / c mouse spleen cells immunized with human IgG and mouse myeloma cell P3U1 by a conventional method in the abdominal cavity of BALB / c mice. Example 2 5 μl of a physiological saline solution of human IgG having a concentration of 0 to 3200 mg / dl
In addition, a 20 mM glycine buffer solution (pH9.10) containing 0.4 v / v% of an anti-human IgG polyclonal antibody solution having a concentration of 15 mg / ml as the first antibody.
5) 300 μl was added and reacted at 37 ° C. for 5 minutes. On the other hand, as a control, anti-human I as the first antibody was added to the above human IgG solution.
300 μl of the same buffer containing no gG polyclonal antibody was added and reacted in the same manner. As the second antibody, 300 μl of anti-human IgG serum containing the same antibody as the above-mentioned first antibody was added to each mixture, and the reaction was carried out at 37 ° C. while using an automatic analyzer (Toshiba TBA-480). The change in absorbance between minutes and 3 minutes was measured at a wavelength of 340 nm, and the rate of change in absorbance per minute was calculated from the measurement results. The results are shown in FIG. In FIG. 2, the solid line shows the result when both the first antibody and the second antibody were acted according to the method of the present invention, and the broken line is the result when only the second antibody was acted according to the conventional method. Show. As is clear from FIG. 2, as in Example 1, anti-human IgG
When the polyclonal antibody was added, the absorbance change rate proportional to the IgG concentration was obtained. Further, in the method of the present invention, it was found that not only the monoclonal antibody used in Example 1 but also a polyclonal antibody can be used as the first antibody to perform accurate immunoassay. Example 3 This example is intended to show that the presence of the first antibody does not reduce the measurement accuracy and precision. Using the IgG standard sample of known concentration, the same operation as in Example 2 was performed to prepare a calibration curve. Next, for various unknown concentrations
The same operation as in Example 1 and Example 2 was performed using a sample containing the IgG antibody as it was, and the IgG concentration in the sample was determined from the measurement results and the calibration curve. On the other hand, the concentration of the same sample was measured based on the conventional one-way radiation immunodiffusion method which has been widely known, and the result was compared with the result obtained by the method of the present invention. A correlation diagram of the measured values by the above-mentioned two methods is shown in FIG. The correlation coefficient of this correlation diagram was 0.958, and it was found that the measured values by the above-mentioned two methods were almost the same. That is, it was revealed that the presence of the first antibody did not adversely affect the measurement accuracy and precision in the method of the present invention.

【図面の簡単な説明】 第1図はモノクローナル抗体を第1抗体として用いた場
合の検量線と従来法による検量線とを示す図、 第2図はポリクローナル抗体と第1抗体として用いた場
合の検量線と従来法による検量線とを示す図、 第3図はこの発明の方法による免疫定量の結果と一元放
射免疫拡散法による免疫測定の結果の相関図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a calibration curve when a monoclonal antibody is used as the first antibody and a calibration curve by a conventional method, and FIG. 2 shows when a polyclonal antibody and the first antibody are used. FIG. 3 is a diagram showing a calibration curve and a calibration curve by a conventional method, and FIG. 3 is a correlation diagram of the result of immunoassay by the method of the present invention and the result of immunoassay by the one-way radiation immunodiffusion method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 目黒 修一 新潟県五泉市南本町1丁目2番2号 デ ンカ生研株式会社新潟工場内 (72)発明者 関根 盛 新潟県五泉市南本町1丁目2番2号 デ ンカ生研株式会社新潟工場内 (72)発明者 元田 昭策 新潟県五泉市南本町1丁目2番2号 デ ンカ生研株式会社新潟工場内 (56)参考文献 特開 昭60−237363(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Shuichi Meguro               1-2-2 Minamihonmachi, Gosen City, Niigata Prefecture               Nka Seiken Co., Ltd. Niigata Factory (72) Inventor Mori Sekine               1-2-2 Minamihonmachi, Gosen City, Niigata Prefecture               Nka Seiken Co., Ltd. Niigata Factory (72) Inventor Shosaku Motoda               1-2-2 Minamihonmachi, Gosen City, Niigata Prefecture               Nka Seiken Co., Ltd. Niigata Factory                (56) References JP-A-60-237363 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.検体中の測定すべき抗原と、該抗原に対応する第1
の抗体とを反応させて抗原抗体複合物を生成させ、その
後、該抗原抗体複合物と前記抗原に対応する第2の抗体
を反応させ、形成される抗原抗体複合物に光を照射して
光学的変化量を測定することから成る免疫定量法。 2.光学的変化量が光散乱強度の変化量である特許請求
の範囲第1項記載の免疫定量法。 3.光学的変化量が透過光量の変化量である特許請求の
範囲第1項記載の免疫定量法。
(57) [Claims] The antigen to be measured in the sample and the first corresponding to the antigen
To produce an antigen-antibody complex, and thereafter, the antigen-antibody complex is reacted with a second antibody corresponding to the antigen, and the formed antigen-antibody complex is irradiated with light to generate an optical spectrum. Immunoassay consisting of measuring the dynamic change. 2. The immunoassay method according to claim 1, wherein the optical change amount is a change amount of the light scattering intensity. 3. The immunoassay method according to claim 1, wherein the amount of optical change is the amount of change in transmitted light.
JP62193706A 1987-08-04 1987-08-04 Immunoassay Expired - Fee Related JP2678273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62193706A JP2678273B2 (en) 1987-08-04 1987-08-04 Immunoassay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62193706A JP2678273B2 (en) 1987-08-04 1987-08-04 Immunoassay

Publications (2)

Publication Number Publication Date
JPS6438654A JPS6438654A (en) 1989-02-08
JP2678273B2 true JP2678273B2 (en) 1997-11-17

Family

ID=16312430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62193706A Expired - Fee Related JP2678273B2 (en) 1987-08-04 1987-08-04 Immunoassay

Country Status (1)

Country Link
JP (1) JP2678273B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301165A (en) * 1988-05-30 1989-12-05 Sekisui Chem Co Ltd Immunoassay

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736016B2 (en) * 1984-05-11 1995-04-19 和光純薬工業株式会社 Immunoglobulin quantification method

Also Published As

Publication number Publication date
JPS6438654A (en) 1989-02-08

Similar Documents

Publication Publication Date Title
AU2016203292B2 (en) Monoclonal antibody, and immunoassay using same
KR920000056B1 (en) Process for the determination of a specifically bindable substance
JP2677753B2 (en) Aggregation immunoassay
JPS605899B2 (en) Immunochemical quantitative method
US5371021A (en) Initial rate photometric method for immunoassay
CA2001253C (en) Process for the determination of antibodies which are class-specific for an antigen and a reagent for carrying out the process
JP2678273B2 (en) Immunoassay
JPH01301165A (en) Immunoassay
JPH11287801A (en) Method and kit for immunoassay
JP4488460B2 (en) Immunoassay method and reagent
JPH06167495A (en) Aggregation immunoassay method
JP2004012434A (en) Method for measuring pepsinogen and measuring kit
JP2001255325A (en) Immunoassay and reagent
JP2541826B2 (en) Immunoassay
JP2618629B2 (en) Specific immunological quantification method
JP2002303630A (en) Latex immuno-nephelometry and kit used therefor
JPH0448265A (en) Immunoassay
JPH04329357A (en) Immunological measuring method
JPS61243363A (en) Highly sensitive assay of crp
JP2534067B2 (en) Quantitative method for C-reactive protein
JPH08292192A (en) Immunoassary
IE54400B1 (en) A method for the determination of antigens
WO2024004805A1 (en) Immunological assay method
JPH0763758A (en) Immunological measuring method
WO2024048583A1 (en) Immunoassay method, non-specific reaction suppression method, immunoassay reagent, immunoassay reagent kit, composition, non-specific reaction suppressing agent, and use

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees