JPS63206614A - Absolute magnetic encoder - Google Patents

Absolute magnetic encoder

Info

Publication number
JPS63206614A
JPS63206614A JP3917987A JP3917987A JPS63206614A JP S63206614 A JPS63206614 A JP S63206614A JP 3917987 A JP3917987 A JP 3917987A JP 3917987 A JP3917987 A JP 3917987A JP S63206614 A JPS63206614 A JP S63206614A
Authority
JP
Japan
Prior art keywords
stripe
recording medium
pattern
magnetic field
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3917987A
Other languages
Japanese (ja)
Inventor
Mitsuaki Ikeda
満昭 池田
Hisayuki Kako
久幸 加来
Shinji Yamashita
山下 慎次
Kenji Hara
賢治 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP3917987A priority Critical patent/JPS63206614A/en
Priority to US07/159,745 priority patent/US4851771A/en
Publication of JPS63206614A publication Critical patent/JPS63206614A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a change in output in relation to a change in spacing by a method wherein an angle formed by the stripe length direction of a magnetoresistance (MR) element and the direction of the tangent of the surface of a substrate in a part wherein the MR element and the substrate are in the closest vicinity to each other is set to be within a specified range. CONSTITUTION:A plurality of magnetized pattern arrays n1... are written as shown by arrows on a magnetic recording medium 3 formed on the lateral side of a drum 2, and a magnetic field leaking from these magnetized patterns n1... acts on a corresponding MR element 5 formed on a substrate 4. It is found herein from an effect produced on an encoder output value by an angle alpha formed by the length (l) direction of the element 5 and the direction of the tangent of the surface of the recording medium 3, that the angle alpha needs only to be tan<-1> [(l+g)/p]<alpha<=90 deg. (g: a distance whereat the recording medium 3 and the element 5 are in the closest vicinity to each other, and p: a position reading unit). Since the stripe width direction of the element 5 is in the direction of the magnetized pattern arrays and the magnetic field is impressed in the direction of the stripe width, the element is made free from the effect of a diamagnetic field. In addition, the width of the magnetized pattern arrays can be narrowed without reducing resolving power, since a stripe can be turned back with the same pattern array.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は回転体や直線運動体の絶対位置を検出する絶対
位置検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an absolute position detector that detects the absolute position of a rotating body or a linearly moving body.

〔従来の技術〕[Conventional technology]

ロボットやマニピュレータに組込まれた回転または直線
運動を行うアクチュエータの位置を瞬時に正確に測定す
る検出器が要求されている。このような検出器としては
従来光電式が多用されてきた。この光電式検出器はガラ
ス円板に金属膜を蒸着しフォトリソにより作られた光学
スリットと発光ダイオードおよび受光素子としてフォト
ダイオードから構成されているため、ガラス円板が衝撃
に弱いことや、ダイオードを使っているので高温まで使
えないことや、発光、受光素子の配置上、薄肉化は不可
能という欠点があった。
There is a need for a detector that can instantaneously and accurately measure the position of an actuator that performs rotational or linear motion built into a robot or manipulator. Conventionally, photoelectric type detectors have often been used as such detectors. This photoelectric detector consists of an optical slit made by photolithography of a metal film deposited on a glass disk, a light emitting diode, and a photodiode as a light receiving element. The disadvantages are that it cannot be used at high temperatures and that it is impossible to make it thinner due to the arrangement of the light-emitting and light-receiving elements.

近年、ロボットやマニピュレータの小型化に伴ない検出
器の耐熱性向上や小型高分解能化の必要性は高まってき
た。こめような要求に対し、磁化パターンの書込まれた
ドラムと磁気抵抗効果素子(以下、MR素子と略す)を
組み合せた角度検出器が発明された(特開昭54−11
8259)。この角度検出器は、回転軸と連動して回転
する磁気記録媒体もしくは複数の永久磁石の配列と、こ
の磁気記録媒体に書込まれた磁化情報もしくは永久磁石
の配列具合を検出するMR素子と、このMR素子の抵抗
変化を検出し外部に出力する駆動検出回路よりなる。そ
して回転角の絶対値が読めるようにその磁化パターンの
列もしくは永久磁石の配列、すなわち情報トラックを多
数設け、その各々にMR素子を設けている。
In recent years, with the miniaturization of robots and manipulators, the need for improved heat resistance and smaller size and higher resolution detectors has increased. In response to these demands, an angle detector was invented that combined a drum with a magnetization pattern written on it and a magnetoresistive element (hereinafter referred to as MR element) (Japanese Patent Laid-Open No. 54-11).
8259). This angle detector includes a magnetic recording medium that rotates in conjunction with a rotating shaft or an arrangement of a plurality of permanent magnets, and an MR element that detects magnetization information written on the magnetic recording medium or the arrangement of the permanent magnets. It consists of a drive detection circuit that detects the resistance change of this MR element and outputs it to the outside. In order to read the absolute value of the rotation angle, a large number of arrays of magnetization patterns or arrays of permanent magnets, that is, information tracks, are provided, and an MR element is provided in each of them.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第9図(a)はその構造を示す斜視図、同図(b)はそ
のMR素子部の拡大図である。これらの構成において磁
気記録媒体13から磁界HexがMR素子15に印加さ
れたとき、MR素子15に入る磁界He、、は反磁界を
Hdとすると、 Herf=Hex  Hd となる(特開昭57−197885)。
FIG. 9(a) is a perspective view showing the structure, and FIG. 9(b) is an enlarged view of the MR element section. In these configurations, when the magnetic field Hex is applied from the magnetic recording medium 13 to the MR element 15, the magnetic field He, which enters the MR element 15, becomes Herf=Hex Hd, where Hd is the demagnetizing field (Japanese Patent Application Laid-Open No. 1983-1999). 197885).

ここで、MR素子15のパターン幅をW、膜厚をt、M
Rると、MR素子15の飽和磁化をIsとすると、なの
で となる。つまり、パターン幅Wが小さくなると反磁界H
dが大きくなり磁界Haffが小さくなるのでMR素子
15の出力低下が起こる。普通、パターン幅Wの2倍が
位置読取単位と考えているのでこのような構造では限界
パターン幅10鱗から考えて20μsが位置読取単位に
なり、要求されている数鱗を達成できない。さらに、M
R素子15のストライプ長は発熱を抑えるために各列と
もに最低2mmの長さが必要となるので第9図の例では
ドラム厚さが10mn以上にもなる。もちろん、ストラ
イプを折り返してもよいが、その分だけ分解能が下がる
。また、MR素子15と磁気記録媒体I3の距離gの変
動が出力変動に敏感にきいてくるため距離gの変動も少
なくするためにドラムの機械仕上げやMR素子15の取
付けを精度よくする必要があった。
Here, the pattern width of the MR element 15 is W, the film thickness is t, and M
R, and if the saturation magnetization of the MR element 15 is Is, then. In other words, when the pattern width W becomes smaller, the demagnetizing field H
As d increases and the magnetic field Haff decreases, the output of the MR element 15 decreases. Normally, twice the pattern width W is considered to be the position reading unit, so in this structure, considering the limit pattern width of 10 scales, the position reading unit is 20 μs, and the required number of scales cannot be achieved. Furthermore, M
The stripe length of the R elements 15 needs to be at least 2 mm in each row in order to suppress heat generation, so in the example shown in FIG. 9, the drum thickness becomes 10 mm or more. Of course, the stripes may be folded back, but the resolution will be reduced accordingly. In addition, since fluctuations in the distance g between the MR element 15 and the magnetic recording medium I3 are sensitive to output fluctuations, it is necessary to improve the mechanical finishing of the drum and the mounting of the MR element 15 in order to reduce fluctuations in the distance g. there were.

本発明の目的は、高分解能化(位置読取単位を小さく)
はもとより薄くてしかもMR素子と磁気媒体との距離の
変動に対しても出力変動の少ないアブソリュート磁気エ
ンコーダを提供することにある。
The purpose of the present invention is to achieve high resolution (smaller position reading unit)
The object of the present invention is to provide an absolute magnetic encoder that is thinner and has less output fluctuation even when the distance between an MR element and a magnetic medium changes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のアブソリュート磁気エンコーダは、要求される
位置読取精度に応じた磁化パターンの列を少なくとも2
列有する基体と、この基体より漏洩する磁界を検出する
ために各磁化パターン列に配置されたストライプ状の磁
気抵抗効果素子の組合せにより前記基体の絶対位置、す
なわち番地を読出すアブソリュート磁気エンコーダにお
いて、 前記磁気抵抗効果素子のストライプ長さをl、基体と磁
気抵抗効果素子の最近接距離をg、位置読取単位をPと
したとき、磁気抵抗効果素子のストライプ長さ方向と前
記最近接部での基体表面90度の範囲にあり、ストライ
プ幅方向が前記磁化パターン列方向と平行であり、スト
ライプ幅方向に磁化パターンからの磁界が印加されるこ
とを特徴とする。
The absolute magnetic encoder of the present invention has at least two rows of magnetization patterns depending on the required position reading accuracy.
An absolute magnetic encoder that reads out the absolute position of the base body, that is, the address, by a combination of a base body having a column and striped magnetoresistive elements arranged in each magnetization pattern column to detect the magnetic field leaking from the base body, When the stripe length of the magnetoresistive element is l, the closest distance between the substrate and the magnetoresistive element is g, and the position reading unit is P, the distance between the stripe length direction of the magnetoresistive element and the nearest part is The stripe width direction is parallel to the magnetization pattern row direction, and the magnetic field from the magnetization pattern is applied in the stripe width direction.

〔作用) 磁気記録媒体面とMR素子パターン長さ方向の角度θが
磁気エンコーダの出力値に及ぼす影響を調べ、第7図に
示すような結果を得た。MR素子パターンが傾くに従っ
て出力は小さくなり、αがtan−’ (−!!’−!
−) < a≦90°であればよいこがわかる。
[Function] The influence of the angle θ between the magnetic recording medium surface and the length direction of the MR element pattern on the output value of the magnetic encoder was investigated, and the results shown in FIG. 7 were obtained. As the MR element pattern tilts, the output becomes smaller, and α becomes tan-'(-!!'-!
-) <a≦90°.

磁化パターンのピッチは回転方向であるのに対し、MR
素子のストライプ幅方向は磁化パターン列方向で、スト
ライプ幅方向に磁界が印加されるので反磁界の影響を受
けなくなり、パターン幅Wを小さくでき、ピッチPもパ
ターン幅Wの制限を受けない。さらに、ストライプを同
じビット位置(同じパターン列)で折り返してもよいの
で、分解能な下げることなく磁化パターン列の幅も狭く
できる。
The pitch of the magnetization pattern is in the rotational direction, whereas the MR
The stripe width direction of the element is the magnetization pattern column direction, and since a magnetic field is applied in the stripe width direction, it is not affected by the demagnetizing field, the pattern width W can be made small, and the pitch P is not limited by the pattern width W. Furthermore, since the stripes may be folded back at the same bit position (same pattern row), the width of the magnetized pattern row can be narrowed without lowering the resolution.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明のアブソリュート磁気エンコーダの一実
施例の斜視図、第2図は第1図において、磁界パターン
からのもれ磁界HがMR素子パターンに流れるセンス電
流と直交する様子を示す図、第3図は磁化パターンn1
.n2.n3に対する出力電圧を示す図、第4図はMR
素子5の詳細図、第5図は本実施例における出力電圧と
ビット長の関係を従来例と比較して示す図、第6図は本
実施例における出力電圧とスペーシングの関係を従来例
と比較して示す図である。
FIG. 1 is a perspective view of an embodiment of the absolute magnetic encoder of the present invention, and FIG. 2 is a diagram showing how the leakage magnetic field H from the magnetic field pattern in FIG. 1 is perpendicular to the sense current flowing through the MR element pattern. , FIG. 3 shows the magnetization pattern n1
.. n2. A diagram showing the output voltage for n3, Figure 4 is MR
FIG. 5 is a detailed diagram of the element 5, and FIG. 5 is a diagram showing the relationship between the output voltage and bit length in this embodiment in comparison with the conventional example. FIG. 6 is a diagram showing the relationship between the output voltage and spacing in this embodiment in comparison with the conventional example. It is a figure shown by comparison.

本実施例は、第1図に示すように、回転軸1に固定され
たドラム2と、その側面に形成された磁気記録媒体3と
、基板4上に形成されたMR素子5および導体端子6よ
りなる検出ヘッドと、導体端子6に接続されたリード線
7および外部への出力端子を有する駆動検出回路8とよ
りなる。磁気記録媒体3には第1図に矢印で示したよう
に5木の磁化パターン列nl”’n5が書込まれており
、これらの磁化パターンn、〜n5から漏れる磁界が対
応するMR素子5に作用する。つまり、第2図に示すよ
うに磁気記録媒体3からのもれ磁界Hは、MR素子パタ
ーンに流れるセンス電流に直交することにより磁化パタ
ーン”+ + ”2 +  n3に対しそれぞれ第3図
(a) 、 (b) 、 (c)のような抵抗変化、す
なわち出力電圧が得られる。この信号の立上り/立下り
部のほぼ中央に近い電圧をしきい値としてパルス化する
と、第3図(d) 、 (e) 、 (f)のようにな
り、これらのパルスの組合せ表(第3図(g))より最
小読取角Δθを単位として番地付けがなされ、各点のパ
ルス出力より絶対位置がわかる。ここで、磁化パターン
列数をnとすると、最小読取角θは 380’ Δθ=□ n となる。
As shown in FIG. 1, this embodiment includes a drum 2 fixed to a rotating shaft 1, a magnetic recording medium 3 formed on the side surface of the drum 2, an MR element 5 and a conductor terminal 6 formed on a substrate 4. The drive detection circuit 8 has a lead wire 7 connected to a conductor terminal 6 and an output terminal to the outside. Five magnetization pattern arrays nl'''n5 are written on the magnetic recording medium 3 as shown by arrows in FIG. In other words, as shown in FIG. 2, the leakage magnetic field H from the magnetic recording medium 3 is orthogonal to the sense current flowing through the MR element pattern, and thereby acts on the magnetization pattern "+ + "2 + n3, respectively. Resistance changes, that is, output voltages, as shown in Figures 3(a), (b), and (c) are obtained.If the voltage near the center of the rising/falling portion of this signal is used as a threshold value and pulsed, the Figure 3 (d), (e), and (f) show the results, and from the combination table of these pulses (Figure 3 (g)), addresses are assigned in units of minimum reading angle Δθ, and the pulse output at each point is The absolute position can be determined from this.Here, if the number of magnetization pattern rows is n, the minimum reading angle θ is 380' Δθ=□ n .

したがって、n列目の最小ビット長pは、ドラム2の半
径なrとすると となる。
Therefore, the minimum bit length p of the nth column is given by r, which is the radius of the drum 2.

直径2(1mm、 Hさ8mIN+のアルミ製ドラムの
外周部にBa−フェライト膜を厚さ 100戸に塗布し
たドラムを製作し、種々のビット長pをもつ磁化パター
ンな着磁ヘッドで形成した。磁化パターン1列の幅は3
00牌とした。このドラムを第4図に示すような幅20
鱗、長さ250μのパターンを8回くり返し、全長2 
、2mmとしたMRセンサと組合せて出力電圧とビット
長pの関係を調べた。センサ膜厚は600人とした。第
5図に示すように本実施例では従来例の限界である20
鱗以下でも出力電圧はノズルレベルより十分大きいため
、高分解能化が可能であることが分る。MRセンサの厚
さは普通600人であるので、本実施例の構造では、こ
の厚さの2倍位が最小ビット長になる限界をきめる。ま
た、この構造ではMR素子パターンストライプを何ン列
の幅は従来の211Imに比べ本実施例では250ul
と約178になり、MR素子パターン幅を狭くすればさ
らに小さくてよい。すなわち小型化できる。
A drum made of aluminum with a diameter of 2 (1 mm) and a height of 8 m IN+ was coated with a Ba-ferrite film to a thickness of 100 mm on the outer periphery, and was formed using a magnetizing head with magnetization patterns having various bit lengths p. The width of one row of magnetization pattern is 3
It was set as 00 tiles. This drum has a width of 20 mm as shown in Figure 4.
Scales, length 250μ pattern repeated 8 times, total length 2
, the relationship between the output voltage and the bit length p was investigated in combination with an MR sensor with a diameter of 2 mm. The sensor film thickness was set to 600 people. As shown in FIG. 5, in this embodiment, the limit of 20
Even below the scale, the output voltage is sufficiently higher than the nozzle level, indicating that high resolution is possible. Since the thickness of an MR sensor is normally 600 mm, in the structure of this embodiment, the minimum bit length is determined to be about twice this thickness. In addition, in this structure, the width of each row of MR element pattern stripes is 250 ul in this example compared to the conventional 211 Im.
This becomes approximately 178, which can be further reduced by narrowing the MR element pattern width. In other words, it can be made smaller.

次に、ドラムとセンサ間距離gが出力値に及ぼす影響を
従来例と比較し第6図に示す結果を得た。距離gの変化
に対し出力変動は小さいため、距111Jgの許容範囲
が広がる結果ドラムの仕上げやMRセンサの取付は精度
も厳しくなくてよい。 第8図は本発明の他の実施例を
示す斜視図である。
Next, the influence of the distance g between the drum and the sensor on the output value was compared with that of the conventional example, and the results shown in FIG. 6 were obtained. Since the output fluctuation is small with respect to a change in the distance g, the tolerance range for the distance 111Jg is widened, and as a result, the finishing of the drum and the mounting of the MR sensor do not have to be very precise. FIG. 8 is a perspective view showing another embodiment of the present invention.

同図(a) 、 (b)はFe−Go−Cr磁石をドラ
ムとディスクにはったもの、同図(C)は磁化パターン
列間に非着磁部を設け、さらにとなり同志の磁化の向き
を反対にしたもの、同図(d)はGo、−Cr垂直磁化
膜を使った例である。これらが第1図の実施例と同し効
果があることは明らかである。
Figures (a) and (b) show Fe-Go-Cr magnets attached to the drum and disk, and figure (C) shows a non-magnetized part between the magnetized pattern rows, and further magnetization of adjacent comrades. The example in which the direction is reversed (FIG. 2(d)) uses Go and -Cr perpendicular magnetization films. It is clear that these have the same effect as the embodiment shown in FIG.

(発明の効果〕 以上説明したように本発明は、磁気抵抗効果素子のスト
ライプ長さ方向と、基体との最近接部での基体表面接線
方向とのなす角度αをj a n −’ (”’−)度
から90度の範囲とし、ストライプ方向が磁化パターン
列方向と平行として、スドライブ幅方向に磁化パターン
からの磁界が印加されるようにしたことにより、最小位
置読取単位も小さくでき、磁化パターン列幅も小さくで
きるので小型高分解能のエンコーダを製造でき、さらに
、スペーシング変動に対する出力変化が小さいので組立
てや加工精度もあまり必要としないので価格も安くなる
という効果がある。
(Effects of the Invention) As explained above, the present invention provides an angle α between the length direction of the stripe of the magnetoresistive element and the surface line direction of the substrate at the closest point to the substrate by j a n −' (” By setting the stripe direction parallel to the magnetization pattern row direction and applying the magnetic field from the magnetization pattern in the width direction of the strip drive, the minimum position reading unit can be made small. Since the width of the magnetization pattern row can be made small, it is possible to manufacture a compact high-resolution encoder.Furthermore, since the output change with respect to the spacing variation is small, assembly and processing precision are not required, so the price can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアブソリュート磁気エンコーダの一実
施例の斜視図、第2図は第1図において、磁界パターン
からのもれ磁界HがMR素子パターンに流れるセンス電
流と直交する様子を示す図、第3図は磁化パターン”I
 + ”2 r n3に対する出力電圧を示す図、第4
図はMR素子5の詳細図、第5図は本実施例における出
力電圧とビット’、−1% pの関係を従来例と比較し
て示す図、第6図は本実施例における出力電圧とスペー
シングgの関係を従来例と比較して示す図、第7図は本
発明における出力電圧とθの関係を示す図、第8図は本
発明の他の実施例を示す図、第9図は従来例を示す図で
ある。 1・・・回転軸、      2・・・ドラム、3・・
・磁気記録媒体、  4・・・基板、5・・・MR素子
、      6・・・導体端子、7・・・リード線、
    8・・・駆動検出回路。
FIG. 1 is a perspective view of an embodiment of the absolute magnetic encoder of the present invention, and FIG. 2 is a diagram showing how the leakage magnetic field H from the magnetic field pattern in FIG. 1 is perpendicular to the sense current flowing through the MR element pattern. , Figure 3 shows the magnetization pattern "I"
+”2 Diagram showing the output voltage for n3, 4th
The figure is a detailed diagram of the MR element 5, FIG. 5 is a diagram showing the relationship between the output voltage and bit', -1% p in this embodiment in comparison with the conventional example, and FIG. 6 is a diagram showing the relationship between the output voltage in this embodiment and A diagram showing the relationship between spacing g in comparison with a conventional example, FIG. 7 is a diagram showing the relationship between output voltage and θ in the present invention, FIG. 8 is a diagram showing another embodiment of the present invention, and FIG. 9 1 is a diagram showing a conventional example. 1...rotating shaft, 2...drum, 3...
・Magnetic recording medium, 4... Substrate, 5... MR element, 6... Conductor terminal, 7... Lead wire,
8... Drive detection circuit.

Claims (1)

【特許請求の範囲】  要求される位置読取精度に応じた磁化パターンの列を
少なくとも2列有する基体と、この基体より漏洩する磁
界を検出するために各磁化パターン列に配置されたスト
ライプ状の磁気抵抗効果素子の組合せにより前記基体の
絶対位置、すなわち、番地を読出すアブソリュート磁気
エンコーダにおいて、 前記磁気抵抗効果素子のストライプ長さをl、基体と磁
気抵抗効果素子の最近接距離をg、位置読取単位をpと
したとき、磁気抵抗効果素子のストライプ長さ方向と前
記最近接部での基体表面接線方向とのなす角度αがta
n^−^1[(l+g)/p]度から90度の範囲にあ
り、ストライプ幅方向が前記磁化パターン列方向と平行
であり、ストライプ幅方向に磁化パターンからの磁界が
印加されることを特徴とする絶対位置検出器。
[Scope of Claims] A base body having at least two rows of magnetization patterns corresponding to the required position reading accuracy, and a magnetic stripe arranged in each magnetization pattern row to detect magnetic fields leaking from the base body. In an absolute magnetic encoder that reads out the absolute position, that is, the address, of the base by a combination of resistive elements, the stripe length of the magnetoresistive element is l, the closest distance between the base and the magnetoresistive element is g, and the position is read. When the unit is p, the angle α between the stripe length direction of the magnetoresistive element and the substrate surface surface line direction at the nearest portion is ta.
The range is from n^-^1[(l+g)/p] degrees to 90 degrees, the stripe width direction is parallel to the magnetization pattern column direction, and the magnetic field from the magnetization pattern is applied in the stripe width direction. Features: Absolute position detector.
JP3917987A 1987-02-24 1987-02-24 Absolute magnetic encoder Pending JPS63206614A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3917987A JPS63206614A (en) 1987-02-24 1987-02-24 Absolute magnetic encoder
US07/159,745 US4851771A (en) 1987-02-24 1988-02-24 Magnetic encoder for detection of incremental and absolute value displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3917987A JPS63206614A (en) 1987-02-24 1987-02-24 Absolute magnetic encoder

Publications (1)

Publication Number Publication Date
JPS63206614A true JPS63206614A (en) 1988-08-25

Family

ID=12545888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3917987A Pending JPS63206614A (en) 1987-02-24 1987-02-24 Absolute magnetic encoder

Country Status (1)

Country Link
JP (1) JPS63206614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012290A1 (en) * 1989-04-13 1990-10-18 Hitachi Metals, Ltd. Magnetic encoder
JP2007033245A (en) * 2005-07-27 2007-02-08 Mitsubishi Electric Corp Magnetic absolute type encoder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012290A1 (en) * 1989-04-13 1990-10-18 Hitachi Metals, Ltd. Magnetic encoder
JP2007033245A (en) * 2005-07-27 2007-02-08 Mitsubishi Electric Corp Magnetic absolute type encoder
JP4622725B2 (en) * 2005-07-27 2011-02-02 三菱電機株式会社 Magnetic absolute encoder

Similar Documents

Publication Publication Date Title
US4851771A (en) Magnetic encoder for detection of incremental and absolute value displacement
US5949051A (en) Magnetic encoder using a displacement detecting circuit thereof
US5497082A (en) Quadrature detector with a hall effect element and a magnetoresistive element
US4785241A (en) Encoder unit using magnetoresistance effect element
US5476324A (en) Spline bearing
JP3037380B2 (en) Magnetic encoder
JPS63206614A (en) Absolute magnetic encoder
CN115930753A (en) Position sensor system, optical lens system and display
JPS6243483B2 (en)
US6307366B1 (en) Object position sensor using magnetic effect device
JPH01109212A (en) Absolute magnetic encoder
US8427930B1 (en) Memory device
JP2598782B2 (en) Magnetic encoder device
JPH01413A (en) magnetic encoder
JPH0694475A (en) Magnetic type absolute valve encoder
JPH0617800B2 (en) Magnetic encoder
JP2957130B2 (en) Rotational position detector
JPH01145520A (en) Absolute magnetic encoder
JPS60244813A (en) Zero-point detecting device for magnetic encoder
JPS63206613A (en) Absolute magnetic encoder
JPH0348721A (en) Magnetic encoder
JP2008298729A (en) Magnetic scale for magnetic type encoder and manufacturing method thereof
JP2607868B2 (en) Magnetic rotary encoder
JP2979692B2 (en) Magnetic encoder
JPH0618279A (en) Detecting apparatus for position