JPS63206613A - Absolute magnetic encoder - Google Patents

Absolute magnetic encoder

Info

Publication number
JPS63206613A
JPS63206613A JP3917887A JP3917887A JPS63206613A JP S63206613 A JPS63206613 A JP S63206613A JP 3917887 A JP3917887 A JP 3917887A JP 3917887 A JP3917887 A JP 3917887A JP S63206613 A JPS63206613 A JP S63206613A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic
magnetization
stripe
pattern array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3917887A
Other languages
Japanese (ja)
Inventor
Mitsuaki Ikeda
満昭 池田
Kenji Hara
賢治 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP3917887A priority Critical patent/JPS63206613A/en
Priority to US07/159,745 priority patent/US4851771A/en
Publication of JPS63206613A publication Critical patent/JPS63206613A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an encoder having a stable spacing characteristic by a method wherein the stripe length direction of a magnetoresistance (MR) element is made perpendicular substantially to the surface of a magnetic recording medium while the strip width direction thereof is made parallel to the direction of a magnetized pattern array. CONSTITUTION:A magnetic recording medium 1 is formed on the outer peripheral part of a drum 4 fixed to a rotating shaft 3, while an MR element 2 and a terminal 6 are formed on a glass substrate 5 and connected to a drive detector circuit 8 through a lead wire 7. The stripe length direction of the element 2 is made perpendicular substantially to the surface of the recording medium 1, while the stripe width direction thereof is made parallel to a magnetized pattern array of the recording medium 1. Arrows marked on the recording medium 1 represent the degree of intensity of magnetization and are magnetized by means of a ring head. On the occasion, the distribution of the intensity of magnetization shows a triangular shape in one magnetized pattern array, and a phase difference between first and second arrays is 90 deg.. Thus, a change in the resistance of the element 2 occurs in accordance with the intensity of magnetic field leaking from the recording medium 1. An output signal of this change is inputted to the circuit 8, and the position of a motor can be detected from the amplitude of the signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はロボットやマニピュレータ等の製品における駆
動用、制御用モータの絶対位置検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an absolute position detector for drive and control motors in products such as robots and manipulators.

(従来の技術〕 ロボットやマニピュレータに組込まれ、回転または直線
運動を行うアクチュエータの絶対位置を瞬時に正確に測
定することができる検出器が要求されている。このよう
な検出器としては非接触式でかつ全周形であることが望
ましい。したがって、このような用途に適合するものと
して光電式エンコーダが従来用いられてきた。この光電
式エンコーダはガラス円板に金属膜を蒸着しフォトリソ
により作られた光学スリットと発光ダイオードおよびフ
ォトダイオードから構成されているためガラス円板が衝
撃に弱いことやダイオードを使っているので高温まで使
えないし、ダイオードの配置上、小型化は不可能であっ
た。一方、これらの欠点をなくす意味で磁気ドラムと磁
気抵抗効果素子(以下MR素子と略す)を組合せた絶対
位置検出器が発明された(特開昭54−118259)
。しかし、この検出器でも小型化は困難であり、精度上
も問題があり、MR素子からのリード線の数が非常に多
くなるため配線上の問題も生じた。これに対し、同じM
R素子を使う方式で、リード線も少い小型軽量のエンコ
ーダが開発された(M&E。
(Prior Art) There is a need for a detector that is built into a robot or manipulator and can instantaneously and accurately measure the absolute position of an actuator that performs rotational or linear motion. It is desirable that the encoder be large and have a full circumference.Therefore, photoelectric encoders have conventionally been used as suitable for such applications.This photoelectric encoder is made by photolithography of a metal film deposited on a glass disc. Since it consists of an optical slit, a light emitting diode, and a photodiode, the glass disk is vulnerable to shock, and since it uses diodes, it cannot be used at high temperatures, and the layout of the diodes makes it impossible to miniaturize. In order to eliminate these drawbacks, an absolute position detector was invented that combined a magnetic drum and a magnetoresistive element (hereinafter abbreviated as MR element) (Japanese Patent Application Laid-Open No. 118259/1982).
. However, even with this detector, it is difficult to miniaturize it, there are problems in terms of accuracy, and the number of lead wires from the MR element becomes very large, which causes wiring problems. On the other hand, the same M
A compact and lightweight encoder with fewer lead wires was developed using an R element (M&E).

6 (1985) P38)。6 (1985) P38).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このエンコーダは、第6図に示すように曲線状をした回
転ヨーク形磁性体11とその円周に沿って一定距離に配
置されたMR素子】2からなり、MRR子12に入る磁
界が回転位置により変化する(磁性体11が曲線形状を
しているため)ことにより、出力値が変化することを利
用したものである。MRR子12は磁性体11の回転方
向にストライプ長さ方向がそろえられており、MRR子
面は磁性体表面に平行に配置されている。このような構
造では全MR素子12と回転ヨーク形磁性体11の距離
を一定にするため部品加工精度、組み立て精度が重要に
なり、高価になり、さらに曲面上にMRR子12を配置
するため小径化するにつれ製作が難しくなる。曲線状を
した回転ヨーク形磁性体11についてもその形状精度が
MRR子12の出力精度に関係するので同様に製作が難
しい。また、特性の点ではスペーシング変動の影響を受
けやすい。
As shown in FIG. 6, this encoder consists of a curved rotating yoke-shaped magnetic body 11 and an MR element 2 arranged at a constant distance along its circumference, and the magnetic field entering the MRR element 12 is applied to the rotational position. This takes advantage of the fact that the output value changes due to the change in the output value (because the magnetic body 11 has a curved shape). The stripe length direction of the MRR element 12 is aligned with the rotation direction of the magnetic body 11, and the MRR element surface is arranged parallel to the surface of the magnetic body. In such a structure, the distance between all the MR elements 12 and the rotating yoke-shaped magnetic body 11 must be kept constant, which requires precision in parts processing and assembly, resulting in high costs.Furthermore, since the MRR elements 12 are arranged on a curved surface, the diameter is small. As the technology grows, production becomes more difficult. The rotating yoke-shaped magnetic body 11 having a curved shape is similarly difficult to manufacture because its shape accuracy is related to the output accuracy of the MRR element 12. Also, in terms of characteristics, it is susceptible to spacing variations.

本発明の目的は、製造が容易で、スペーシング変動の影
響を受けにくい小型軽量高分解能の磁気エンコーダを提
供することにある。
An object of the present invention is to provide a compact, lightweight, high-resolution magnetic encoder that is easy to manufacture and is less susceptible to spacing variations.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のアブソリュート磁気エンコーダは、磁化勾配を
もつ少くとも1つの磁化パターン列が書込まれた磁気記
録媒体からの磁場を該記録媒体に近接した少くとも1つ
のストライプ状のMR素子により検出し、その出力値の
大きさにより被検出体絶対位置を検出するアブソリュー
ト磁気エンコーダにおいて、MR素素子ストライ炎長方
向が磁気記録媒体表面にほぼ直角で、ストライプ幅方向
が磁化パターン列方向と平行であり、ストライプ幅方向
に磁化パターンからの磁界が印加されることを特徴とす
る。
The absolute magnetic encoder of the present invention detects a magnetic field from a magnetic recording medium on which at least one magnetization pattern array having a magnetization gradient is written, using at least one striped MR element close to the recording medium, In an absolute magnetic encoder that detects the absolute position of a detected object based on the magnitude of its output value, the MR element stripe flame length direction is approximately perpendicular to the magnetic recording medium surface, and the stripe width direction is parallel to the magnetization pattern row direction, It is characterized in that a magnetic field from a magnetization pattern is applied in the stripe width direction.

〔作用〕[Effect]

したがって、MR素子は平面上につくればよく、曲線形
状をした磁気記録媒体も不要になったので、安価に磁気
エンコーダを製造でき、さらにこのような構造にするこ
とによりスペーシング変動に対しても出力変動はノJ)
さく、エンコーダを小型化できる。
Therefore, the MR element only needs to be made on a flat surface, and a curved magnetic recording medium is no longer necessary, making it possible to manufacture a magnetic encoder at low cost.Furthermore, by adopting this structure, it is possible to reduce spacing variations. Output fluctuation is no J)
Therefore, the encoder can be made smaller.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明のアブソリュート磁気エンコーダの一実
施例の斜視図、第2図は第1図の実施例の出力信号の波
形図である。
FIG. 1 is a perspective view of an embodiment of the absolute magnetic encoder of the present invention, and FIG. 2 is a waveform diagram of an output signal of the embodiment of FIG.

本実施例は、回転軸3に固定されたアルミ合金製ドラム
4と、その外周部に形成されたGo −γFe、03i
B気記録媒体1と、ガラス基板5上に81Ni−Fe膜
で形成されたMRR子2およびCu膜・で形成された端
子6よりなる検出ヘッドと、この端子6に接続されたリ
ード線7および駆動検出回路8からなり、MRR子2の
ストライプ長さ方向が磁気記録媒体1の表面にほぼ直角
で、ストライプ幅方向が磁気記録媒体1の磁化パターン
列と平行になっている。磁気記録媒体1に記されている
矢印は磁化の強さの程度をあられし、リングヘッドを用
いて着磁を行った。この場合、磁化の強さの分布は1つ
の磁化パターン列内で三角形状をしており、1列目と2
列目の位相差は90°である。このような構成において
磁気記録媒体1からもれる磁界の強さに応じてMRR子
2の抵抗変化が起こり、第2図に示すような出力信号が
得られる。この信号の実線部分を回路上で区分し、その
大きさよりモータがどの位置にあるかを検出できる。次
に磁化パターン列内の磁化分布を正弦波状にし、信号を
みたところ、第2図と同じ波形が得られた。
In this embodiment, an aluminum alloy drum 4 fixed to a rotating shaft 3 and Go-γFe, 03i
A detection head consisting of a B air recording medium 1, an MRR element 2 formed of an 81Ni-Fe film on a glass substrate 5, and a terminal 6 formed of a Cu film, and a lead wire 7 connected to the terminal 6. It consists of a drive detection circuit 8, and the stripe length direction of the MRR element 2 is substantially perpendicular to the surface of the magnetic recording medium 1, and the stripe width direction is parallel to the magnetization pattern row of the magnetic recording medium 1. The arrows marked on the magnetic recording medium 1 indicate the strength of magnetization, and magnetization was performed using a ring head. In this case, the magnetization strength distribution has a triangular shape within one magnetization pattern row, with the first and second rows having a triangular shape.
The phase difference between the rows is 90°. In such a configuration, the resistance of the MRR element 2 changes depending on the strength of the magnetic field leaking from the magnetic recording medium 1, and an output signal as shown in FIG. 2 is obtained. The solid line portion of this signal is divided on the circuit, and the position of the motor can be detected from the size. Next, when the magnetization distribution within the magnetization pattern array was made sinusoidal and the signal was looked at, the same waveform as in FIG. 2 was obtained.

第3図は本実施例におけるMRR子2と磁気記録媒体1
とのスペーシングに対する出力電圧の関係を従来例と比
較して示す図である。本実施例の方が従来例よりも出力
変動は小さく安定していることがわかる。
FIG. 3 shows the MRR element 2 and magnetic recording medium 1 in this embodiment.
FIG. 3 is a diagram illustrating the relationship between output voltage and spacing in comparison with a conventional example. It can be seen that the output fluctuation of this embodiment is smaller and more stable than that of the conventional example.

第4図、第5図は本発明の他の実施例におけるドラム1
回転当りの磁化の強さの分布を示す図である。
FIG. 4 and FIG. 5 show a drum 1 in another embodiment of the present invention.
FIG. 3 is a diagram showing the distribution of magnetization strength per rotation.

第5図はディスク上の2列の磁化パターンからの信号を
加算したことを示しており、第4図は1回転内で連続し
て磁化の強さをかえた例を示している。
FIG. 5 shows the addition of signals from two rows of magnetization patterns on the disk, and FIG. 4 shows an example in which the strength of magnetization is changed continuously within one rotation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、MR素子ストライプ長さ
方向を磁気記録媒体表面にほぼ直角で、ストライプ幅方
向を磁化パターン列方向と平行にし、ストライプ幅方向
に磁化パターンからの磁界が印加されるようにしたこと
により、MR素子や磁気記録媒体の製造が容易でスペー
シング特性も安定した安価で高精度のエンコーダを製造
できるという効果がある。
As explained above, in the present invention, the length direction of the MR element stripe is substantially perpendicular to the surface of the magnetic recording medium, the stripe width direction is parallel to the magnetization pattern column direction, and the magnetic field from the magnetization pattern is applied in the stripe width direction. By doing so, it is possible to manufacture an inexpensive, high-precision encoder with easy manufacture of MR elements and magnetic recording media, and stable spacing characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアブソリュート磁気エンコーダの一実
施例の斜視図、第2図は第1図の実施例の出力信号の波
形図、第3図は第1図の実施例のスペーシングと出力電
圧の関係を従来例と比較して示す図、第4図、第5図は
本発明の他の実施例の出力信号の波形図、第6図は従来
例の内部を示す断面図である。 1・・・・・・磁気記録媒体、 2−−−−−− M R素子、 3−−−−−・回転軸、 4・・・・・・ドラム、 5・・・・・・基板、 6・・・・・・端子、 7・・・・・・リード線、 8・・・・・・駆動検出回路。
Fig. 1 is a perspective view of an embodiment of the absolute magnetic encoder of the present invention, Fig. 2 is a waveform diagram of an output signal of the embodiment of Fig. 1, and Fig. 3 is a spacing and output of the embodiment of Fig. 1. 4 and 5 are waveform diagrams of output signals of other embodiments of the present invention, and FIG. 6 is a sectional view showing the inside of the conventional example. 1... Magnetic recording medium, 2... MR element, 3... Rotating shaft, 4... Drum, 5... Substrate, 6...terminal, 7...lead wire, 8...drive detection circuit.

Claims (1)

【特許請求の範囲】 1、磁化の強さの分布をもつ少くとも1つの磁化パター
ン列が書込まれた磁気記録媒体からの磁場を該記録媒体
に近接した少くとも1つのストライプ状の磁気抵抗効果
素子により検出し、その出力値の大きさにより被検出体
の絶対位置を検出するアブソリュート磁気エンコーダに
おいて、 磁気抵抗効果素子のストライプ長さ方向が磁気記録媒体
表面にほぼ直角で、ストライプ幅方向が磁化パターン列
方向と平行であり、ストライプ幅方向に磁化パターンか
らの磁界が印加されることを特徴とする絶対位置磁気エ
ンコーダ。 2、磁化パターン列の磁化の強さの分布が三角形でであ
る特許請求の範囲第1項記載のアブソリュート磁気エン
コーダ。 3、磁化パターン列の磁化の強さの分布が正弦波である
特許請求の範囲第1項記載のアブソリュート磁気エンコ
ーダ。
[Claims] 1. A magnetic field from a magnetic recording medium on which at least one magnetization pattern array having a distribution of magnetization strength is written is applied to at least one striped magnetic resistor in close proximity to the recording medium. In an absolute magnetic encoder that uses an effect element to detect the absolute position of an object based on the magnitude of its output value, the length direction of the stripe of the magnetoresistive element is approximately perpendicular to the surface of the magnetic recording medium, and the width direction of the stripe is approximately perpendicular to the surface of the magnetic recording medium. An absolute position magnetic encoder characterized in that a magnetic field from the magnetization pattern is applied in the stripe width direction parallel to the magnetization pattern row direction. 2. The absolute magnetic encoder according to claim 1, wherein the magnetization pattern array has a triangular distribution of magnetization strength. 3. The absolute magnetic encoder according to claim 1, wherein the magnetization strength distribution of the magnetization pattern array is a sine wave.
JP3917887A 1987-02-24 1987-02-24 Absolute magnetic encoder Pending JPS63206613A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3917887A JPS63206613A (en) 1987-02-24 1987-02-24 Absolute magnetic encoder
US07/159,745 US4851771A (en) 1987-02-24 1988-02-24 Magnetic encoder for detection of incremental and absolute value displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3917887A JPS63206613A (en) 1987-02-24 1987-02-24 Absolute magnetic encoder

Publications (1)

Publication Number Publication Date
JPS63206613A true JPS63206613A (en) 1988-08-25

Family

ID=12545860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3917887A Pending JPS63206613A (en) 1987-02-24 1987-02-24 Absolute magnetic encoder

Country Status (1)

Country Link
JP (1) JPS63206613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002312A1 (en) * 1988-08-31 1990-03-08 Fanuc Ltd Magnetic absolute position encoder
JPH02264816A (en) * 1989-04-05 1990-10-29 Matsushita Electric Ind Co Ltd Magnetic sensor and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002312A1 (en) * 1988-08-31 1990-03-08 Fanuc Ltd Magnetic absolute position encoder
US5115239A (en) * 1988-08-31 1992-05-19 Fanuc Ltd. Magnetic absolute position encoder with an undulating track
JPH02264816A (en) * 1989-04-05 1990-10-29 Matsushita Electric Ind Co Ltd Magnetic sensor and manufacture thereof

Similar Documents

Publication Publication Date Title
US4851771A (en) Magnetic encoder for detection of incremental and absolute value displacement
US4418372A (en) Magnetic rotary encoder
US4639807A (en) Magnetic detector having magnetoresistive elements
JPH05172585A (en) Rotational displacement measurement device
US4866382A (en) Magnetic rotary encoder system having a multi-element magnetoresistive sensor
US5351027A (en) Magnetic sensor
EP0372134B1 (en) Magnetoresistive sensor having interleaved elements
JP3037380B2 (en) Magnetic encoder
JPS63206613A (en) Absolute magnetic encoder
JPH0426047B2 (en)
JPS5918458A (en) Rotation detector
EP0372136A1 (en) Magnetic rotary encoder system
JPH0617800B2 (en) Magnetic encoder
JPH0634390A (en) Position detecting device
JPH01413A (en) magnetic encoder
JPH10300763A (en) Magnetic sensor
JPH0363524A (en) Magnetic encoder
JPH01119716A (en) Magnetic encoder
JPS58155312A (en) Magnetic rotary sensor
JPH0694475A (en) Magnetic type absolute valve encoder
JPS60233516A (en) Transducer
JPS63206614A (en) Absolute magnetic encoder
JPS61711A (en) Magnetic head
JP3016468B2 (en) Magnetoelectric converter
JP2979692B2 (en) Magnetic encoder