JPS58155312A - Magnetic rotary sensor - Google Patents

Magnetic rotary sensor

Info

Publication number
JPS58155312A
JPS58155312A JP3729682A JP3729682A JPS58155312A JP S58155312 A JPS58155312 A JP S58155312A JP 3729682 A JP3729682 A JP 3729682A JP 3729682 A JP3729682 A JP 3729682A JP S58155312 A JPS58155312 A JP S58155312A
Authority
JP
Japan
Prior art keywords
magnetic
detection
track
section
encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3729682A
Other languages
Japanese (ja)
Other versions
JPH0326324B2 (en
Inventor
Tadashi Takahashi
正 高橋
Kunio Miyashita
邦夫 宮下
Shoichi Kawamata
昭一 川又
Hiroshi Hayashida
林田 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3729682A priority Critical patent/JPS58155312A/en
Publication of JPS58155312A publication Critical patent/JPS58155312A/en
Publication of JPH0326324B2 publication Critical patent/JPH0326324B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/249Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using pulse code
    • G01D5/2497Absolute encoders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Linear Or Angular Velocity Measurement And Their Indicating Devices (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To improve mass productivity by making a substrate for a magnetic resistance effect element part small and forming the magnetic resistance effect element on the substrate in a unitary body, to improve the arranging accuracy of the magnetic resistance element, and also to eliminate the mutual magnetic interface between encoder parts and position detecting parts. CONSTITUTION:A magnetic body attaching part and the magnetic resistance effect element (MR element) part are divided into encoder parts and position detecting parts, respectively. The position detecting parts of the magnetic body attaching part D are subdivided in correspondence with the phase number of a brushless motor. The directions of the magnetic recording of detecting tracks 40-43 are made different. The MR elements 61-63 for the first - third phases are arranged so as to face the detecting tracks associated with the magnetic bodies approximately linearly. The directions of the magnetic signal recording of the encoder parts and the position detecting parts are made to intersect at a right angle. Namely arrangement is sequentially made in the circumferential direction and at the inside and outside of the radial direction. Thus the mutual interference between magnetic recording can be eliminated. The magnetic signal recording N and S in each detecting track at the position detecting part are arranged so that the direction in each track is reversed with respect to the direction in the other track. Therefore the magnetic interference between each of the detecting tracks can be decreased.

Description

【発明の詳細な説明】 本発明は、磁気回転センサに係シ、ブラシレスモータに
おけるエンコーダ部と位置検出部とを一体化し、磁気抵
抗効果素子部を対向して配置した、ブラフレスモータの
位置検出付回転センサに係る磁気回転センサに関するも
のでおる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic rotation sensor, and is a position detection method for a brushless motor in which an encoder section and a position detection section in a brushless motor are integrated, and a magnetoresistive element section is arranged facing each other. This article relates to a magnetic rotation sensor related to an attached rotation sensor.

まず、第1.1@により従来技術を説明する。First, the prior art will be explained in Section 1.1@.

ここで、第1図は、ブラシレスモータに、磁気抵抗効果
素子部と、デスクに磁性体を有する磁性体取着部を用い
た磁気回転センサを示す略示構成図、第2図は、その磁
性体取着部と磁気抵抗効果素子部との拡大関連構成説明
図である。
Here, FIG. 1 is a schematic configuration diagram showing a magnetic rotation sensor using a brushless motor, a magnetoresistive effect element part, and a magnetic body attachment part having a magnetic body on a desk, and FIG. 2 shows the magnetic rotation sensor. FIG. 2 is an enlarged explanatory diagram of the related configuration of a body attachment part and a magnetoresistive element part.

しかして、図示のものは、磁気回転センサとして、エン
コーダ部とブラシレスモータの位置検出部とを一体化し
た3相4極のものの例示である。
The illustrated magnetic rotation sensor is an example of a three-phase, four-pole magnetic rotation sensor in which an encoder section and a brushless motor position detection section are integrated.

すなわち、ブラシレスモータlに回転センサを取付けた
もので、回転軸2にデスク3を取付け、このデスク3に
は磁性体4Aが貼り付けられて磁性体取着部D1を構成
し、これと対向して磁気抵抗効果素子部6Aを取付台5
でブラシレスモータ1の固定部に取付けるようにしたも
のである。
That is, a rotation sensor is attached to a brushless motor l, a desk 3 is attached to the rotating shaft 2, and a magnetic body 4A is attached to the desk 3 to form a magnetic body attachment part D1, which is opposed to the disk 3. Mount the magnetoresistive element section 6A on the mounting base 5.
It is designed to be attached to a fixed part of the brushless motor 1.

そして、第2図に示すごとく、磁性体4Aは、その外周
部40At工ンコーダ部として使用し、磁気信号N、S
を周方向へ順次、記録しておシ、内周部41Aはブラシ
レスモータ1の位置検出部用として、当該モータ1の磁
極に対応して磁気信号S、Nが、同称に周方向へ記録さ
れているものである。
As shown in FIG. 2, the outer peripheral portion 40At of the magnetic body 4A is used as an encoder section, and magnetic signals N, S
are sequentially recorded in the circumferential direction, and the inner peripheral part 41A is used for the position detection part of the brushless motor 1, and magnetic signals S and N are recorded in the circumferential direction in the same manner corresponding to the magnetic poles of the motor 1. This is what is being done.

また、これらの各磁気信号に対向して、磁気抵抗効果素
子部6Aの磁気抵抗効果素子60Aおよび、61八〜6
3Aが配置してアシ、このうち磁気抵抗効果素子60A
はエンコーダ部として彷〈ものであり、また同61A〜
63Aは、電気角で120度、位置をず゛らして配置さ
れて各々3相の位置信号を発生するものである。
Further, facing each of these magnetic signals, the magnetoresistive elements 60A and 618 to 6 of the magnetoresistive element section 6A
3A is arranged, among which magnetoresistive element 60A
is a wandering encoder part, and the same 61A ~
63A is arranged at a position shifted by 120 degrees in electrical angle, and each generates three-phase position signals.

上記のごときものが、エンコーダ部と位置検出信号を発
生するものを備えた磁気回転センサの例示である。
The above is an example of a magnetic rotation sensor that includes an encoder section and something that generates a position detection signal.

しかし、このような従来技術に係るものでは、位置検出
部に係る内周部41Aに一つだ妙の検出トラックを有す
るものであり、これに対向し、位置検出用の磁気抵抗効
果素子61A〜63Aを電気角で120度ずらして配置
しているので、たとえば磁気抵抗効果素子をガラスなど
の基材上にパーマロイを真空蒸着しエツチング処理で作
られるように、磁気抵抗効果素子を同一基板上に一体に
作る場合は、その基板面積が非常に大きくなり、量産時
における生産性が悪くなり、また高価となるものである
However, in the conventional technology, there is only one detection track on the inner circumferential portion 41A of the position detection section, and facing thereto, there are magnetoresistive elements 61A to 61A for position detection. 63A are arranged 120 degrees apart in electrical angle, so it is possible to place magnetoresistive elements on the same substrate, for example, just as magnetoresistive elements are made by vacuum-depositing permalloy on a substrate such as glass and then etching it. If it is manufactured in one piece, the area of the board becomes very large, which reduces productivity during mass production and increases the cost.

さらに、位置検出部用とエンコーダ部用の磁気記録が、
さきに述べたように、同じ方向の周方向であるために、
相互に磁気干渉を起して安定した信号が得られない欠点
を、あわせて有するものである。
Furthermore, magnetic recording for the position detection section and encoder section is
As mentioned earlier, since the circumferential directions are in the same direction,
They also have the disadvantage that stable signals cannot be obtained due to mutual magnetic interference.

本発明は、上記のような従来技術に係るものの欠点を解
消して、磁気抵抗効果素子部の基板を小さくシ、その一
体基板上に磁気抵抗効果素子を作って量産性を向上しう
るようにするとともに、磁気抵抗素子の配置精度を向上
させ、また、エンコーダ部と位置検出部との間の相互磁
気干渉を無くすることができるようにし、さらに、磁気
抵抗効果素子および磁性体に係る記録トラックを、でき
るだけ少なく構成しうるよ・うにした磁気回転センサの
提供を、その目的とするものである。
The present invention solves the drawbacks of the prior art as described above, makes the substrate of the magnetoresistive element portion smaller, and makes it possible to improve mass productivity by manufacturing the magnetoresistive element on the integrated substrate. At the same time, it is possible to improve the arrangement accuracy of the magnetoresistive element, eliminate mutual magnetic interference between the encoder section and the position detection section, and further improve the recording track related to the magnetoresistive element and the magnetic material. The object of the present invention is to provide a magnetic rotation sensor that can be configured with as few as possible.

本発明の特徴は、ブラシレスモータの回転軸に取付けら
れるようにし、その表面に磁性体を有する磁性体取着部
と、この磁性体取着部に対向して配置される磁気抵抗効
果素子部とより構成される磁気回転センサにおいて、そ
の磁性体取着部に、ブラシレスモータの回転数などを検
出するようにしたエンコーダ部に係る検出トラックと、
当該モータの位置を検出するようにした位置検出部に係
る複数の検出トラックとを設けた磁気回転センサにある
The features of the present invention include: a magnetic body attachment part that is attached to the rotating shaft of a brushless motor and has a magnetic substance on its surface; and a magnetoresistive element part that is disposed opposite to the magnetic body attachment part. A magnetic rotation sensor comprising: a detection track related to an encoder section configured to detect the number of rotations of a brushless motor, etc. on the magnetic body attachment section;
The magnetic rotation sensor is provided with a plurality of detection tracks related to a position detection section configured to detect the position of the motor.

なお詳しくは、磁性体取着部および磁気抵抗効果素子(
以下、MR素子という。)部を、それぞれエンコーダ部
と位置検出部とに分割するとともに、その磁性体取着部
の位置検出部をブラシレスモータの相数に対応して区分
した各検出トラックの磁気記録の方向を異なるようにし
、さらに、それらの磁性体に係る検出トラックとほぼ一
直線に対向するようにMR素子を配置することなどによ
って、エンコーダ部と位置検出部との磁気干渉を無くシ
、小形な歯体基板上MR素子を配置しうるようにした磁
気回転センサの構成にある。
For more details, please refer to the magnetic attachment part and the magnetoresistive element (
Hereinafter, this will be referred to as an MR element. ) section is divided into an encoder section and a position detection section, and the position detection section of the magnetic body attachment section is divided into sections corresponding to the number of phases of the brushless motor, and the magnetic recording direction of each detection track is made different. Furthermore, by arranging the MR element so as to face the detection track related to the magnetic material almost in a straight line, magnetic interference between the encoder section and the position detection section can be eliminated, and MR on the small tooth substrate can be realized. The structure of the magnetic rotation sensor is such that the elements can be arranged.

次に、本発明に係る各実施例を、・図面に基づいて説明
する。
Next, each embodiment according to the present invention will be described based on the drawings.

まず、第3図は、本発明の一実施例に係るものにおける
磁性体取着部とMR素子部との拡大関連構成説明図であ
る。
First, FIG. 3 is an enlarged explanatory diagram of the related configuration of the magnetic body attachment part and the MR element part in one embodiment of the present invention.

そして、本実施例に係るものは、3相4極ブラシレスモ
ータに係るものである。
The present embodiment relates to a three-phase, four-pole brushless motor.

図で、4は磁性体を示し、これをさきの円板体のデスク
3に同様に設けて、磁性体取着部D(以下、デスクDと
いう。)を構成するものであシ、40はエンコーダ部に
係る検出トラック、41゜42.43は、位置検出部に
係シ、3区分された検出トラック、6はMR素子部、6
0はエンコーダ部に係るMR素子、61〜63は位置検
出部に係るMR素子である。
In the figure, numeral 4 indicates a magnetic material, which is similarly provided on the desk 3 of the previous disc body to constitute a magnetic material attachment part D (hereinafter referred to as desk D). Detection track related to the encoder section, 41°42.43 is related to the position detection section, detection track divided into three sections, 6 is the MR element section, 6
0 is an MR element related to the encoder section, and 61 to 63 are MR elements related to the position detection section.

すなわち、デスクDの外側に位置するエンコーダ部に係
る検出トラック40には、その円板の周方向へ順次、磁
気信号N、’8を記録し、その内側の位置検出部に係シ
3区分された第1番目の検出トラック41を第1相用と
して円周方向へ90度づつに4分割し、その対角状の2
ケ所に径方向内外に磁気信号8.Nを記録し、内側第2
番目の検出トラック42を第2相用として、前記第1番
目の検出トラック41の磁気信号S、Nより円周方向へ
60度(電気角で120度)ずらした位置で当該磁気信
号とは着磁の方向が逆になるように磁気信号N、Sを上
記と同態様で記録し、さらに内側廊3番目の検出トラッ
ク43を第3相用として、前記第2番目の検出トラック
42の磁気信号N、 Sよシ円周方向へ60度(電気角
で120度)ずらした位置で当該磁気信号とは着磁の方
向が逆になるように磁気信号S、N’に記録したもので
ある。
That is, magnetic signals N and '8 are sequentially recorded in the circumferential direction of the disk on the detection track 40 related to the encoder section located outside the desk D, and the magnetic signals N and '8 are recorded in three sections on the inside position detection section. The first detection track 41 for the first phase is divided into four parts at 90 degrees each in the circumferential direction.
8. Magnetic signals radially inside and outside. Record N, inner second
The second detection track 42 is used for the second phase, and the magnetic signal arrives at a position shifted by 60 degrees (120 degrees in electrical angle) in the circumferential direction from the magnetic signals S and N of the first detection track 41. The magnetic signals N and S are recorded in the same manner as above so that the magnetic directions are reversed, and the third detection track 43 in the inner corridor is used for the third phase, and the magnetic signals of the second detection track 42 are recorded. The magnetic signals S and N' are recorded so that the direction of magnetization is opposite to that of the magnetic signal at a position shifted by 60 degrees (120 degrees in electrical angle) in the circumferential direction of N and S.

そして、これに対向するMR素子部6の各MR素子は、
一つの基板上に、径方向内外にほぼ一直線にならぶよう
に、かつ、上記に述べた各検出トラック40,41,4
2.43のそれぞれに対向せしめて、エンコーダ部に係
るMR素子60、位置検出部に係る第1相用、第2相用
、第3相用のMR素子61,62.63に配置するよう
にしたものである。
Each MR element of the MR element section 6 facing this is
Each of the above-mentioned detection tracks 40, 41, 4 is arranged on one substrate so as to be arranged in a substantially straight line in the radial direction and inward and outward.
2.43, and are arranged in the MR element 60 related to the encoder section and the MR elements 61, 62.63 for the first phase, second phase, and third phase related to the position detection section. This is what I did.

この第3図に示す配置構成関係を、分シ易いように帯状
に展開して示したものが第4図の配置構成拡大展開図で
ある。
The arrangement and structure relationship shown in FIG. 3 is developed into a band shape for easy separation, and is shown in the enlarged development view of FIG. 4.

図で、Rho〜R−は抵抗を示すもので、さきのエンコ
ーダ部のMR素子60は抵抗R0に係る素子であり、位
置検出部の第1相用、第2相用、第3相用のM凡素子6
1,62,63は、それぞれ2組の抵抗R+ 、 FL
s 、 Rs 、 R4、Rぢ、R−で構成しているも
のである。
In the figure, Rho to R- indicate resistance, and the MR element 60 in the encoder section is an element related to the resistance R0, and is used for the first phase, second phase, and third phase of the position detection section. M ordinary element 6
1, 62, and 63 are two sets of resistors R+ and FL, respectively.
It is composed of s, Rs, R4, Rji, and R-.

そして、エンコーダ部のMR素子60におっては、その
抵抗R0の抵抗変化をそのまま増幅すれば、エンコーダ
の出力が得られるものである。
In the MR element 60 of the encoder section, the output of the encoder can be obtained by amplifying the resistance change of the resistor R0 as it is.

また、位置検出部の各MR素子61〜63の各抵抗は、
第5図の位置検出部のMR素子の接続図に示すように、
第1相用と第2相用のM1素子61と同62における抵
抗R8とR4、第2相用と第3相用のMR素子62と同
63における抵抗Rsと几6、第3相用と第1相用のM
R素子63と同61における抵抗R,とR宜とを、それ
ぞれ直列に電源Eに接続して、それぞれの中間端子ae
 b。
Moreover, each resistance of each MR element 61 to 63 of the position detection section is
As shown in the connection diagram of the MR element of the position detection section in Fig. 5,
Resistances R8 and R4 in the M1 elements 61 and 62 for the first and second phases, resistances Rs and R6 in the MR elements 62 and 63 for the second and third phases, M for 1st phase
The R element 63 and the resistors R and R in the R element 61 are connected in series to the power supply E, and the respective intermediate terminals ae
b.

Cより3つの出力が得られるようにしたものである。It is designed so that three outputs can be obtained from C.

しかして、さきにも述べたように、MR素子は強磁性体
の薄膜で形成されており、長手方向と直角な方向の磁界
が加わると、その抵抗値が減少するもので、磁界にたい
する特性は、MR素子の磁界にだいする抵抗変化特性図
でるる第6図に示すように、Hあるいは−Hの磁界によ
って抵抗Rが減少していき、ある磁界のところで抵抗変
化が飽和するものでろ知、また、長手方向の磁界では抵
抗変化がないものである。
However, as mentioned earlier, the MR element is made of a thin film of ferromagnetic material, and when a magnetic field is applied in a direction perpendicular to the longitudinal direction, its resistance value decreases, and its characteristics against the magnetic field are As shown in Figure 6, which shows the characteristics of resistance change depending on the magnetic field of the MR element, the resistance R decreases due to the H or -H magnetic field, and the resistance change is saturated at a certain magnetic field. Furthermore, there is no change in resistance in a longitudinal magnetic field.

そこで、さきに述べた第4図に示すような配置、すなわ
ち、各MR素子が各磁気信号記録により、その磁界が長
手方向で直交するような配置では、各MR素子の抵抗変
化は、デスクDの回転とともに、その動作説明図である
第7図の(イ)〜(ハ)のようになるので、第5図の中
間端子a、cの電圧v、。
Therefore, in the arrangement as shown in FIG. 4 mentioned earlier, that is, in the arrangement in which each MR element records magnetic signals and its magnetic fields are perpendicular to each other in the longitudinal direction, the resistance change of each MR element is With the rotation of , the voltage v at the intermediate terminals a and c in FIG. 5 becomes as shown in (a) to (c) of FIG.

Vb、V。は、各MR素子の抵抗を同一にしておけば、
第7図のに)〜(へ)に示すように、さきの電源Eの電
圧の半分の電圧を中心に変化する、さらに、第5図の中
間端子afbとの差電圧V a  b N同端子すとC
との差電圧Vb−0、同端子、と、との差電圧V。−1
は、第7図の(ト)〜(男に示すようになるものである
Vb, V. If the resistance of each MR element is made the same,
As shown in Fig. 7) to (f), the voltage changes around half the voltage of the previous power supply E, and furthermore, the differential voltage V a b N with the intermediate terminal afb of Fig. 5 ST C
Differential voltage Vb-0 between the same terminal and Vb-0. -1
are as shown in (g) to (man) in Fig. 7.

これらの電圧を増幅器あるいは、第8図の信号処理回路
に例示するごときコンパレータCM−U。
These voltages are processed by an amplifier or a comparator CM-U as exemplified in the signal processing circuit of FIG.

CM−V、CM−Wを通して波形整形をすると、その端
子U、V、Wから3相の方形波が得られ、。
When waveform shaping is performed through CM-V and CM-W, a three-phase square wave is obtained from the terminals U, V, and W.

グラ/レスモータの位置信号として使用できるものであ
る。
It can be used as a position signal for Gra/less motors.

しかして、また、以上により、MR素子数を最小にして
ブリッジを構成することができる。
Furthermore, with the above, it is possible to configure a bridge with the minimum number of MR elements.

以上に述べたように、上記実施例によれば、位置検出部
における各相2個およびエンコーダ部の1個のMR素子
のみで、また磁性体取着部に係るデスクにおける検出ト
ラックを相数に係るものとエンコーダ用1検出トラツク
のみで構成できるもので、その検出トラック数を最小と
することができるものであり、さらにMR素子部におけ
るMR素子を一直線上に配置できるため小形にでき、か
つ−基板上に集結して十全なものを構成することができ
るので、生産性がよく量産に富み、安価にすることがで
きるものである。
As described above, according to the above embodiment, only two MR elements for each phase in the position detection part and one MR element in the encoder part are used, and the number of detection tracks in the desk related to the magnetic body attachment part is adjusted to the number of phases. This device can be configured with only one detection track for the encoder, and the number of detection tracks can be minimized.Furthermore, since the MR elements in the MR element section can be arranged in a straight line, it can be made compact, and - Since they can be assembled on a substrate to form a complete product, productivity is high, mass production is possible, and costs can be reduced.

また、エンコーダ部と位置検出部との磁気信号記録の方
向を、周方向への順次配列と径方向内外への配列という
ように、直交する、ようにした+ので、磁気信号記録相
互の干渉を無くすことができ、また、位置検!B部にお
ける各検出トラックの磁気信号記録のN、Sk、各検出
トラックとも逆向きになるように一1置したので、その
各検出トラック間の磁気干渉も減少させるものである。
In addition, the directions of magnetic signal recording in the encoder section and position detection section are arranged orthogonally, such as sequentially arranging in the circumferential direction and arranging inward and outward in the radial direction, thereby preventing mutual interference between magnetic signal recordings. Can be eliminated and also position inspection! Since the magnetic signal recording N and Sk of each detection track in the B section are arranged so that each detection track is in the opposite direction, magnetic interference between the detection tracks is also reduced.

さらに、MR素子の数が少ないのでMR素子の配線も少
なくでき、一層の小形化ができ、またMR素子が小形に
なシ、一体基板で蒸着などで作成できるので、各々のM
R素子をばらばらに取付ける必要が無くなり、その取付
は精度を向上させることができるものである。
Furthermore, since the number of MR elements is small, the wiring of the MR elements can be reduced, resulting in further miniaturization.Also, since the MR elements are small and can be fabricated on an integrated substrate by vapor deposition, etc., each MR element can be
There is no need to separately attach the R elements, and the accuracy of the attachment can be improved.

次に、第9図は、他の実施例に係るもので、ブラシレス
モータに、MR素子部と、ドラムに磁性体を有する磁性
体取着部を用いた磁気回転センサを示す略示構成図であ
る。
Next, FIG. 9 is a schematic configuration diagram showing a magnetic rotation sensor using a brushless motor, an MR element part, and a magnetic body attachment part having a magnetic body on the drum, according to another embodiment. be.

図で、4−1は磁性体を示し、これを円筒体のドラムに
設けて、磁性体取着部DM(以下、ドラムDMという。
In the figure, 4-1 indicates a magnetic body, which is provided on a cylindrical drum to form a magnetic body attaching portion DM (hereinafter referred to as drum DM).

)を構成するものであfi、40−1はエンコーダ部に
係る検出トラックで、41−1.42−1.43−1は
、位置検出部に係る検出トラックでアシ、これらの検出
トラックは、その軸方向に区分されたものであって、5
−1は取付台で、6−1はMR素子部である。
), 40-1 is a detection track related to the encoder section, 41-1.42-1.43-1 is a detection track related to the position detection section, and these detection tracks are as follows: divided in the axial direction,
-1 is a mounting base, and 6-1 is an MR element section.

すなわち、本実施例が、さきの実施例と異なるところは
、さきのデスクDをドラムDMに係るものに構成した点
にあって、位置検出部に係る検出トラック41−1.4
2−1.43−1は、軸方向に3区分されたものである
That is, this embodiment differs from the previous embodiment in that the previous desk D is configured to be related to the drum DM, and the detection track 41-1.4 related to the position detection section is
2-1.43-1 is divided into three parts in the axial direction.

そして、検出トラック41−1.42−1.43−1は
、それぞれ第1.2.3相用に係るものであり、これら
と上記の検出トラック40−1とに対向するMR素子部
6−1は、さきの実施例に係るものと同等のものであっ
て、その各MR素子は、ドラムDMの円周上に、ある間
隙をおいて配置されるものである。
The detection tracks 41-1.42-1.43-1 are for the 1st, 2. and 3rd phases, respectively, and the MR element section 6-1 facing these and the above-mentioned detection track 40-1. 1 is equivalent to that according to the previous embodiment, and each MR element is arranged at a certain gap on the circumference of the drum DM.

これらの各検出トラック、各M、R素子などの構成を含
み、その詳しい対応を帯状に展開すると、さきの第4図
に示すものと同じであり、したがって、その動作も、さ
きの実施例で説明したのと同態様であり、同等の効果を
期待することができるものである。
Including the configurations of each of these detection tracks, each M, R element, etc., and developing their detailed correspondence in a band shape, it is the same as that shown in FIG. This is the same mode as explained above, and the same effects can be expected.

しかして、上記の各実施例においては、3相4極のブラ
シレスモータに係るものについて述べたが、本発明に係
るものは、そのモータの極数および相数などを変更して
も、その位置検出部の構成を、それらの極数、相数に応
じて変更すればよいもので、これによシ同様に奏効する
ものでおる。
In each of the above embodiments, a three-phase, four-pole brushless motor was described; The configuration of the detecting section can be changed depending on the number of poles and the number of phases, and the same effect can be achieved by doing so.

本発明によるときは、以上を総合して、要約、次のごと
き効果を所期しうるものである。
According to the present invention, the following effects can be expected by taking the above into account.

(1)MR素子の小形化が可能となり、一体基板で構成
することが可能となって、量産性が向上するとともに安
価に作製することができる。
(1) The MR element can be made smaller and can be constructed from an integrated substrate, improving mass productivity and making it possible to manufacture it at low cost.

(2)MR素子の一体化ができるので、取付は誤差によ
る精度低下を防止することができるとともに、位置合せ
作業が簡単になる。
(2) Since the MR element can be integrated, it is possible to prevent a decrease in accuracy due to mounting errors, and the alignment work is simplified.

(3)位置検出部に係る検出トラックの磁気信号の記録
態様によって、エンコーダ部と位置検出部、および位置
検出部相互間の磁気干渉を無くし、常に安定した出力が
得られるものの提供を期待することができる。
(3) We hope to provide a device that eliminates magnetic interference between the encoder section, the position detection section, and between the position detection sections and provides stable output at all times, depending on the recording mode of the magnetic signal of the detection track related to the position detection section. I can do it.

以上により、本発明は、実用的にすぐれた効果を奏する
発明ということができる。
Based on the above, the present invention can be said to be an invention that has excellent practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来技術に係る、ブラシレスモータに、磁気
抵抗効果素子部と、デスクに磁性体を有する磁性体取着
部を用いた磁気回転センサを示す略示構成図、第2図は
、その磁性体取着部と磁気抵抗効果素子部との拡大関連
構成説明図、第3図は、本発明の一実施例に係るものに
おける磁性体取着部と磁気抵抗効果素子部との拡大関連
構成説明図、第4図は、その配置構成拡大展開図、第5
図は、その位置検出部の磁気抵抗効果素子の接続図、第
6図は、磁気抵抗効果素子の磁界にたいする抵抗変化特
性図、第7図は、第5図の接続に係る動作説明図、第8
図は、信号処理回路図、第9図は、本発明の他の実施例
に係るもので、ブラシレスモータに、磁気抵抗効果素子
部と、ドラム磁性体取着部を用いた磁気回転センサを示
す略示構成図である。 1・・・ブラシレスモータ、2・・・回転軸、3・・・
デスク、4.4−1・・・磁性体、40〜43.40−
1.41−1.42−1.43−1・・・検出トラック
、6゜6−1・・・磁気抵抗効果素子部、60〜63・
・・磁気抵抗効果素子、D、DM・・・磁性体取着部。 第 1 図 第  2 図 j14 第 3 図 第 4 図 第5図    第1 第  7  図 (す)vc−α
FIG. 1 is a schematic configuration diagram showing a conventional magnetic rotation sensor using a brushless motor, a magnetoresistive element part, and a magnetic body attachment part having a magnetic body on a desk, and FIG. FIG. 3 is an enlarged diagram illustrating the structure of the magnetic body attachment part and the magnetoresistive element part, and FIG. The configuration explanatory diagram, Figure 4, is an enlarged development diagram of the arrangement, Figure 5.
The figure is a connection diagram of the magnetoresistive element of the position detection section, FIG. 6 is a resistance change characteristic diagram of the magnetoresistive element in response to a magnetic field, and FIG. 7 is an explanatory diagram of the operation related to the connection of FIG. 8
The figure shows a signal processing circuit diagram, and FIG. 9 shows a magnetic rotation sensor according to another embodiment of the present invention, which uses a magnetoresistive element part and a drum magnetic body attachment part in a brushless motor. FIG. 2 is a schematic configuration diagram. 1... Brushless motor, 2... Rotating shaft, 3...
Desk, 4.4-1...Magnetic material, 40-43.40-
1.41-1.42-1.43-1...Detection track, 6°6-1...Magnetoresistive element section, 60-63.
... Magnetoresistive element, D, DM... Magnetic body attachment part. Figure 1 Figure 2 Figure j14 Figure 3 Figure 4 Figure 5 Figure 1 Figure 7 (S)vc-α

Claims (1)

【特許請求の範囲】 1、ブラシレスモータの回転軸に取付けられるようにし
、その表面に磁性体を有する磁性体取着部と、この磁性
体取着部に対向して配置される磁気抵抗効果素子部とよ
多構成される一気回転センナにおいて、その磁性体取着
部に、ブラシレスモータの回転数などを検出するように
したエンコーダ部に係る検出トラックと、当該モータの
位置を検出するようにした位置検出部に係る複数に区分
されたトラックとを設けたことを特徴とする磁気回転セ
ンサ。 2、特許請求の範囲第1項記載のものにおいて、エンコ
ーダ部に係る検出トラックには周方向へ順次、磁気信号
N、Sを記録し、ブラシレスモータの相数に対応して区
分された位置検出部に係る各検出トラックには当該モー
タの極数に基づき位置をずらせて磁気信号N 、+ 8
を径方向内外または軸方向に記録したものである磁気回
転センサ。 3、特許請求の範囲第1項記載のものにおいて、磁性体
取着部を、円板体の同心円上、または円筒体の軸方向へ
、エンコーダ部に係り、周方向へ順次、磁気信号N、8
を記録した検出トラックと、位置検出部に係り、ブラシ
レスモータの相数に対応して同心円、または軸方向に区
分され当該モータの極数に基づき位置をずらせて磁気信
号N、 8を径方向内外または軸方向に記録した検出ト
ラックとを、分割して設けたデスク、またはドラムとし
、このデスクまたはドラムの各検出トラックに対向して
、当該デスクの径方向、またはドラムの軸方向へ、はぼ
−直線上に配列されたエンコーダ部と位置検出部とに係
る、複数の磁気抵抗効果素子を有する磁気抵抗効果素子
部を配置したものである磁気回転センサ。 4、特許請求の範囲第3項記載のものにおいて、取付け
られるブラシレスモータを三相に係るものとし、位置検
出部に係る検出シラツクを三つに区分し、これらのそれ
ぞれに対向する各磁気抵抗効果素子を2組とし、第1番
目と第2番目の検出トラック、2番目と3番目の検出ト
ラック、および第3番目と第1番目の検出トラック、の
それぞれに対向する前記磁気抵抗効果素子を各々電源に
直列に接続し、それぞれの中間端子より、3つの出られ
るブラシレスモータを3相4極に係るものとLAil性
体取着部であるデスクまたはドラムにおける外側に位置
するエンコーダ部に係る検出トラックには、その円板体
または円筒体の局方向へ順次、磁気信号N。 Sを記録し、その内側の位置検出部に係り3区分された
第1番目の検出トラックを第1相用として円周方向へ9
0度づつに4分割し、その対角状の2ケ所に径方向内外
、または軸方向に磁気信号S。 Nを記録し、内側第2番目の検出トラックを第2相用と
して、前記第1番目の検出トラックの磁気信号S、Nよ
シ円局方向へす(電気角で120度)ずらした位置で当
該磁気信号とは着磁の方向が逆になるように磁気信号N
、8を記録し、さらに内側第3番目の検出トラックを第
3相用として、前円周方向へ60度(電気角で120度
)ずらした位置で当該磁気信号とは着磁の方向が逆にな
るように磁気信号S、Nを記録するようにしたものであ
る磁気回転センサ。
[Scope of Claims] 1. A magnetic body attachment part that is attached to a rotating shaft of a brushless motor and has a magnetic substance on its surface, and a magnetoresistive element that is arranged opposite to this magnetic body attachment part. In a one-shot rotation sensor consisting of multiple parts, the magnetic body attachment part has a detection track related to an encoder part that detects the rotation speed of a brushless motor, and the position of the motor. 1. A magnetic rotation sensor comprising a track divided into a plurality of sections relating to a position detection section. 2. In the device described in claim 1, magnetic signals N and S are sequentially recorded in the circumferential direction on the detection track related to the encoder section, and the position detection is divided according to the number of phases of the brushless motor. A magnetic signal N, + 8 is applied to each detection track according to the motor, shifted in position based on the number of poles of the motor concerned.
A magnetic rotation sensor that records information in the radial direction, the outside direction, or the axial direction. 3. In the item described in claim 1, the magnetic attachment portion is connected to the encoder portion on the concentric circle of the disk body or in the axial direction of the cylinder body, and the magnetic signal N, 8
The magnetic signals N, 8 are divided into concentric circles or in the axial direction according to the number of phases of the brushless motor, and are shifted in position based on the number of poles of the motor to send magnetic signals N and 8 radially outward and outward. Alternatively, the detection track recorded in the axial direction may be divided into a disk or a drum, and facing each detection track of this disk or drum, the detection track recorded in the axial direction may be - A magnetoresistive sensor in which a magnetoresistive element section having a plurality of magnetoresistive elements is arranged, the encoder section and the position detection section being arranged in a straight line. 4. In the product described in claim 3, the attached brushless motor is three-phase, the detection circuit related to the position detection section is divided into three, and each magnetoresistive effect is arranged opposite to each of these. Two sets of elements are provided, with the magnetoresistive elements facing each of the first and second detection tracks, the second and third detection tracks, and the third and first detection tracks. Three brushless motors connected in series to the power supply and output from their respective intermediate terminals are connected to a three-phase, four-pole motor, and a detection track is connected to an encoder section located outside of the desk or drum where the LAil body is attached. , a magnetic signal N is applied sequentially in the local direction of the disc or cylinder. S is recorded, and the first detection track, which is divided into three according to the position detection section on the inner side, is used for the first phase and is moved 9 in the circumferential direction.
It is divided into four parts of 0 degree each, and magnetic signals S are applied to the two diagonal locations inside and outside in the radial direction, or in the axial direction. N is recorded, and the second inner detection track is used for the second phase, and the magnetic signals S and N of the first detection track are shifted in the circular direction (120 degrees in electrical angle). A magnetic signal N is generated so that the direction of magnetization is opposite to that of the magnetic signal.
. A magnetic rotation sensor that records magnetic signals S and N so that
JP3729682A 1982-03-11 1982-03-11 Magnetic rotary sensor Granted JPS58155312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3729682A JPS58155312A (en) 1982-03-11 1982-03-11 Magnetic rotary sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3729682A JPS58155312A (en) 1982-03-11 1982-03-11 Magnetic rotary sensor

Publications (2)

Publication Number Publication Date
JPS58155312A true JPS58155312A (en) 1983-09-16
JPH0326324B2 JPH0326324B2 (en) 1991-04-10

Family

ID=12493736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3729682A Granted JPS58155312A (en) 1982-03-11 1982-03-11 Magnetic rotary sensor

Country Status (1)

Country Link
JP (1) JPS58155312A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161519A (en) * 1984-02-01 1985-08-23 Hitachi Ltd Magnetic rotary encoder
EP0482341A2 (en) * 1990-09-26 1992-04-29 Siemens Aktiengesellschaft Rotary or linear position encoder
JP2006217672A (en) * 2005-02-01 2006-08-17 Nidec Sankyo Corp Small motor with encoder
US7141965B2 (en) * 2003-11-26 2006-11-28 International Business Machines Corporation Magnetic encoder system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860215A (en) * 1981-10-06 1983-04-09 Hitachi Ltd Encoder with position detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860215A (en) * 1981-10-06 1983-04-09 Hitachi Ltd Encoder with position detection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161519A (en) * 1984-02-01 1985-08-23 Hitachi Ltd Magnetic rotary encoder
EP0482341A2 (en) * 1990-09-26 1992-04-29 Siemens Aktiengesellschaft Rotary or linear position encoder
US7141965B2 (en) * 2003-11-26 2006-11-28 International Business Machines Corporation Magnetic encoder system
JP2006217672A (en) * 2005-02-01 2006-08-17 Nidec Sankyo Corp Small motor with encoder
JP4592435B2 (en) * 2005-02-01 2010-12-01 日本電産サンキョー株式会社 Small motor with encoder

Also Published As

Publication number Publication date
JPH0326324B2 (en) 1991-04-10

Similar Documents

Publication Publication Date Title
US4405885A (en) Brushless dc motor
JPS5860215A (en) Encoder with position detection
US4746862A (en) Apparatus for detecting both rotational speed and reference rotational angle of a rotary member
WO1999013296A1 (en) Magnetic encoder
JPH0264407A (en) Magnetic absolute position encoder
JP2000065596A (en) Magnetic encoder
JP2000065596A5 (en) Magnetic encoder and motor with magnetic encoder
JPH10239338A (en) Detector
JPS6086412A (en) Magnetic detector
JPS58155312A (en) Magnetic rotary sensor
JPS59147213A (en) Magnetic rotary sensor
JPH0352565B2 (en)
JPH0330089B2 (en)
JPS60233516A (en) Transducer
JPH061200B2 (en) Linear encoder
JPH0442760A (en) Motor
JPS5844375Y2 (en) Motor rotation speed detection device
JPH09119966A (en) Two-element three-terminal type magnetoelectric transducer and rotary angle detection device using it
JPH0469348B2 (en)
JPH0320779Y2 (en)
JPH02296109A (en) Angle detecting device
JPH061202B2 (en) Magnetic rotary encoder
JPS58202873A (en) Optical rotation detector
JPH01185414A (en) Magnetic type rotary encoder
JPS5972017A (en) Frequency generator