JPS63205908A - Plating method for semiconductor substrate - Google Patents

Plating method for semiconductor substrate

Info

Publication number
JPS63205908A
JPS63205908A JP3806287A JP3806287A JPS63205908A JP S63205908 A JPS63205908 A JP S63205908A JP 3806287 A JP3806287 A JP 3806287A JP 3806287 A JP3806287 A JP 3806287A JP S63205908 A JPS63205908 A JP S63205908A
Authority
JP
Japan
Prior art keywords
copper
polished
acid
diffusion depth
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3806287A
Other languages
Japanese (ja)
Inventor
Katsujiro Tanzawa
丹沢 勝二郎
Masaru Shinpo
新保 優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3806287A priority Critical patent/JPS63205908A/en
Publication of JPS63205908A publication Critical patent/JPS63205908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable high precision measuring of impurity diffusion depth, by soaking a wafer whose angle is polished into an acid or alkaline solution and next performing copper plating in a solution of copper sulfate under light radiation. CONSTITUTION:Mirror surfaces of two semiconductor substrates, which are mirror polished, are made to touch each other under a clean atmosphere which essentially contains no foreign matter, and heat treatment is performed to unify them. These substrates are copper-polished in a solution of copper sulfate under light radiation. After these substrates are soaked into an acid or alkaline solution at that time, they are copper-plated. Thereupon, an adhesion interface and a pn junction surface are concurrently and clearly detected. Hence, impurity diffusion depth can be measured with high precision.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は直接接着法により作成した半導体基板のメッ
キ法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) This invention relates to a method of plating a semiconductor substrate made by a direct bonding method.

(従来の技術) 一般にシリコンウニ八同士を接着剤を用いることなく、
直接接着した接着シリコンウェハにおいて、接着界面を
横切る不純物の拡散深さく接着界面とpn接合面との距
離)の測定は半導体デバイスの製造プロセスにおいて重
要である。
(Prior art) Generally, silicon sea urchins are bonded together without using adhesive.
In directly bonded bonded silicon wafers, measurement of the diffusion depth of impurities across the bonding interface (the distance between the bonding interface and the pn junction surface) is important in the semiconductor device manufacturing process.

従来の未接着シリコンウェハにおける拡散深さの測定は
、抵抗スプレディング法、メッキ法、エツチング法など
により測定することができる。しかし、接着シリコンウ
ェハは接着界面を持つウェハのために、前記した従来の
測定法では、接着界面を横切る不純物の拡散深さを精度
よく測定することは困難であった。それは、接着ウェハ
の接着界面とpn接合面を同時に検出して評価すること
ができないためである。
Diffusion depth in conventional unbonded silicon wafers can be measured by resistive spreading, plating, etching, or the like. However, since a bonded silicon wafer has an adhesive interface, it is difficult to accurately measure the diffusion depth of impurities across the adhesive interface using the conventional measurement method described above. This is because it is not possible to simultaneously detect and evaluate the bonding interface and the pn junction surface of the bonded wafer.

そこで1本発明者らは、新手法の銅メツキ法を考案した
。これにより、接着シリコンウェハの接着界面とpn接
合面を同時且つ明瞭に検出して、拡散深さを精度良く、
簡単に測定することができた。
Therefore, the present inventors devised a new copper plating method. This enables simultaneous and clear detection of the bonding interface and pn junction surface of the bonded silicon wafer, and accurate measurement of the diffusion depth.
It was easy to measure.

(発明が解決しようとする間頭点) 従来における直接接着シリコンウェハの接着界面を横切
る不純物の拡散深さの測定は、接着界面とpn接合面を
同時且つ明瞭に検出しなければならないために、従来の
測定法では困鷺である。
(The main problem to be solved by the invention) In the conventional measurement of the diffusion depth of impurities across the bonding interface of a directly bonded silicon wafer, the bonding interface and the pn junction surface must be detected simultaneously and clearly. This is difficult with conventional measurement methods.

本発明は直接接着シリコンウェハの拡散深さの測定にお
いて、接着界面とpn接合面を同時且つ明瞭に検出して
、不純物の拡散深さを精度良く簡単に測定するための半
導体基板のメッキ法を提供するものである。
The present invention provides a semiconductor substrate plating method for measuring the diffusion depth of directly bonded silicon wafers by simultaneously and clearly detecting the bonding interface and the pn junction surface and easily measuring the diffusion depth of impurities with high accuracy. This is what we provide.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、直接接着シリコンウェハの接着界面を横切る
不純物深さの測定において、角度研磨したウェハを酸ま
たはアルカリ溶液に浸漬させた後、光照射下の硫酸銅溶
液中で銅メッキする半導体基板のメッキ方法である。
(Means for Solving the Problems) In the measurement of the impurity depth across the bonding interface of directly bonded silicon wafers, the present invention involves immersing the angle-polished wafer in an acid or alkaline solution and then using sulfuric acid under light irradiation. This is a plating method for semiconductor substrates in which copper is plated in a copper solution.

(作  用) 本発明は接着シリコンウェハを光照射下の硫酸銅溶液中
で銅メッキする時、角度研磨した接着シリコンウェハを
銅メッキする前に、酸に浸漬させてから銅メッキした。
(Function) In the present invention, when a bonded silicon wafer is copper-plated in a copper sulfate solution under light irradiation, the angle-polished bonded silicon wafer is immersed in acid and then copper-plated before being plated with copper.

このウェハは接着界面とpn接合面を同時且つ明瞭に検
出することができて、接着界面を横切る不純物の拡散深
さが精度よく簡単に測定できた。また、接着シリコンウ
ェハをアルカリ溶液に浸漬後、銅メッキした場合も酸の
時と同様な結果が得られた。
In this wafer, the adhesive interface and the pn junction surface could be detected simultaneously and clearly, and the diffusion depth of impurities across the adhesive interface could be easily measured with high accuracy. Also, when a bonded silicon wafer was immersed in an alkaline solution and then plated with copper, results similar to those obtained with acid were obtained.

しかし、同様に角度研磨した接着シリコンウェハを酸ま
たは、アルカリ溶液に浸漬させることなく、銅メッキし
たウェハは、接着界面及びpn接合面共に不明瞭で検出
できないため、接着界面を横切る不純物の拡散深さの測
定は、不可能であった。この結果から、接着シリコンウ
ェハの接着界面を横切る不純物の拡散深さを銅メツキ法
により測定する時、接着シリコンウェハを酸または、ア
ルカリ溶液に浸漬させてから、銅メッキする方法は拡散
深さを測定するのに、ftN単で精度の良いメッキ法で
あることが判明した。
However, when bonded silicon wafers are similarly angle-polished and copper plated without immersing them in acid or alkaline solutions, both the bonding interface and the pn junction surface are unclear and cannot be detected, resulting in the depth of impurity diffusion across the bonding interface. It was not possible to measure the From this result, when measuring the diffusion depth of impurities across the adhesive interface of a bonded silicon wafer using the copper plating method, the method of immersing the bonded silicon wafer in an acid or alkaline solution and then plating with copper will reduce the diffusion depth. It has been found that the plating method requires only ftN and has high accuracy for measurement.

(実施例) 第1の実施例 直径76mm、厚さ0.40mm、 P型面方位(10
0)、 比抵抗0.003Ω・cIl(Bドープ)のシ
リコンウェハと直径、厚さが同じN型、面方位(100
) 、  比抵抗7Ω・am(Pドープ)のシリコンウ
ェハを用いた。
(Example) First example diameter: 76 mm, thickness: 0.40 mm, P-type surface orientation (10
0), N-type with the same diameter and thickness as a silicon wafer with a specific resistance of 0.003Ω・cIl (B-doped), and a surface orientation (100
), a silicon wafer with a specific resistance of 7 Ω·am (P-doped) was used.

二枚のウェハをトリクレン、アセレンの脱脂処理、過酸
化水素と硫酸の混酸処理そして王水処理後。
Two wafers were degreased with trichlene and acelene, treated with a mixed acid of hydrogen peroxide and sulfuric acid, and treated with aqua regia.

水洗して乾燥した。このウェハをクラスlO以下の清浄
雰囲気下で鏡面同士を接触させて接着し、窒素雰囲気の
電気炉中で1100℃、5時間熱処理することにより一
体化した。この直接接着シリコンウェハから5 +om
 X 10nv+のペレットを切り出し、5度44分の
角度研磨治具に固定して、接着界面が露出するように鏡
面研磨した。この研磨したペレットを少量の沸酸が添加
されている硫酸銅飽和溶液に15秒間浸漬させながら、
白熱電球(100W)で照らして、銅メッキ膜を析出さ
せ、水洗後、乾燥した。
Washed with water and dried. The wafers were bonded with their mirror surfaces in contact with each other in a clean atmosphere of class 1O or lower, and integrated by heat treatment at 1100° C. for 5 hours in an electric furnace in a nitrogen atmosphere. 5+om from this direct bonded silicon wafer
A pellet of X 10nv+ was cut out, fixed to a polishing jig at an angle of 5 degrees and 44 minutes, and mirror-polished so that the adhesive interface was exposed. While immersing the polished pellets in a saturated copper sulfate solution to which a small amount of boiling acid has been added for 15 seconds,
A copper plating film was deposited by illuminating it with an incandescent light bulb (100 W), washed with water, and then dried.

このペレットの接着界面を顕微鏡で調べたが、接着界面
は検出できず、pn接合面は不明瞭であった。
The adhesive interface of this pellet was examined under a microscope, but no adhesive interface could be detected and the pn junction surface was unclear.

しかし、同様に鏡面研磨したペレットを塩酸に3秒間、
浸漬させてから、前記と同様に硫酸銅飽和溶液に20秒
間浸漬させながら、ランプで照らして、銅メッキ膜を析
出させ、水洗後、乾燥した。
However, similarly, mirror-polished pellets were soaked in hydrochloric acid for 3 seconds.
After immersion, the copper plating film was precipitated by immersing it in a copper sulfate saturated solution for 20 seconds and illuminating it with a lamp, followed by washing with water and drying.

このペレットの接着界面を顕微鏡で調べると、接着界面
及びpn接合面ともに明瞭に検出することができた。不
純物の拡散深さく接着界面とpn接合面の距離)の測定
値は計算値と14以内の精度で一致した。
When the adhesive interface of this pellet was examined using a microscope, both the adhesive interface and the pn junction surface could be clearly detected. The measured values of the impurity diffusion depth (distance between the adhesive interface and the pn junction surface) agreed with the calculated values with an accuracy of within 14.

尚、研磨したペレットを沸酸に5秒間浸漬してから銅メ
ッキした場合でも、接着界面pn接合面ともに前記と同
様な結果が得られ、拡散深さの測定値も一致した。この
他、硫酸、硝酸、酢酸、沸化アンモニウムを用いた場合
でも同じ結果を示した。
Note that even when the polished pellets were immersed in boiling acid for 5 seconds and then copper plated, the same results as above were obtained for both the adhesion interface and the pn junction surface, and the measured values of the diffusion depth also matched. In addition, the same results were obtained when sulfuric acid, nitric acid, acetic acid, and ammonium fluoride were used.

第2の実施例 直径76av+、厚さ0.50mm、 N型、面方位(
ioo) 。
Second example diameter 76av+, thickness 0.50mm, N type, surface orientation (
ioo).

比抵抗0.01Ω・am(Pドープ)のシリコンウェハ
と直径、厚さが同じP型、面方位(100)、比抵抗2
8Ω・cm(Bドープ)のシリコンウェハを用いた。
P-type with the same diameter and thickness as a silicon wafer with a resistivity of 0.01Ω・am (P-doped), surface orientation (100), and resistivity 2
A silicon wafer of 8 Ω·cm (B doped) was used.

二枚のウェハを第1の実施例と同様な洗浄処理、乾燥後
、同じ方法で接着、熱処理して接着シリコンウェハを作
成した。このウェハから第1の実施例と同様方法で研磨
ペレットを作成した。このペレットを少量の沸酸が添加
されている硫酸銅飽和溶液に30秒間浸漬させながら、
白熱電球で照らして、銅メッキ膜を析出させ、水洗後、
乾燥した。
Two wafers were cleaned and dried in the same manner as in the first example, and then bonded and heat treated in the same manner to produce bonded silicon wafers. Polished pellets were made from this wafer in the same manner as in the first example. The pellets were immersed for 30 seconds in a saturated copper sulfate solution to which a small amount of boiling acid had been added.
The copper plating film is deposited by illuminating it with an incandescent light bulb, and after washing with water,
Dry.

二のペレットの接着界面を顕微鏡で調べたが、接着界面
は検出できず、pn接合面は不明瞭であった。しかし、
同様に作成したペレットを10重量%水酸化ナトリウム
溶液に5秒間、浸漬させてがら、前記と同様に硫酸銅飽
和溶液に30秒間浸漬させながら、ランプで照らして、
銅メッキ膜を析出させ。
The adhesive interface of the second pellet was examined using a microscope, but no adhesive interface could be detected and the pn junction surface was unclear. but,
Pellets prepared in the same manner were immersed in a 10% by weight sodium hydroxide solution for 5 seconds, and immersed in a saturated copper sulfate solution for 30 seconds in the same manner as above, while being illuminated with a lamp.
Deposit a copper plating film.

水洗後、乾燥した。このペレットの接着界面を顕微鏡で
調べると、接着界面及びpn接合面ともに明瞭に検出す
ることができた。不純物の拡散深さの測定値は計算値と
1p以内の精度で一致した。
After washing with water, it was dried. When the adhesive interface of this pellet was examined using a microscope, both the adhesive interface and the pn junction surface could be clearly detected. The measured value of the impurity diffusion depth agreed with the calculated value with an accuracy of within 1 p.

尚、研磨したペレットを5重量%の水酸化カリウム溶液
に20秒間浸漬してから、銅メッキした場合でも、接着
界面pn接合面ともに前記と同様な結果が得られ、拡散
深さの測定値も一致した。
In addition, even when the polished pellet was immersed in a 5% by weight potassium hydroxide solution for 20 seconds and then plated with copper, the same results as above were obtained for both the adhesive interface pn junction surface, and the measured value of the diffusion depth was also Agreed.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明を用いれば、従来法では不可能だっ
た接着シリコンウェハの不純物の拡散深さを簡便で精度
良く測定できることがら、直接接着技術を用いた半導体
デバイス製造プロセスに応用すれば、デバイスの製造技
術及び品質管理などの半導体産業に大きく寄与する。
As described above, if the present invention is used, it is possible to easily and precisely measure the diffusion depth of impurities in a bonded silicon wafer, which was impossible with conventional methods.If applied to a semiconductor device manufacturing process using direct bonding technology, It will greatly contribute to the semiconductor industry in terms of device manufacturing technology and quality control.

代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男Agent: Patent Attorney Noriyuki Chika Same Bamboo Flower Kikuo

Claims (1)

【特許請求の範囲】[Claims] 鏡面研磨された二枚の半導体基板の鏡面同士を実質的に
異物を含まない清浄雰囲気下で接触させ、熱処理として
一体化させる直接接着法により作成した半導体基板を、
光照射下の硫酸銅溶液中で銅メッキする際、酸またはア
ルカリ溶液に浸漬後、銅メッキすることを特徴とする半
導体基板のメッキ法。
Semiconductor substrates are manufactured using a direct bonding method in which the mirror surfaces of two mirror-polished semiconductor substrates are brought into contact with each other in a clean atmosphere that is substantially free of foreign matter, and then integrated through heat treatment.
A plating method for a semiconductor substrate, which is characterized in that when copper plating is performed in a copper sulfate solution under light irradiation, copper plating is performed after immersion in an acid or alkaline solution.
JP3806287A 1987-02-23 1987-02-23 Plating method for semiconductor substrate Pending JPS63205908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3806287A JPS63205908A (en) 1987-02-23 1987-02-23 Plating method for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3806287A JPS63205908A (en) 1987-02-23 1987-02-23 Plating method for semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS63205908A true JPS63205908A (en) 1988-08-25

Family

ID=12515009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3806287A Pending JPS63205908A (en) 1987-02-23 1987-02-23 Plating method for semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS63205908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027949A (en) * 1997-01-07 2000-02-22 Mitsubishi Denki Kabushiki Kaisha Method for evaluating a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027949A (en) * 1997-01-07 2000-02-22 Mitsubishi Denki Kabushiki Kaisha Method for evaluating a semiconductor device

Similar Documents

Publication Publication Date Title
EP0488149B1 (en) Method of analyzing metal impurities in surface oxide film of semiconductor substrate
JPH02243952A (en) Biosensor device
JPS63205908A (en) Plating method for semiconductor substrate
US2916806A (en) Plating method
CN112908876A (en) Silicon chip metal pollution testing method and device
CN107723802A (en) A kind of caustic solution of indium phosphide single crystal wafer
JP3566901B2 (en) Solar cell manufacturing method
US4286277A (en) Planar indium antimonide diode array and method of manufacture
US4507334A (en) Surface preparation for determining diffusion length by the surface photovoltage method
US8313947B2 (en) Method for testing a contact structure
US5849603A (en) Method of processing a surface of a semiconductor substrate
JPS61182216A (en) Bonding method of semiconductor device
US6150279A (en) Reverse current gold etch
Iannuzzi Development and evaluation of a preencapsulation cleaning process to improve reliability of HIC's with aluminum metallized chips
JPS60236210A (en) Junction of semiconductor wafers
CN109786244A (en) A kind of processing technology of chip
JPS63127531A (en) Manufacture of semiconductor device
CN110174412B (en) Method for testing corrosion depth of glass in silver paste on surface of silicon wafer
JPS63110730A (en) Drying method for semiconductor wafer
US3539391A (en) Methods of coating semiconductor materials with conductive metals
JP2621851B2 (en) Semiconductor substrate bonding method
Maoudj et al. Influence of the alkali surface treatments on the interface-states density and minority carrier lifetime in cz–silicon wafer
CN116169100A (en) Preparation method of light guide device based on large-piece flow sheet process
KR960002245B1 (en) Method of detecting contamination meterials in semiconductor
Stonebraker Design and development of a high power, low saturation voltage silicon switching transistor Final report