JPS63204602A - Oxide permanent magnet and its coating method - Google Patents

Oxide permanent magnet and its coating method

Info

Publication number
JPS63204602A
JPS63204602A JP62036621A JP3662187A JPS63204602A JP S63204602 A JPS63204602 A JP S63204602A JP 62036621 A JP62036621 A JP 62036621A JP 3662187 A JP3662187 A JP 3662187A JP S63204602 A JPS63204602 A JP S63204602A
Authority
JP
Japan
Prior art keywords
magnet
weight
cao
electrodeposition coating
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62036621A
Other languages
Japanese (ja)
Inventor
Motoharu Shimizu
元治 清水
Masayoshi Minegishi
峯岸 昌芳
Koji Kobayashi
小林 光次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPS63204602A publication Critical patent/JPS63204602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To make it possible to uniformly form a thin film on the surface of a magnet body using an electrodeposition coating material, by a method wherein a film of the electrodeposition coating material is formed on the surface of the magnet body having the fundamental composition in which Fe2O2/MO is specified by mol ratio, and specific volume resistivity and the density of sintered body. CONSTITUTION:A film of electrodeposition coating material is formed on the surface of a magnet body having the fundamental composition of Fe2O3/M0 (M indicates one or two kinds of Sr, Ba and Pb) of 5.3-6.2 in mol ratio, the volume resistivity of 10<7>OMEGA.cm or less and the sintered body density of 4.80g/cm<3> or more. Pertaining to the method of coating, said magnet body is dipped into the solution in which a cation type electrodeposition coating material is mixed, D/C current is applied between said magnet body and the opposing electrode, and the film of cation type electrodeposition coating material is formed on the surface of the magnet body. Consequently, the electrodeposition coating operation can be performed on the oxide permanent magnet as an insulative body, and a thin and uniform surface film can be obtained irrespective of the intricateness of its shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子計算機の周辺機器の一つであるリジッド
・ディスク・ドライブあるいはフロッピー・ディスク・
ドライブに使用される磁気ヘッドの位置決め装置などに
使用される酸化物永久磁石に係り、特に研磨加工時に付
着残存する磁性微粒子が飛散しないよう表面に電着によ
る薄く均一な塗装被膜を形成した酸化物永久磁石及びそ
の塗装方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to rigid disk drives or floppy disk drives, which are one of the peripheral devices of electronic computers.
For oxide permanent magnets used in magnetic head positioning devices used in drives, etc., oxides with a thin, uniform coating film formed by electrodeposition on the surface to prevent magnetic particles remaining attached during polishing from scattering. This invention relates to permanent magnets and their coating methods.

〔従来の技術〕[Conventional technology]

磁気ディスク装置の磁気ヘッドの位置決め装置において
、磁気ヘッドを書き込み、読み出しに必要トラック間を
移動させるための駆動源の一つとしてボイスコイル型モ
ータが使用されている。
In a magnetic head positioning device for a magnetic disk drive, a voice coil motor is used as one of the driving sources for moving the magnetic head between tracks required for writing and reading.

コイルの運動として、線型のもの(例えば特公昭50−
4241号および同58−35030号参照)と旋回運
動のもの(例えば特開昭55−88559号および特公
昭58−31662号参照)があるが、いずれにしても
ヨークと永久磁石で形成された磁気空隙内にコイルが配
置されて、このコイルに電流が流されることによってフ
レミングの左手の法則に基いてコイルが運動するように
なっている。
The motion of the coil is linear (for example,
No. 4241 and No. 58-35030) and one with rotating motion (see, for example, Japanese Patent Application Laid-open No. 55-88559 and Japanese Patent Publication No. 58-31662), but in either case, the magnetic field formed by a yoke and a permanent magnet is A coil is placed in the air gap, and when a current is passed through the coil, the coil moves based on Fleming's left-hand rule.

このようなボイスコイル型モータに組み込まれる永久磁
石として、例えばフェライト磁石が使用されている。と
ころがフェライト磁石は、研削加工後に表面に磁性微粒
子が残存するため、そのまま上記磁気回路に組み込むと
、磁性微粒子が飛散して磁気記録に支障をきたしてしま
う。そのため上記のような用途のフェライト磁石は、表
面を塗装してから磁気回路に組み込むのが一般的である
For example, ferrite magnets are used as permanent magnets incorporated in such voice coil type motors. However, since magnetic fine particles remain on the surface of a ferrite magnet after grinding, if it is directly incorporated into the magnetic circuit, the magnetic fine particles will scatter and interfere with magnetic recording. For this reason, ferrite magnets used for the above purposes are generally coated on the surface before being incorporated into a magnetic circuit.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

フェライト磁石への塗装手段としては、従来より磁石表
面に塗料を吹き付けるあるいは塗料浴中に磁石を浸漬す
る方法が採用されていた。しかして吹付けや浸漬による
方法では、塗膜にタレやタマリといった厚さの不均一な
部分が生じ易く、また磁石が複雑形状であると塗装され
ない部分が生じる、あるいは狭い空隙部が塗料によりふ
さがれてしまうという不具合があった。
Conventionally, methods for coating ferrite magnets include spraying paint onto the magnet surface or immersing the magnet in a paint bath. However, spraying or dipping methods tend to cause uneven thickness in the paint film, such as sagging or sagging, and if the magnet has a complicated shape, there may be parts that are not painted, or narrow gaps may be blocked by the paint. There was a problem that it would get lost.

またこの他の塗料手法としては、電着塗装が知られてい
る。この電着塗装のうちカチオン電着塗装は、高能率で
均一な塗膜を形成できるため、例えば特許第1)864
36号及び特開昭58−25497号に開示されている
ように自動車のボディおよびその付属部品等の塗装に多
用されている。
Electrodeposition coating is also known as another coating method. Among these electrodeposition coatings, cationic electrodeposition coating can form a highly efficient and uniform coating film, so for example, Patent No. 1) 864
As disclosed in No. 36 and Japanese Unexamined Patent Publication No. 58-25497, it is widely used for painting automobile bodies and their accessory parts.

しかるにカチオン型電着塗装は、被塗装物を水溶性塗料
中に浸漬して、被塗装物を陰極(−)、値料タンク(ま
たはタンク中に別に設け゛た電極板)を陽極(+)とし
、両極間に直流電流を流すことにより、電気的な力によ
り塗料の微粒子を被塗装物表面に引き付け、皮膜を形成
する方法であることから、被塗装物は鉄系金属等の導電
性の良い材料に限られ、電気的に絶縁性を有する材料に
分類されていた酸化物永久磁石には適用されていなかっ
た。
However, in cationic electrodeposition coating, the object to be coated is immersed in a water-soluble paint, and the object to be coated is used as the cathode (-), and the metal tank (or an electrode plate separately installed in the tank) is used as the anode (+). , by passing a direct current between the two electrodes, the fine particles of paint are attracted to the surface of the object to be coated using electric force, forming a film. It was not applied to oxide permanent magnets, which were classified as electrically insulating materials.

したがって本発明の目的は、表面に薄くかつ均一な電着
塗装による皮膜を有する酸化物永久磁石を提供すること
である。
Therefore, an object of the present invention is to provide an oxide permanent magnet having a thin and uniform electrodeposition coating on its surface.

本発明の他の目的は、酸化物永久磁石の表面に薄くかつ
均一な電着塗装の皮膜を形成することのできる方法を提
供することである。
Another object of the present invention is to provide a method capable of forming a thin and uniform electrodeposition coating on the surface of an oxide permanent magnet.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の酸化物永久磁石は、モル比にてFe、03/M
O(MはSr+ Ba、 Pbの内の1種又は2種)=
5.3乃至6.2なる基本組成を有し、体積抵抗率が1
07Ω・c未満でありかつ焼結体密度が4.80 g 
/crd以上である磁石体の表面に電着塗料の皮膜を形
成したことを特徴とする。
The oxide permanent magnet of the present invention has a molar ratio of Fe, 03/M
O (M is one or two of Sr+Ba and Pb) =
It has a basic composition of 5.3 to 6.2 and a volume resistivity of 1.
less than 0.07Ω・c and a sintered body density of 4.80 g
/crd or more, a film of electrodeposition paint is formed on the surface of the magnet body.

また本発明の酸化物永久磁石の塗装方法は、モル比にて
FezO5/MO(MはSr、 Ba、 Pbの内の1
種又は2種)=5.3乃至6.2なる基本組成を有し、
体積抵抗率が107Ω・cm未満でありかつ焼結体密度
が4.80 g /ant以上である磁石体を、カチオ
ン型電着塗料を分散した溶液中に浸漬し、この磁石体と
対向電極との間に直流電圧を印加して、磁石体の表面に
カチオン型電着塗料の皮膜を形成することを特徴とする
ものである。
In addition, the coating method for the oxide permanent magnet of the present invention uses a molar ratio of FezO5/MO (M is one of Sr, Ba, and Pb).
species or two species) = 5.3 to 6.2,
A magnet body having a volume resistivity of less than 107 Ω·cm and a sintered body density of 4.80 g/ant or more is immersed in a solution in which cationic electrodeposition paint is dispersed, and this magnet body and a counter electrode are connected to each other. This is characterized in that a DC voltage is applied during this period to form a film of cationic electrodeposition paint on the surface of the magnet body.

酸化物永久磁石は、一般に、モル比にてFezO3/M
O(MはSr、 Ba、 Pbの内の1種又は2種)〜
5.3〜6.2で表わされる基本組成を有している。し
かして磁気特性の点から、SrOとFe2O,を主成分
としたストロンチウムフェライト磁石が多用されること
が多い。このストロンチウムフェライト磁石を例にとる
と、その磁気特性を向上させるために、添加物としてS
ingとCaOが複合添加されることは従来から行なわ
れている。また磁気特性をより向上させかつそれを安定
化させるために8203を添加することも行なわれてい
る。更に保磁力(+1Ic)を向上させるために、A 
I!t’s又はCrzOzを添加することもある。そし
てこれらの添加物が液相と呼ばれるガラス状の粒界層を
形成することは知られている。
Oxide permanent magnets generally have a molar ratio of FezO3/M
O (M is one or two of Sr, Ba, Pb) ~
It has a basic composition expressed by 5.3 to 6.2. However, from the viewpoint of magnetic properties, strontium ferrite magnets containing SrO and Fe2O as main components are often used. Taking this strontium ferrite magnet as an example, in order to improve its magnetic properties, S is added as an additive.
It has been conventional practice to add ing and CaO in combination. Additionally, 8203 is also added in order to further improve the magnetic properties and stabilize them. In order to further improve the coercive force (+1Ic), A
I! t's or CrzOz may also be added. It is known that these additives form a glassy grain boundary layer called a liquid phase.

本発明者等は、種々検討した結果、上記のようなフェラ
イト磁石の液相焼結においてガラス状の粒界層を形成す
る添加物(特にCab)がフェライト磁石の電気抵抗を
より高め、電着塗装を困難なものとしていることを解明
した。さらにはこの添加物が焼結過程において残存する
空孔量、すなわち、焼結体密度にも関係していることを
解明した。
As a result of various studies, the present inventors have discovered that additives (especially Cab) that form glassy grain boundary layers in liquid phase sintering of ferrite magnets as described above can further increase the electrical resistance of ferrite magnets and We found out what makes painting difficult. Furthermore, it was revealed that this additive is related to the amount of pores remaining during the sintering process, that is, the density of the sintered body.

フェライト磁石の表面に電着塗装により被膜を形成する
ためには、磁石の体積抵抗率を107Ω・cm未溝にす
る必要があることが見出された。また磁石の焼結体密度
を4.8 g /cra以上とすれば、磁石内の空孔が
減少し、よって磁気特性の低下を伴わずに体積抵抗率を
低くできることも見出された。
It has been found that in order to form a film on the surface of a ferrite magnet by electrodeposition, it is necessary to make the magnet have a volume resistivity of 10 7 Ω·cm without grooves. It has also been found that when the sintered body density of the magnet is set to 4.8 g/cra or more, the number of pores in the magnet is reduced, and thus the volume resistivity can be lowered without deteriorating the magnetic properties.

フエライ)1石の体積抵抗率と焼結体密度を上記の範囲
に収めるためには、例えば添加物の種類及びその添加量
を次のように定めればよいことがわかった。
It has been found that, in order to keep the volume resistivity and sintered body density of one stone within the above ranges, for example, the type and amount of additives can be determined as follows.

まず、BzOi、SiO□及びCaOを複合添加し、必
要に応じ更にA 12 z(h又はCrz(hを添加す
る場合は、各添加物の添加量(以下%は総べて重量%の
意味である)は次のようにすればよい。
First, BzOi, SiO□, and CaO are added in combination, and if necessary, if A 12 z(h or Crz(h) is added, the amount of each additive (hereinafter, % refers to weight %). ) can be done as follows.

磁気特性は5to2とCaOの添加量によって大きく変
化するが、B2O3はこの変化量を小さくして安定化と
向上をもたらす効果がある。しかしながらB2O3は0
.01%未満では効果がなく、o、 i%より多いと逆
に焼結が低い温度から進みすぎて結晶の異常成長をおこ
し易くなり+Hcを低下させるので0.01%〜0.1
%とする。
The magnetic properties vary greatly depending on the amount of 5to2 and CaO added, but B2O3 has the effect of reducing the amount of change and bringing about stabilization and improvement. However, B2O3 is 0
.. If it is less than 0.01%, there is no effect, and if it is more than 0.01% or i%, sintering progresses too much from a low temperature, which tends to cause abnormal growth of crystals and lowers +Hc, so 0.01% to 0.1%.
%.

SiO□は結晶の成長を抑制するため0.1%より少な
いと効果がなく、1.0%より多いと焼結促進剤として
のCaOを多量に複合添加しなければならず、粒界成分
が増加することとなり磁気特性を低下させるため0.1
〜1.0%(好ましくは0.2〜0.8%)とする。C
aOは0.1%より少ないと効果がなく、1、2%より
多いと抵抗が高(なり電着塗装が困難となるので0.1
〜1.2%とする。また^β203およびCr20zは
添加量が多すぎると焼結体密度が低くなり、電着塗装が
困難となるのでそれぞれ1.5%以下および2%以下と
する。
SiO□ suppresses crystal growth, so if it is less than 0.1%, it is ineffective, and if it is more than 1.0%, a large amount of CaO as a sintering accelerator must be added, and the grain boundary components are 0.1 because it increases and reduces the magnetic properties.
-1.0% (preferably 0.2-0.8%). C
If aO is less than 0.1%, it has no effect, and if it is more than 1 or 2%, the resistance becomes high (and electrodeposition coating becomes difficult, so 0.1
~1.2%. Furthermore, if too large amounts of ^β203 and Cr20z are added, the density of the sintered body will be low, making electrodeposition coating difficult, so the amounts are set at 1.5% or less and 2% or less, respectively.

また、更に高い磁気特性を得ようとする場合には、Fe
2O,とMOのモル比を5.6〜6、Oの範囲とし、か
つ、CaOとSingの含有量を次の範囲に収めればよ
い。すなわち、CaOが0.5%より少ないと焼結密度
が低くなって磁気特性が低下し、一方CaOが1、2%
を越えると抵抗が高くなりすぎるので、CaOの添加量
は0.5〜1.2%の範囲とする。SiO□は、0.3
%より少ないと結晶の抑制効果が十分でなく、一方0.
7%より多いと、CaOの多量添加を必要として磁気特
性の低下をもたらすので、Sin。
In addition, when trying to obtain even higher magnetic properties, Fe
The molar ratio of 2O and MO should be in the range of 5.6 to 6,0, and the content of CaO and Sing should be in the following range. That is, if CaO is less than 0.5%, the sintered density will be low and the magnetic properties will be deteriorated, whereas if CaO is 1 or 2%,
Since the resistance becomes too high when the amount exceeds 0.5%, the amount of CaO added is set in the range of 0.5 to 1.2%. SiO□ is 0.3
If it is less than 0.0%, the effect of suppressing crystallization will not be sufficient.
If it is more than 7%, a large amount of CaO must be added, resulting in a decrease in magnetic properties.

の添加量は0.3〜0.7%の範囲とする。The amount added is in the range of 0.3 to 0.7%.

このような組成であれば、例えばBr孔4000 Gで
しかも、Hc≧40000eのような高い磁気特性が得
られる。また上記組成においてA 1203又はCrt
Chを適当量添加すれば、高、Hc材とすることができ
、一方^1203又はCr、02の添加量を減らせば高
Br材とすることができる。したがってCaO及びSi
0g以外の各種添加物は、要求される磁気特性に応じて
、抵抗が107Ω・(至)未満の範囲で適宜添加すれば
よい。
With such a composition, high magnetic properties such as Hc≧40000e can be obtained with a Br hole of 4000G, for example. Further, in the above composition, A 1203 or Crt
By adding an appropriate amount of Ch, a high Hc material can be obtained, while by reducing the amount of ^1203 or Cr or 02 added, a high Br material can be obtained. Therefore, CaO and Si
Various additives other than 0 g may be added as appropriate depending on the required magnetic properties so that the resistance is less than 10 7 Ω·(minimum).

また磁気特性は、添加物のS類や添加量が同じであって
も、粉砕条件などの他の要因によっても変る。即ち、製
造条件を変えることによってかなり調整できるので、本
発明の添加物条件は一例と考えるべきである。
Furthermore, even if the S additives and the amount added are the same, the magnetic properties vary depending on other factors such as the grinding conditions. That is, the additive conditions of the present invention should be considered as an example since they can be adjusted considerably by changing the manufacturing conditions.

次に、フェライト磁石の抵抗は添加物条件や焼結雰囲気
条件により著しい変化を示し、例えば焼結助剤としての
添加物が少ない場合にはフェライト磁石の抵抗率は10
′3〜105Ω・cmであるが、酸化カルシウム(Ca
b)等の2価のアルカリイオンを含む化合物が粒界に多
く存在すると抵抗率は107〜10′Ω・0m以上に増
大する。
Next, the resistance of ferrite magnets shows significant changes depending on additive conditions and sintering atmosphere conditions. For example, when the amount of additives as sintering aids is small, the resistivity of ferrite magnets is 10
'3~105Ω・cm, but calcium oxide (Ca
When a large amount of compounds containing divalent alkali ions such as b) are present at the grain boundaries, the resistivity increases to 10 7 to 10'Ω·0 m or more.

そのため、添加物として酸化ケイ素(Sing)と酸化
カルシウム (Cab)を用いる場合には、CaOをC
aO/SiO□重量%仕にて1重量%溝とし、重量%に
てSiO2を0.1〜1.0%、CaOを0.1〜1.
2%とすることにより、抵抗率を107Ω・4未満とす
ることができる。なお、SiO□およびCaO添加量の
限定理由は次の通りである。
Therefore, when using silicon oxide (Sing) and calcium oxide (Cab) as additives, CaO is
The aO/SiO□wt% composition makes the groove 1 wt%, and the wt% of SiO2 is 0.1-1.0% and CaO is 0.1-1.
By setting it to 2%, the resistivity can be made less than 10 7 Ω·4. The reasons for limiting the amounts of SiO□ and CaO added are as follows.

SiO□は結晶の成長を抑制するため0.1%より少な
いと効果がなく、1.0%より多いと焼結促進剤として
のCaOを多量に複合添加しなければならず、粒界成分
が増加することとなり磁気特性を低下させるため0.1
〜1.0%(好ましくは0.2〜0.8%)とする。C
aOは0.1%より少ないと効果がなく、1.2%より
多いと抵抗が高くなり電着塗装が困難となるので0.1
〜1.2%とする。
SiO□ suppresses crystal growth, so if it is less than 0.1%, it is ineffective, and if it is more than 1.0%, a large amount of CaO as a sintering accelerator must be added, and the grain boundary components are 0.1 because it increases and reduces the magnetic properties.
-1.0% (preferably 0.2-0.8%). C
If aO is less than 0.1%, it will have no effect, and if it is more than 1.2%, the resistance will be high and electrodeposition coating will be difficult, so 0.1
~1.2%.

また、酸化物永久磁石の焼結は通常大気中にて電気炉も
しくはガス炉等を使用して行われるが、これら炉内にお
ける最高温部での酸素濃度はほぼ電気炉で13〜18%
、ガス炉で5〜10%程度となっている。この焼結時の
酸素濃度によってもフェライト磁石の抵抗率は異なり、
例えばガス炉等の酸素濃度の低い雰囲気中にて焼結を行
なうと酸化鉄(FezOi)の還元反応が増加してFe
Oilが増え、酸素濃度の高い場合よりも低い抵抗率を
示す。
In addition, sintering of oxide permanent magnets is usually carried out in the atmosphere using an electric furnace or a gas furnace, but the oxygen concentration at the highest temperature in these furnaces is approximately 13 to 18% in the electric furnace.
, it is about 5 to 10% in gas furnaces. The resistivity of ferrite magnets also varies depending on the oxygen concentration during sintering.
For example, when sintering is performed in an atmosphere with low oxygen concentration such as in a gas furnace, the reduction reaction of iron oxide (FezOi) increases and Fe
Oil increases, and the resistivity is lower than when the oxygen concentration is high.

上述した抵抗率を下げるための手段は磁気特性を低下さ
せない範囲においてどれを用いても良く、またこれらを
数種組み合わせればより低い抵抗率となり電着塗装が容
易なものとなる。
Any of the above-mentioned means for lowering the resistivity may be used as long as it does not lower the magnetic properties, and if several of these are combined, the resistivity will be lower and electrodeposition coating will be easier.

また、フェライト磁石における添加物は液相焼結により
ガラス状の粒界層を形成し、この粒界層の電気伝導は通
常イオン伝導と考えられ、1価のアルカリイオンを含む
場合にイオンの移動が容易となる。従って添加物として
酸化ナトリウム(NazO)や酸化カリウム(K、0)
等の1価のアルカリイオンを含む化合物を5iOzまた
はSiO□−B 203 + S t Oz−CaO等
と複合添加することにより、フェライト磁石の抵抗率を
低下させることができる。
Additionally, the additives in ferrite magnets form glass-like grain boundary layers through liquid phase sintering, and electrical conduction in this grain boundary layer is usually considered to be ionic conduction, and when monovalent alkali ions are included, ion movement occurs. becomes easier. Therefore, sodium oxide (NazO) and potassium oxide (K, 0) are used as additives.
By adding a compound containing a monovalent alkali ion such as 5iOz or SiO□-B 203 + S t Oz-CaO in combination, the resistivity of the ferrite magnet can be reduced.

この場合の1価のアルカリイオンを含む化合物の添加量
は、0.05〜0.5%の範囲がよい。0.05%未満
では、その効果がなく、0.5%を越えると磁気特性が
低下する。
In this case, the amount of the compound containing monovalent alkali ions added is preferably in the range of 0.05 to 0.5%. If it is less than 0.05%, there is no effect, and if it exceeds 0.5%, the magnetic properties will deteriorate.

本発明に係る塗装方法は、例えば次のような手順により
行なうことができる。
The coating method according to the present invention can be carried out, for example, by the following procedure.

まず被塗物である磁石体を脱脂・洗浄してその表面を清
浄にする。表面処理としては、防錆力や密着性を向上さ
せるために、更に化成処理を行なってもよい。次に磁石
体を電着浴槽内に浸漬し、磁石体と対向電極との間に直
流電流を流し、磁石体の表面に塗料粒子を凝固析出して
電着塗装を行なう。しかる後水洗、水切及び乾燥を行な
いついで焼付(一般には150〜200℃の温度で、数
lO分〜1時間位)を行なって電着塗膜を存する磁石体
が得られる。
First, the surface of the magnet to be coated is cleaned by degreasing and cleaning. As a surface treatment, a chemical conversion treatment may be further performed in order to improve rust prevention and adhesion. Next, the magnet body is immersed in an electrodeposition bath, and a direct current is passed between the magnet body and the opposing electrode to coagulate and precipitate paint particles on the surface of the magnet body, thereby performing electrodeposition coating. Thereafter, the magnet body is washed with water, drained and dried, and then baked (generally at a temperature of 150 to 200° C. for several 10 minutes to about 1 hour) to obtain a magnet body having an electrodeposited coating.

電着塗装のうち最初に工業化されたアニオン電着塗装は
被塗物を陽極、塗料を陰極として、陽極析出型塗料液〔
アルカリ性(pl+ 7.5〜9.0)、固形分濃度は
10〜15%位)に100〜300■位の直流電圧を2
〜3分間位印加して行なうことができる。アニオン電着
塗料に使用される樹脂は、水溶性または水分散性のもの
で、水可溶性にするために、分子中にカルボキシル基や
ヒドロキシル基等を導入し、これをアンモニア、有機ア
ミンまたは無機アルカリにより中和して、水中での安定
化を図ったものである。具体的な樹脂としては、マレイ
ン化油系樹脂、ポリブタジェン系樹脂、アクリル系樹脂
、アルキド樹脂、ポリエステル樹脂などが挙げられる。
Anionic electrodeposition coating, which was the first to be industrialized among electrodeposition coatings, uses the object to be coated as an anode and the paint as a cathode.
Alkaline (PL+ 7.5-9.0), solid content concentration is about 10-15%) with a DC voltage of about 100-300 cm.
This can be done by applying it for about 3 minutes. The resins used in anionic electrodeposition paints are water-soluble or water-dispersible, and in order to make them water-soluble, carboxyl groups, hydroxyl groups, etc. are introduced into the molecules, and these are combined with ammonia, organic amines, or inorganic alkalis. It is stabilized in water by neutralizing it. Specific resins include maleated oil resins, polybutadiene resins, acrylic resins, alkyd resins, and polyester resins.

一方、カチオン電着塗装は、被塗物を陰極、塗料を陽極
として、例えば、陰極析出型塗料液〔弱酸性(p++ 
5.5〜7.0)、固形分濃度は15〜20%位〕に1
00〜350V位の直流電圧を2〜3分間位印加して行
なうことができる。カチオン電着塗料に使用される樹脂
は、カチオン性を付与するために、分子中に塩基性アミ
ノ基、オニウム塩基などを導入し、低級有機酸、無機酸
等の酸で中和し、水溶化又は水分散化したものである。
On the other hand, in cationic electrodeposition coating, the object to be coated is used as a cathode and the paint is used as an anode.
5.5 to 7.0), solid content concentration is about 15 to 20%]
This can be done by applying a DC voltage of about 00 to 350 V for about 2 to 3 minutes. In order to impart cationic properties to the resins used in cationic electrodeposition paints, basic amino groups, onium bases, etc. are introduced into the molecules, and the resins are neutralized with acids such as lower organic acids and inorganic acids to become water-soluble. Or it is water-dispersed.

具体的な樹脂としては、エピ−ビス型、ビスフェノール
型等のエポキシ樹脂、アクリル系樹脂、ポリブタジェン
系樹脂、ポリウレタン系樹脂などが挙げられる。
Specific examples of the resin include epoxy resins such as epi-bis type and bisphenol type, acrylic resins, polybutadiene resins, and polyurethane resins.

本発明において、酸化物永久磁石の体積抵抗率(以下単
に抵抗率という)はフェライト磁石焼結体を長さ25m
、幅15鰭、厚さ7鰭の一定の大きさに研磨したのち、
20℃の温度で絶縁抵抗計(TAMADENSOKU製
TPI−512型)を用いて試料の長さ方向両端部に5
00vの直流電圧(D−C200V / cra )を
加えて電気抵抗を測定し、抵抗率=抵抗×断面積/長さ
の試算式より算出した値である。
In the present invention, the volume resistivity (hereinafter simply referred to as resistivity) of the oxide permanent magnet is as follows:
After polishing to a certain size of 15 fins wide and 7 fins thick,
At a temperature of 20°C, a 5.
The electrical resistance was measured by applying a DC voltage of 00V (DC200V/cra), and the value was calculated from the trial calculation formula: resistivity=resistance×cross-sectional area/length.

〔実施例〕〔Example〕

以下本発明を実施例により更に詳細に説明するが、本発
明はこれらの例に限定されるものではない。
EXAMPLES The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to these examples.

実施例1 炭酸ストロンチウム(SrC(h)と酸化鉄(Feze
s)をSrOとFe2O,がモル比にて1:5.8にな
るように混合し、1200℃で2時間仮焼し、これを微
粉砕するさいに焼結過程において三酸化二硼素(8gO
3)を形成しn、o、とじて重量%にて(以下同じ) 
0.05%となるように硼酸(HJ(h)を添加し、さ
らに酸化ケイ素(SiO□)を0.2〜065%、酸化
カルシウム(Cab)をO−0,9%添加したちの9種
類を各々湿式微粉砕機により平均粒径0.8μに微粉砕
し、0.4t/1fflの圧力を加え約8 KOeの磁
場中で成形後1200℃および1)50℃各々2時間焼
結して焼結密度の異なるもの2種類計18種類のストロ
ンチウムフェライト磁石を得た。
Example 1 Strontium carbonate (SrC(h) and iron oxide (Feze)
s) in a molar ratio of SrO and Fe2O of 1:5.8, calcined at 1200°C for 2 hours, and finely pulverized the mixture with diboron trioxide (8gO
3) is formed, n, o, and expressed in weight% (the same applies hereinafter).
Boric acid (HJ(h) was added to give a concentration of 0.05%, silicon oxide (SiO□) was added at 0.2 to 0.65%, and calcium oxide (Cab) was added at O-0.9%. Each type was pulverized to an average particle size of 0.8 μ using a wet pulverizer, and after applying a pressure of 0.4 t/1 ffl and molded in a magnetic field of about 8 KOe, it was sintered at 1200°C and 1) 50°C for 2 hours each. A total of 18 types of strontium ferrite magnets, including two types with different sintered densities, were obtained.

さらにこれらのフェライト磁石をアルコールにて脱脂後
、エポキシ系電着塗料(日本ペイン)II製パワートッ
プU−30ブラツク)を用いて塗装電圧300V、塗装
時間3分にてカチオン電着塗装を行い、水洗、水切り、
乾燥したのち190℃にて1時間焼付処理を行い、第1
表に示す結米を得た。第1表に各々の試料における添加
物条件、焼結体密度、抵抗率および電着結果との関係を
示す。
Furthermore, after degreasing these ferrite magnets with alcohol, cationic electrodeposition coating was performed using an epoxy electrocoating paint (Nippon Pain II Power Top U-30 Black) at a coating voltage of 300V for a coating time of 3 minutes. Washing, draining,
After drying, baking treatment was performed at 190℃ for 1 hour, and the first
The grained rice shown in the table was obtained. Table 1 shows the relationship between additive conditions, sintered body density, resistivity, and electrodeposition results for each sample.

第1表 第1表から明らかなようにこの抵抗率の増加によって電
着塗装が不可能となることがわかる。本実施例から、具
体的には抵抗率が約107Ω・cm以上となることによ
ってフェライト磁石の電着塗装が不可能となることがわ
かる。
As is clear from Table 1, this increase in resistivity makes electrodeposition coating impossible. From this example, it can be seen that, specifically, when the resistivity becomes about 10<7>Ω·cm or more, electrodeposition coating of the ferrite magnet becomes impossible.

第1図に焼結温度が1200℃の時のCaO添加量と抵
抗率の関係を、そして第2図に焼結温度が1)50℃の
時のCaO添加量と抵抗率の関係を示す9図中曲線aと
dはSin□が0.2%、bとeはSiO2が0.4%
、CとrはSingが0.5であることを示す。この時
の各試料における残留磁束密度(Br)と保磁力(+l
1c)は第3図および第4図に示す結果であった。
Figure 1 shows the relationship between the amount of CaO added and resistivity when the sintering temperature is 1200°C, and Figure 2 shows the relationship between the amount of CaO added and resistivity when the sintering temperature is 1) 50°C9 Curves a and d in the figure contain 0.2% Sin□, and curves b and e contain 0.4% SiO2.
, C and r indicate that Sing is 0.5. At this time, the residual magnetic flux density (Br) and coercive force (+l
1c) had the results shown in FIGS. 3 and 4.

第1図および第2図から明らかなようにフェライト磁石
における抵抗率は粒界成分であるCaOの添加量が増加
することによって著しく増加することがわかる。
As is clear from FIGS. 1 and 2, the resistivity of the ferrite magnet increases significantly as the amount of CaO, which is a grain boundary component, added increases.

さらに第2図の曲線dに見られるCaOが無添加の場合
にも抵抗率の増大な点が見られるが、これは第1表から
明らかなように焼結体密度が著しく低下しており粒界に
残存する空孔量が多い場合にも抵抗の増大することがわ
かる。
Furthermore, as shown in curve d in Figure 2, there is a point where the resistivity increases even when no CaO is added, but as is clear from Table 1, this is because the density of the sintered body has decreased significantly and the grains It can be seen that the resistance also increases when the amount of vacancies remaining in the field is large.

第3図と第4図から磁気特性残留磁束密度(Br)と保
磁力(+Hc)は添加物量によって変化しており、5t
ozflの多い程高保磁力1+ Hc≧30000e)
を得やす<Ca0itが増大してSiO□との重量%比
でCab/Sing #2近傍となるところから、1l
lcが急低下していることがわかる。従ってCaOを重
量%比CaO/SiO□で1.5以下となるようにすれ
ば磁気特性の低下を伴わずに電気抵抗を低くせしめ(約
106Ω・cm以下)、電着塗装を容易に行えることが
わかる。
From Figures 3 and 4, the magnetic characteristics residual magnetic flux density (Br) and coercive force (+Hc) change depending on the amount of additives, and 5t
The higher the ozfl, the higher the coercive force 1+ Hc≧30000e)
It is easy to obtain <Ca0it increases and the weight % ratio with SiO□ becomes close to Cab/Sing #2, so 1l
It can be seen that lc is rapidly decreasing. Therefore, if the CaO weight % ratio CaO/SiO□ is set to 1.5 or less, the electrical resistance can be lowered (approximately 106 Ω·cm or less) without deteriorating the magnetic properties, and electrodeposition coating can be easily performed. I understand.

前述の第2図曲線dに見られるCaOが無添加のものは
抵抗を著しく増大させるCaOが粒界になく抵抗率が1
06Ω・cm以下(4,2X106Ω・cm)であるた
めに電着塗装は可能であったが、焼結体密度が著しく低
いために残留磁束密度の低い(Br= 3600 G、
以下)ものであった。同時にこのものは保磁力も低く(
1Hc=30000e以下)、コれは焼結促進剤である
CaOが無添加であることによって液相ができに<<磁
気特性が低いものとなったと考えられる。
In the case where CaO is not added, as shown in the curve d in Figure 2, there is no CaO in the grain boundaries, which increases the resistance significantly, and the resistivity is 1.
06 Ω・cm or less (4.2×10 6 Ω・cm), electrodeposition coating was possible, but the residual magnetic flux density was low due to the extremely low sintered body density (Br = 3600 G,
(below). At the same time, this material also has a low coercive force (
1Hc = 30,000e or less), this is thought to be due to the fact that no CaO, which is a sintering accelerator, was added, resulting in the formation of a liquid phase, resulting in poor magnetic properties.

実施例2 SrCOiとFezO3がモル比にて1:5.6になる
ように混合し、この混合物にSiO2を重量%にて0.
2%加え、さらに混合した後、1200℃で2時間仮焼
し、これを微粉砕するさいに1)3BO3を0.1%、
Sin、を0.3%、CaOを0.5%加え、さらにA
 l z(hをO〜1.5%添加したものを湿式微粉砕
機により平均粒径0.8μに微粉砕し、実施例1と同様
の方法にて磁場中成形後焼結してフェライト磁石を得た
。これらのフェライト磁石を一定の大きさに研磨したの
ち、電気抵抗を測定し、第5図に示す結果を得た。第5
図に各試料の焼結体密度をあわせて示す。図中曲線gは
焼結温度1200℃、hは1)50℃における結果であ
る。
Example 2 SrCOi and FezO3 were mixed at a molar ratio of 1:5.6, and SiO2 was added to this mixture at a weight percent of 0.
After adding 2% and further mixing, it was calcined at 1200°C for 2 hours, and when it was pulverized, 1) 0.1% of 3BO3,
Add 0.3% of Sin, 0.5% of CaO, and then add A
1.5% of lz(h) was pulverized to an average particle size of 0.8μ using a wet pulverizer, molded in a magnetic field in the same manner as in Example 1, and then sintered to produce a ferrite magnet. After polishing these ferrite magnets to a certain size, the electrical resistance was measured and the results shown in Figure 5 were obtained.
The figure also shows the sintered compact density of each sample. In the figure, curve g is the result at a sintering temperature of 1200°C, and h is the result at 1) 50°C.

A A z(h (CrzO3も同様)はフェライト磁
石の保磁力(+t!c)を高めるために用いられる添加
物であるが同時に残留磁束密度(Br)および焼結体密
度を低下させる。第5図においてもi20.fiO増加
に従い焼結体密度が低下しており、焼結体密度が4.8
0g/cot近傍より低(なるに従い抵抗率が増加して
いることがわかる。これら試料を実施例1と同じ方法に
て電着塗装したところ、この焼結体密度が4.80g/
cfflより高いものについては電着できたが低いもの
は電着できない結果となった。
A A z(h (also similar to CrzO3) is an additive used to increase the coercive force (+t!c) of ferrite magnets, but at the same time reduces the residual magnetic flux density (Br) and sintered body density. Fifth The figure also shows that the sintered body density decreases as i20.fiO increases, and the sintered body density is 4.8.
It can be seen that the resistivity increases as the resistivity becomes lower than around 0 g/cot. When these samples were electrodeposited using the same method as in Example 1, the density of the sintered body was 4.80 g/cot.
The results showed that those higher than cffl could be electrodeposited, but those lower than cffl could not be electrodeposited.

従ってフェライト磁石の電着を行う場合には焼結体密度
を4.80g/cff1以上としなければならないこと
がわかる。
Therefore, it can be seen that when electrodepositing a ferrite magnet, the density of the sintered body must be 4.80 g/cff1 or more.

実施例3 炭酸ストロンチウム(SrCO3)と酸化鉄(Fe20
:+)をモル比にてSrO: FezO1= 1 : 
5.7となるように混合し、1200°Cで2時間仮焼
したものを微粉砕するさいに、重量%にて酸化ケイ素(
SiO□)を0.5%、酸化カルシウム(Cab)を0
.6%添加し、湿式微粉砕機により平均粒径の0.8μ
mに微粉砕し、0.4t/antの圧力を加えて8 K
Oeの磁場中で成形後1200°Cの温度で酸素濃度を
変化させ2時間焼結し、3種類のストロンチウムフェラ
イト磁石を得た。
Example 3 Strontium carbonate (SrCO3) and iron oxide (Fe20
:+) in molar ratio SrO:FezO1=1:
5.7, calcined at 1200°C for 2 hours, and finely pulverized the silicon oxide (by weight%).
SiO□) 0.5%, calcium oxide (Cab) 0
.. Added 6% and reduced the average particle size to 0.8μ using a wet pulverizer.
8 K by applying a pressure of 0.4 t/ant.
After molding in a magnetic field of Oe, the magnets were sintered at a temperature of 1200° C. for 2 hours while varying the oxygen concentration to obtain three types of strontium ferrite magnets.

さらにこれらのフェライト磁石を実施例1と同様の条件
にてカチオン電着塗装を行い、水洗、水切り乾燥したの
ち190℃にて1時間焼付処理を行い、塗装物を得た。
Further, these ferrite magnets were subjected to cationic electrodeposition coating under the same conditions as in Example 1, washed with water, drained and dried, and then baked at 190° C. for 1 hour to obtain coated products.

各々の試料の焼結条件と抵抗率および電着後の膜厚を測
定した結果を第2表に示す。
Table 2 shows the results of measuring the sintering conditions, resistivity, and film thickness after electrodeposition of each sample.

第2表 第2表から、Sin□とCaOを各々0.5%及び0.
6%添加しかつCaO/SiO□=1.2とすることに
より、抵抗率が107Ω・cm未満となり電1着塗装が
可能であることがわかる。また焼結雰囲気の酸素濃度が
少なくなるに従い抵抗率が下がり、電着膜厚が形成され
易いことがわかる。
Table 2 From Table 2, Sin□ and CaO are 0.5% and 0.5%, respectively.
It can be seen that by adding 6% and setting CaO/SiO□=1.2, the resistivity becomes less than 10 7 Ω·cm and single electrodeposition coating is possible. It can also be seen that as the oxygen concentration in the sintering atmosphere decreases, the resistivity decreases, making it easier to form a thick electrodeposited film.

比較例1 実施例3と同様に混合、仮焼したものを微粉砕するさい
に重量%にてSiO□を0.5%、CaOを0.8%添
加し、実施例1と同様の条件で、微粉砕、成形を行い、
1200℃で2時間酸素濃度の異なる条件で焼結して2
種類のストロンチウムフェライト磁石を得た。これらの
フェライト磁石の抵抗率を第3表に示す。
Comparative Example 1 A product mixed and calcined in the same manner as in Example 3 was finely pulverized, and 0.5% of SiO□ and 0.8% of CaO were added in terms of weight percent, and under the same conditions as in Example 1. , finely pulverize, form,
Sintered at 1200℃ for 2 hours under conditions of different oxygen concentrations.
Various types of strontium ferrite magnets were obtained. Table 3 shows the resistivity of these ferrite magnets.

第3表 これらの磁石はいずれもCaO添加量が多過ぎるために
抵抗率が107Ω・0以上となり電着塗装が不可能であ
った。従って酸素濃度の低い程抵抗率は小さな値を示す
ものの、CaOを多量に添加(SiO□/CaO重量%
比にて1.5以上)した場合には電着塗装が困難となる
ことがわかる。
Table 3 All of these magnets had resistivities of 107Ω·0 or more due to the excessive amount of CaO added, making electrodeposition coating impossible. Therefore, although the resistivity shows a smaller value as the oxygen concentration decreases, a large amount of CaO is added (SiO□/CaO weight %).
It can be seen that when the ratio is 1.5 or more), electrodeposition coating becomes difficult.

実施例4 モル比にてSrO: Peg’s = 1 : 5.6
となるように5rCO,とFe、03を混合し、混合の
際に添加物として重量%にてSiO2を0.2%加えた
ものを1200℃で2時間仮焼し、これを微粉砕するさ
いに5iftを0、4%、CaOを0.8%加え、さら
にNa、Oを0.1%加えたものと加えないものを各々
湿式微粉砕機により平均粒径0.8μmに微粉砕し、0
.4t/aJの圧力を加えて8 KOeの磁場中で成形
後、酸素濃度を20%として1200℃で2時間焼結し
、2種類のストロンチウムフェライト磁石を得た。これ
らのフェライl−m石の抵抗率を第4表に示す。
Example 4 Molar ratio of SrO: Peg's = 1: 5.6
5rCO, and Fe, 03 are mixed, 0.2% SiO2 (weight%) is added as an additive during mixing, and the mixture is calcined at 1200°C for 2 hours, and then finely pulverized. to which 0.4% of 5ift and 0.8% of CaO were added, and those with and without the addition of 0.1% of Na and O were each finely pulverized to an average particle size of 0.8 μm using a wet pulverizer. 0
.. After molding in a magnetic field of 8 KOe under a pressure of 4 t/aJ, sintering was performed at 1200° C. for 2 hours at an oxygen concentration of 20% to obtain two types of strontium ferrite magnets. Table 4 shows the resistivities of these ferrite l-m stones.

第4表 第4表からNa、0を添加した方がフェライト磁石の抵
抗率の低いことがわかる。従って、添加物としてNa2
O等の1価のアルカリイオンを含む化合物を添加すれば
、フェライト磁石における電着塗装がより容易に可能と
なることがわかる。これらの磁石を実施例1の方法と同
様の方法にて電着塗装を行った結果、いずれも抵抗率が
107Ω・1未満であることから電着塗装は行なえた。
Table 4 It can be seen from Table 4 that the resistivity of the ferrite magnet is lower when Na and 0 are added. Therefore, Na2 as an additive
It can be seen that by adding a compound containing monovalent alkali ions such as O, electrodeposition coating on ferrite magnets becomes easier. As a result of electrocoating these magnets in the same manner as in Example 1, the resistivity was less than 10 7 Ω·1, so the electrocoating could be performed.

ただし、塗装被膜の厚みはNa、Oを加えないものが3
5μmであり、Na2Oを加えたものは50μmであっ
た。
However, the thickness of the paint film is 3.
5 μm, and 50 μm with Na2O added.

実施例5 炭酸ストロンチウム(SrCO,)と酸化鉄(FezO
i)とをSrOとFe、03がモル比にて1:5.8に
なるように混合し、1)50℃で仮焼し、これを微粉砕
する際に、焼結過程において8203を形成しB2O3
とし0.05%となるように83BO3を添加し、さら
にSiO2を0.3〜0.7%、CaOを0.2〜1.
2%、SrOを0.1〜0.9%、Cr、0.を0.7
%添加したもの90種類を各々湿式微粉砕機により平均
粒径0.8pmに微粉砕し、0.4t/c+Jの圧力を
加え約8KOeの磁場中で成形後1210℃で2時間焼
結して90種類のストロンチウムフェライト磁石を得た
Example 5 Strontium carbonate (SrCO,) and iron oxide (FezO)
i) is mixed with SrO, Fe, and 03 in a molar ratio of 1:5.8, 1) calcined at 50°C, and when pulverized, 8203 is formed in the sintering process. ShiB2O3
83BO3 was added to give a concentration of 0.05%, and SiO2 was further added to 0.3 to 0.7%, and CaO was added to a concentration of 0.2 to 1.
2%, SrO 0.1-0.9%, Cr, 0. 0.7
% added were each pulverized to an average particle size of 0.8 pm using a wet pulverizer, applied a pressure of 0.4 t/c+J, molded in a magnetic field of approximately 8 KOe, and sintered at 1210°C for 2 hours. Ninety types of strontium ferrite magnets were obtained.

次にこれらのフェライト磁石に、実施例1と同様の条件
で電着塗装、水洗、水切り、乾燥及び焼付処理を行なっ
た。そして得られた各試料の磁気特性と抵抗率を測定し
た。第6図にCaO添加■及びモル比と、磁気特性及び
体積抵抗率の関係を示す。
Next, these ferrite magnets were subjected to electrodeposition coating, washing, draining, drying, and baking treatments under the same conditions as in Example 1. Then, the magnetic properties and resistivity of each sample obtained were measured. FIG. 6 shows the relationship between CaO addition and molar ratio, magnetic properties, and volume resistivity.

第6図において、曲線iはSiO□の添加量が0.7重
量%の時に抵抗率がlXl0’Ω・cmとなる線を、曲
線jは5in2の添加量が0.5重量%の時に抵抗率が
I X I O’Ω・cmとなる線を、曲線にはSin
gの添加量が0.3重量%の時に抵抗率が1×107Ω
・cmとなる線を、各々示しており、各曲線の下側の領
域において107Ω・1未満の抵抗率が得られる。
In Figure 6, curve i is the line where the resistivity is lXl0'Ωcm when the amount of SiO□ added is 0.7% by weight, and curve j is the line where the resistivity is 1X10'Ωcm when the amount of SiO□ added is 0.5% by weight. The curve has a line with a ratio of I
When the amount of g added is 0.3% by weight, the resistivity is 1 x 107Ω
.cm, and a resistivity of less than 10 7 Ω·1 is obtained in the region below each curve.

また同図において、斜線で囲まれた領域が、Brが40
00 G以上でかつ、Hcが40000e以上の磁気特
性が得られる範囲である。ただし、この領域は、SiO
2の添加量を0.35〜0.65重璽%とした場合の測
定結果に基づくものである。
In addition, in the same figure, the area surrounded by diagonal lines has a Br of 40
This is the range in which magnetic properties of 00 G or more and Hc of 40000e or more can be obtained. However, this region is SiO
This is based on the measurement results when the addition amount of No. 2 was 0.35 to 0.65%.

第6図から、5402が約0.3〜0.7重量%の範囲
にあって、モル比が約5.5〜6.1でがっCaOが約
0.5〜1.2重量%の場合に高い磁気特性が得られる
ことがわかる。またこのような条件の下で、モル比とS
iO□及びCaOの添加量をバランスさせることにより
107Ω・cm未満の抵抗率が得られることもわかる。
From FIG. 6, it can be seen that 5402 is in the range of about 0.3 to 0.7% by weight, the molar ratio is about 5.5 to 6.1, and CaO is in the range of about 0.5 to 1.2% by weight. It can be seen that high magnetic properties can be obtained when Also, under these conditions, the molar ratio and S
It can also be seen that by balancing the amounts of iO□ and CaO added, a resistivity of less than 10 7 Ω·cm can be obtained.

尚、以上の実施例ではカチオン型電着塗装を行なった場
合について説明したが、酸化物永久磁石は陽極材料とし
ても溶出は殆んどないので、被塗装物を陽極(+)、塗
料タンクもしくは別に設けた電極板を陰極(−)として
アニオン型電着塗装を行なうことも可能であり、本発明
はカチオン型電着塗装に限定されるものではない。
In addition, in the above example, the case where cationic electrodeposition coating was performed was explained, but since oxide permanent magnets have almost no elution even when used as an anode material, the object to be coated is used as an anode (+), a paint tank or It is also possible to perform anionic electrodeposition coating using a separately provided electrode plate as a cathode (-), and the present invention is not limited to cationic electrodeposition coating.

(発明の効果) 以上述べたように、本発明によれば、絶縁体とされる酸
化物永久磁石においても電着塗装が可能であり、形状の
複雑さを問わず極めて薄く均一な表面塗膜を得ることが
できる。
(Effects of the Invention) As described above, according to the present invention, electrodeposition coating is possible even on oxide permanent magnets that are considered to be insulators, and an extremely thin and uniform surface coating is possible regardless of the complexity of the shape. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1200℃で焼結したフェライト磁石における
CaO添加量と抵抗率との関係を示す図、第2図は1)
50℃で焼結したフェライト磁石におけるCaO添加量
と抵抗率との関係を示す図、第3図は1200℃焼結に
おけるCaO添加量と磁気特性の関係を示す図、第4図
は1)50℃焼結におけるCaO添加量と磁気特性の関
係を示す図、第5図はA l 203添加量と抵抗率お
よび焼結体密度の関係を示す図、第6図はモル比、Ca
Oの添加量と抵抗率、磁気特性の関係を示す図である。 第1図 CaO添加量 (重量%) 第2図 Coo添加量 (重量%) 第3図 Coo 添加量 (重量%) 第4図 Coo添加量 (重量%) 第5図 0     0.5     1.0      +、
5AI20s添加量 (重量%)
Figure 1 is a diagram showing the relationship between CaO addition amount and resistivity in ferrite magnets sintered at 1200℃, Figure 2 is 1)
Figure 3 shows the relationship between CaO addition amount and resistivity in ferrite magnets sintered at 50°C, Figure 3 shows the relationship between CaO addition amount and magnetic properties in 1200°C sintering, and Figure 4 shows 1) 50 Figure 5 shows the relationship between the amount of CaO added and magnetic properties during sintering at °C. Figure 5 shows the relationship between the amount of Al 203 added, resistivity and sintered body density. Figure 6 shows the relationship between the molar ratio, Ca
FIG. 3 is a diagram showing the relationship between the amount of added O, resistivity, and magnetic properties. Fig. 1 CaO addition amount (wt%) Fig. 2 Coo addition amount (wt%) Fig. 3 Coo addition amount (wt%) Fig. 4 Coo addition amount (wt%) Fig. 5 0 0.5 1.0 +,
5AI20s addition amount (weight%)

Claims (9)

【特許請求の範囲】[Claims] (1)モル比にてFe_2O_3/MO(MはSr、B
a、Pbの内の1種又は2種)=5.3乃至6.2なる
基本組成を有し、体積抵抗率が10^7Ω・cm未満で
ありかつ焼結体密度が4.80kg/cm^3以上であ
る磁石体の表面に電着塗料の皮膜を形成したことを特徴
とする酸化物永久磁石。
(1) Molar ratio of Fe_2O_3/MO (M is Sr, B is
a, one or two of Pb) = 5.3 to 6.2, a volume resistivity of less than 10^7 Ω cm, and a sintered body density of 4.80 kg/cm An oxide permanent magnet characterized in that a film of electrodeposition paint is formed on the surface of a magnet body having a diameter of ^3 or more.
(2)電着塗料がカチオン型電着塗料である特許請求の
範囲第1項記載の酸化物永久磁石。
(2) The oxide permanent magnet according to claim 1, wherein the electrodeposition paint is a cationic electrodeposition paint.
(3)磁石体は、SiO_2を0.1〜1.0重量%、
CaOを0.1〜1.2重量%含有すると共にCaO/
SiO_2が重量比で1.5未満である特許請求の範囲
第2項記載の酸化物永久磁石。
(3) The magnet body contains 0.1 to 1.0% by weight of SiO_2.
Contains 0.1 to 1.2% by weight of CaO and contains CaO/
The oxide permanent magnet according to claim 2, wherein the weight ratio of SiO_2 is less than 1.5.
(4)磁石体は、SiO_2を0.1〜1.0重量%と
1価のアルカリイオンの化合物を0.05〜0.5重量
%含有する特許請求の範囲第2項記載の酸化物永久磁石
(4) The magnet body is a permanent oxide according to claim 2, containing 0.1 to 1.0% by weight of SiO_2 and 0.05 to 0.5% by weight of a monovalent alkali ion compound. magnet.
(5)磁石体は、更にB_2O_3を0.01〜0.1
重量%及び1又はCaOを0.1〜1.2重量%含有す
る特許請求の範囲第4項記載の酸化物永久磁石。
(5) The magnet body further contains 0.01 to 0.1 B_2O_3.
5. The oxide permanent magnet according to claim 4, containing 0.1 to 1.2% by weight of CaO.
(6)磁石体は、B_2O_3を0.01〜0.1重量
%、SiO_2を0.1〜1.0重量%、CaOを0.
1〜1.2重量%含有する特許請求の範囲第2項記載の
酸化物永久磁石。
(6) The magnet contains 0.01 to 0.1% by weight of B_2O_3, 0.1 to 1.0% by weight of SiO_2, and 0.1% by weight of CaO.
The oxide permanent magnet according to claim 2, containing 1 to 1.2% by weight.
(7)磁石体は、更にAl_2O_3を1.5重量%以
下、又は、Cr_2O_3を2.0重量%以下含有する
特許請求の範囲第6項記載の酸化物永久磁石。
(7) The oxide permanent magnet according to claim 6, wherein the magnet body further contains 1.5% by weight or less of Al_2O_3 or 2.0% by weight or less of Cr_2O_3.
(8)磁石体は、モル比が5.6乃至6.0の範囲にあ
り、CaOを0.5〜1.2重量%、SiO_2を0.
3〜0.7重量%含有する特許請求の範囲第2項記載の
酸化物永久磁石。
(8) The magnet has a molar ratio in the range of 5.6 to 6.0, with 0.5 to 1.2% by weight of CaO and 0.5% by weight of SiO_2.
The oxide permanent magnet according to claim 2, containing 3 to 0.7% by weight.
(9)モル比にてFe_2O_3/MO(MはSr、B
a、Pbの内の1種又は2種)=5.3乃至6.2なる
基本組成を有し、体積抵抗率が10^7Ω・cm未満で
ありかつ焼結体密度が4.80kg/cm^3以上であ
る磁石体を、カチオン型電着塗料を分散した溶液中に浸
漬し、上記磁石体と対向電極との間に直流電圧を印加し
て、前記磁石体の表面にカチオン型電着塗料の皮膜を形
成することを特徴とする酸化物永久磁石の塗装方法。
(9) Fe_2O_3/MO (M is Sr, B is
a, one or two of Pb) = 5.3 to 6.2, a volume resistivity of less than 10^7 Ω cm, and a sintered body density of 4.80 kg/cm A magnet body having a diameter of ^3 or more is immersed in a solution in which cationic electrodeposition paint is dispersed, and a DC voltage is applied between the magnet body and a counter electrode to form cationic electrodeposition on the surface of the magnet body. A method of painting an oxide permanent magnet, which is characterized by forming a film of paint.
JP62036621A 1986-02-24 1987-02-19 Oxide permanent magnet and its coating method Pending JPS63204602A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP61-38762 1986-02-24
JP3876286 1986-02-24
JP61-69961 1986-03-28
JP62-28457 1987-02-10

Publications (1)

Publication Number Publication Date
JPS63204602A true JPS63204602A (en) 1988-08-24

Family

ID=12534293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62036621A Pending JPS63204602A (en) 1986-02-24 1987-02-19 Oxide permanent magnet and its coating method

Country Status (1)

Country Link
JP (1) JPS63204602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017551A1 (en) * 2012-07-25 2014-01-30 Tdk株式会社 METHOD FOR PRODUCING Sr FERRITE SINTERED MAGNET, MOTOR AND POWER GENERATOR
WO2014087932A1 (en) * 2012-12-03 2014-06-12 Tdk株式会社 METHOD FOR PRODUCING Sr FERRITE SINTERED MAGNET

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017551A1 (en) * 2012-07-25 2014-01-30 Tdk株式会社 METHOD FOR PRODUCING Sr FERRITE SINTERED MAGNET, MOTOR AND POWER GENERATOR
WO2014087932A1 (en) * 2012-12-03 2014-06-12 Tdk株式会社 METHOD FOR PRODUCING Sr FERRITE SINTERED MAGNET
CN104380403A (en) * 2012-12-03 2015-02-25 Tdk株式会社 METHOD FOR PRODUCING Sr FERRITE SINTERED MAGNET

Similar Documents

Publication Publication Date Title
KR100487081B1 (en) High corrosion resistance rare earth permanent magnet
US3562011A (en) Insulating coating comprising an aqueous mixture of the reaction product of chromium nitrate and sodium chromate,phosphoric acid and colloidal silica and method of making the same
US2394047A (en) Process of coating ferrous silicon magnetic material
KR20130076642A (en) Insulation coating material for non-oriented electrical steel sheet and method for manufacturing the same
US3720549A (en) Insulating coating and method of making the same
US3888796A (en) Semiconductive glaze compositions
KR100921874B1 (en) Method for forming electroplated coating on surface of article
JPS63204602A (en) Oxide permanent magnet and its coating method
US4740251A (en) Method for improving magnesium oxide steel coatings
JPH01147808A (en) Oxide permanent magnet and coating method thereof
EP0106355A1 (en) Anodic electrodeposition of charged aqueous powder slurry
US4820592A (en) Permanent oxide magnet and method of coating same
EP3495430A1 (en) Chromium-free and phosphate-free coating for electrical insulation of magnetic circuit band
CN114582618A (en) Nanoparticle-doped composite coating and preparation method and application thereof
US3705826A (en) Insulating coating and method of making the same
EP0107101B1 (en) Cathodic electrodeposition of charged aqueous powder slurry
JP2000182813A (en) Rare earth/iron/boron based permanent magnet and its manufacture
JPS60248776A (en) Barium or chromium additive to magnesium oxide paint slurry
JP2770857B2 (en) Rare earth magnet coating method
JP2512062B2 (en) Glass ceramic substrate manufacturing method
JP3624263B2 (en) High corrosion resistance permanent magnet and method of manufacturing the same
JP3451000B2 (en) Method of forming insulating film on grain-oriented silicon steel sheet
US3594240A (en) Process of making glass coated electrical steel cores
KR900004064B1 (en) Process for production of magnesium oxide
JPH0586043B2 (en)