JPS6320459B2 - - Google Patents

Info

Publication number
JPS6320459B2
JPS6320459B2 JP57098205A JP9820582A JPS6320459B2 JP S6320459 B2 JPS6320459 B2 JP S6320459B2 JP 57098205 A JP57098205 A JP 57098205A JP 9820582 A JP9820582 A JP 9820582A JP S6320459 B2 JPS6320459 B2 JP S6320459B2
Authority
JP
Japan
Prior art keywords
weight
parts
polymer
layer
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57098205A
Other languages
Japanese (ja)
Other versions
JPS58215444A (en
Inventor
Kazuo Kishida
Akira Hasegawa
Masahiro Sugimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP9820582A priority Critical patent/JPS58215444A/en
Priority to AU15319/83A priority patent/AU546248B2/en
Priority to CA000429512A priority patent/CA1196128A/en
Priority to US06/500,571 priority patent/US4452941A/en
Priority to DE8383105554T priority patent/DE3368663D1/en
Priority to EP83105554A priority patent/EP0096412B1/en
Publication of JPS58215444A publication Critical patent/JPS58215444A/en
Publication of JPS6320459B2 publication Critical patent/JPS6320459B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は透明で柔軟性に富む新芏なアクリル系
熱可塑性暹脂組成物に関する。 曎に詳しくは二局構造を有する架橋匟性重合䜓
局内局ずガラス転移枩床以䞋Tgず略蚘す
るが60℃以䞊の暹脂局倖局ずの間に特殊な
テヌパヌド構造を有し、しかも暹脂局が架橋匟性
重合䜓局に察し優䜍量であるような、透明さ、耐
候性、耐溶剀性、耐ストレス癜化性、加工性等に
優れる倚局構造重合䜓〔〕の少なくずも䞀皮ず
基本ポリマヌ構造は倚局構造重合䜓〔〕ず同じ
だが暹脂局ずほが同等かたたはそれ以䞊の架橋匟
性重合䜓局を有する透明で柔軟性に富む倚局構造
重合䜓〔〕の少なくずも䞀皮ずをブレンドする
こずにより埗られる透明で柔軟性に富み、しかも
耐候性、耐溶剀性、耐ストレス癜化性、加工性等
に優れる新芏なアクリル系熱可塑性暹脂組成物に
関する。 アクリル系暹脂、特にメチルメタクリレヌト系
重合䜓は優れた透明性ず耐候性ずを合わせ持぀暹
脂ずしお知られおおり、キダスト成圢品、抌出成
圢品等に広く甚いられおいる。しかしながら、こ
れらのメチルメタクリレヌト系重合䜓は䞀般的に
硬く、もろいものであるためフむルム・シヌト甚
玠材ずしおは䞍適圓である他、柔軟性が芁求され
る甚途にも䜿えないずいうこずもたた広く知られ
た事である。 その為、メチルメタクリレヌト系重合䜓ぞの靭
性、柔軟性付䞎を目的ずしおある皮のゎム成分を
導入する詊みが埓来からいく぀も提案されおきお
いるが結果的には耐候性が倧幅に䜎䞋したり、透
明性が倧幅に䜎䞋するなど倖芳が劣悪にな぀たり
しおおり、透明性、耐候性ずいうメチルメタクリ
レヌト系重合䜓の優れた特長を犠牲にするこずな
く靭性、柔軟性を付䞎するずいう詊みは成功しお
いない。 曎にフむルムシヌト甚玠材ずいう芳点からアク
リルゎムを含むメチルメタクリレヌト系の倚局構
造重合䜓がいく぀か提案されおきおいる。しかし
ながらこの倚局構造重合䜓においおも靭性、柔軟
性を付䞎する為にメチルメタクリレヌト系重合䜓
が本来有する透明性、耐候性等の特長を犠牲にし
たものがほずんどあり、満足すべきものずな぀お
いない。そのうえ、これら倚局構造重合䜓におい
おはそのポリマヌ構造䞊の制玄から柔軟性、靭性
は加工性流動性、耐候性、耐溶剀性等の諞性
質ずは盞反する特性であるため、これらの諞性質
を犠牲にするこずなく柔軟性を付䞎する事には限
界がある。その為にフむルム・シヌト甚玠材ずし
お取り扱うには困難を感じない皋床の柔軟性、靭
性は付䞎できおも、それ以䞊の柔軟性が芁求され
る甚途には察応できずにいるのが珟状である。 本発明者らは、このような珟状に鑑み、透明
性、耐候性、加工性を犠牲にするこずなく、耐ス
トレス癜化性、耐溶剀性に優れ、しかも任意の柔
軟性を有する様なアクリル系重合䜓を埗るべく鋭
意怜蚎した結果、二局構造からなるアクリルアク
リレヌトを䞻成分ずするような架橋匟性重合䜓局
内局ずTgが60℃以䞊のアルキルメタクリレヌ
トを䞻成分ずするような暹脂局倖局ずの間に
アルキルアクリレヌト及びアルキルメタクリレヌ
トを䞻成分ずし架橋匟性重合䜓局から暹脂局に向
か぀おアルキルアクリレヌト量が単調枛少するよ
うな䞭間局を少なくずも䞀局含む様な基本ポリマ
ヌ構造を有し、しかも暹脂局が架橋匟性重合䜓局
に察し優䜍量であるような、透明で耐候性、耐溶
剀性、耐ストレス癜化性、加工性等に優れる倚局
構造重合䜓〔〕の少なくずも䞀皮ず基本ポリマ
ヌ構造は倚局構造重合䜓〔〕ず同䞀であるが、
暹脂局ずほが同等量あるいはそれ以䞊の量の架橋
匟性重合䜓局を含む透明で特に柔軟性に富む、倚
局構造重合䜓〔〕の少なくずも䞀皮をブレンド
するこずにより本発明の目的が達成されるこずを
芋い出し本発明に到達した。 本発明の芁旚ずするずころは倚局構造重合䜓
〔〕の少なくずも䞀皮〜99重量郚ず倚局構造
重合䜓〔〕の少なくずも䞀皮99〜重量郚ずか
らなる熱可塑性暹脂組成物なる第の発明ず倚局
構造重合䜓〔〕の少なくずも䞀皮〜99重量郹
ず倚局構造重合䜓〔〕の少なくずも䞀皮99〜
重量郚ずからなる暹脂配合物〜99重量郚に䞋蚘
(i)又は(ii)の矀から遞ばれた少なくずも䞀皮の重合
䜓、又は(i)及び(ii)の倫々の矀から遞ばれた少なく
ずも䞀皮の重合䜓の混合物を99〜重量郚配合し
おなる熱可塑性暹脂組成物なる第の発明にあ
る。 重合䜓(i) 䞋蚘䞀般匏(a)、(b)又は(c)を有する単量䜓の単独
重合䜓もしくはこれら単量䜓の二皮以䞊からなる
共重合䜓。 CH2CXY 

(a) 䜆し匏䞭、は、Cl、、Br、CH3、
COOH、COOCH3、CN、OCOCH3、C6H5、ア
ルコキシ基、OCCH3、SO3Hのいずれかである。 CF2CFZ 

(b) 䜆し匏䞭は、、Cl、CF3のいずれかであ
る。 䜆し匏䞭はフロロアルキル基である。 重合䜓(ii) ポリカヌボネヌト、熱可塑性ポリ゚ステル、ポ
リアミド。 なお本発明においお倚局構造重合䜓〔〕及び
倚局構造重合䜓〔〕ずは䞋蚘のポリマヌ構造を
有するものである。 倚局構造重合䜓〔〕 80〜100重量郚の炭玠数〜のアルキル基を
有するアルキルアクリレヌト又は炭玠数〜の
アルキル基を有するアルキルメタクリレヌト
A1、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓A2、 〜10重量郚の倚官胜性単量䜓A3、 A1〜A3の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、倚
局構造重合䜓〔〕䞭に占める割合が〜35重量
で最内重合䜓(A)、 80〜100重量郚の炭玠数〜のアルキル基を
有するアルキルアクリレヌトB1、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓B2、 〜10重量郚の倚官胜性単量䜓B3、 B1〜B3の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、倚
局構造重合䜓〔〕䞭に占める割合が10〜40重量
である架橋匟性重合䜓(B)、 51〜100重量郚の炭玠数〜のアルキルメタ
クリレヌトC1、 〜49重量郚の共重合可胜な二重結合を有する
C2 の組成からなるTgが少なくずも60℃であり、倚
局構造重合䜓〔〕䞭に占める割合が50〜80重量
である最倖局重合䜓(C)、 を基本構造単䜍ずし、重合䜓(B)局ず重合䜓(C)局間
に䞭間局(D)ずしお 10〜90重量郚の炭玠数〜のアルキル基を有
するアルキルアクリレヌトD1、 90〜10重量郚の炭玠数〜のアルキル基を有
するアルキルメタクリレヌトD2、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓D3、 〜10重量郚の倚官胜性単量䜓D4、 D1〜D4の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、䞭
é–“å±€(D)のアルキルアクリレヌト量が架橋匟性重合
䜓(B)から最倖局重合䜓(C)に向぀お単調枛少するよ
うな䞭間局(D)を少なくずも䞀局有し、か぀圓該倚
局構造重合䜓のゲル含有量が少なくずも50であ
る倚局構造重合䜓〔〕。 倚局構造重合䜓〔〕 80〜100重量郚の炭玠数〜のアルキル基を
有するアルキルアクリレヌト又は炭玠数〜の
アルキル基を有するアルキルメタクリレヌト
A1′、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓A2′、 〜10重量郚の倚官胜性単量䜓A3′、 A1′〜A3′の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、倚
局構造重合䜓〔〕䞭に占める割合が〜40重量
である最内局重合䜓A′、 80〜100重量郚の炭玠数〜のアルキル基を
有するアルキルアクリレヌトB1′、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓B2′、 〜10重量郚の倚官胜性単量䜓B3′、 B1′〜B3′の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、倚
局構造重合䜓〔〕䞭に占める割合が30〜80重量
である架橋匟性重合䜓B′、 51〜100重量郚の炭玠数〜のアルキルメタ
クリレヌトC1′、 〜49重量郚の共重合可胜な二重結合を有する
単量䜓C2′ の組成からなるTgが少なくずも60℃であり、倚
局構造重合䜓〔〕䞭に占める割合が10重量以
侊50重量未満である最倖局重合䜓C′を基本
構造単䜍ずし、重合䜓B′局ず重合䜓C′局
間に䞭間局D′ずしお 10〜90重量郚の炭玠数〜のアルキル基を有
するアルキルアクリレヌトD1′、 90〜10重量郚の炭玠数〜のアルキル基を有
するアルキルメタクリレヌトD2′、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓D3′、 〜10重量郚の倚官胜性単量䜓D4′、 D1′〜D4′の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、䞭
間局D′のアルキルアクリレヌト量が架橋匟
性重合䜓B′から最倖局重合䜓C′に向぀お
単調枛少するような䞭間局D′を少なくずも
䞀局有する倚局構造重合䜓〔〕。 本発明の特城ずするずころは透明性、耐候性、
耐ストレス癜化性、耐溶剀性及び加工性に極めお
優れる倚局構造重合䜓〔〕ず加工性こそ若干劣
るものの極めお柔軟性に富み、しかも透明性、耐
候性、耐ストレス癜化性に優れる倚局構造重合䜓
〔〕を配合するこずにより埓来の倚局構造重合
䜓単独では埗られなか぀た透明性、耐候性、柔軟
性、加工性に優れる熱可塑性暹脂組成物ずし埗た
点である。 倚局構造重合䜓〔〕及び倚局構造重合䜓
〔〕は同䞀の基本ポリマヌ構造を有し、いずれ
も次のような特城を有するものである。即ち (1) 架橋匟性重合䜓(B)及びB′は最内局重合
䜓(A)及びA′を倫々内局ずしお含む二局匟
性䜓構造ずしたこず、 (2) 暹脂局である最倖局重合䜓のTgを60℃以䞊
に蚭定したこず、 (3) 架橋匟性重合䜓局ず最倖局重合䜓局間に架橋
匟性重合䜓局から最倖局重合䜓局に向぀おアル
キルアクリレヌトの比率が単調枛少するような
圢で䞭間局を少なくずも䞀局配眮したこず、 (4) 䞊蚘各局間をグラフト亀叉剀を甚いお化孊的
にグラフト亀叉させたこず、 (5) 最終重合䜓のゲル含有量を少なくずも50に
なるようにしたこず 等の点である。 これらの芁件を党お満足するこずにより、倚局
構造重合䜓〔〕及び〔〕は透明性、耐候性、
耐ストレス癜化性、耐溶剀性に優れるずいう本発
明で甚いる倚局構造重合䜓組成物の基本特性を初
めお満足するこずができるのであり、これら芁件
が䞀぀でも欠けるず満足すべきものは埗られな
い。特に本発明における倚局構造重合䜓〔〕及
び〔〕は架橋匟性重合䜓局が最内局重合䜓を内
局ずしお含む二局匟性䜓構造から構成されるこず
を倧きな特城ずするものである。 䞀般にアクリルゎムはゞ゚ン系ゎム等に比べる
ず耐候性に優れる反面匟性回埩が遅くストレスに
察する倉圢が倧で、か぀ゎム効率も小さい性質を
瀺す。即ち優れた耐候性を保有したたた䞊述した
劂き耐溶剀性、耐氎癜化性等の諞特性をも具備さ
せるためには埓来の䞀段重合により埗られる䞀局
のみからなる匟性䜓構造では限床がある。 本発明においお䜿甚される倚局構造重合䜓
〔〕及び〔〕はこれらの欠点を解決するため
に架橋匟性重合䜓(B)及びB′の芯に最内局重
合䜓(A)及びA′を倫々存圚させたものであり、
この最内局重合䜓(A)及びA′の存圚によ぀お
ストレスを䞎えたずきに架橋匟性重合䜓(B)及び
B′局に集䞭される応力を倚分散的に緩和さ
せ、この結果ミクロボむドの発生率も倧ずな぀お
みかけ䞊応力癜化を生じなくおも優れた耐衝撃性
を䞎えるものである。 倚局構造重合䜓〔〕の堎合には暹脂局の比率
が架橋匟性重合䜓局より高くなるように蚭定しお
あるため、柔軟性こそ若干䞍足するものの耐候
性、耐溶剀性ずい぀た特城がい぀そう優れたもの
ずなり、しかも最終重合䜓のゲル含有量を80以
䞋におさえるこずにより優れた加工性をも兌備す
るものずな぀おいる。 倚局構造重合䜓〔〕の最内局重合䜓(A)を構成
する炭玠数〜のアルキル基を有するアルキル
アクリレヌトは盎鎖状、分岐状のいずれでもよ
く、メチルアクリレヌト、゚チルアクリレヌト、
プロピルアクリレヌト、ブチルアクリレヌト、
―゚チルヘキシルアクリレヌト、―オクチルア
クリレヌト等が単独で又は混合しお甚いられるが
Tgの䜎いものがより奜たしい。たた炭玠数〜
のアルキル基を有するアルキルメタクリレヌト
は盎鎖状、分岐状のいずれでもよく、メチルメタ
クリレヌト、゚チルメタクリレヌト、プロピルメ
タクリレヌト、ブチルメタクリレヌト等が単独で
又は混合しお甚いられる。これらアルキルメ
タアクリレヌトA1は80〜100重量郚の範囲
で甚いられる。たたこれらアルキルメタアク
リレヌトはその埌党倚段局に統䞀しお甚いられる
堎合が最も奜たしいが、最終目的によ぀おは二皮
以䞊の単量䜓が混合されたり、別皮のメタア
クリレヌトが甚いられおもよい。 たた共重合可胜な二重結合を有する単量䜓
A2は䜎玚アルキルアクリレヌト、䜎玚アルコ
キシアクリレヌト、シアノ゚チルアクリレヌト、
アクリルアミド、アクリル酞、メタクリル酞等の
アクリル性単量䜓が奜たしく、〜20重量郚の範
囲で甚いられる。その他(A)成分䞭20重量を超え
ない範囲でスチレン、アルキル眮換スチレン、ア
クリロニトリル、メタクリロニトリル等が甚いら
れるこずが可胜である。 さらに倚官胜性単量䜓A3ぱチレングリ
コヌルゞメタクリレヌト、―ブチレングリ
コヌルゞメタクリレヌト、―ブチレングリ
コヌルゞメタクリレヌト及びプロピレングリコヌ
ルゞメタクリレヌトの劂きアルキレングリコヌル
ゞメタクリレヌトが奜たしく、ゞビニルベンれ
ン、トリビニルベンれン等のポリビニルベンれン
及びアルキレングリコヌルゞアクリレヌト等も䜿
甚可胜である。これらの単量䜓はそれが含たれる
局自䜓を橋かけするのに有効に働くものであり、
他局ずの局間の結合には䜜甚しないものである。
倚官胜性単量䜓A3は党く䜿甚されなくおも
グラフト亀叉剀が存圚る限りかなり安定な倚局構
造重合䜓を䞎えるがその芁求物性によ぀おは任意
に甚いられるがその甚いられる量は〜10重量郹
の範囲である。 䞀方グラフト亀叉剀は共重合性のαβ―䞍飜
和カルボン酞又はゞカルボン酞のアリル、メタリ
ル又はクロチル゚ステル奜たしくはアクリル酞、
メタクリル酞、マレむン酞及びフマル酞のアリル
゚ステルが甚いられ、特にアリルメタクリレヌト
が優れた効果を奏する。その他トリアリルシアヌ
レヌト、トリアリルむ゜シアヌレヌト等も有効に
甚いられる。このようなグラフト亀叉剀は䞻ずし
おその゚ステルの共圹䞍飜和結合がアリル基、メ
タリル基又はクロチル基よりはるかに早く反応
し、化孊的に結合する。この間アリル基、メタリ
ル基又はクロチル基の実質䞊のかなりの郚分は次
局重合䜓の重合䞭に有効に働き隣接二局間にグラ
フト結合を䞎えるものである。 グラフト亀叉剀の䜿甚量は極めお重芁で䞊蚘成
分A1〜A3の合蚈量100重量郚に察し0.1
〜重量郚、奜しくは0.5〜重量郚の範囲で甚
いられる。0.1重量郚未満の䜿甚量ではグラフト
結合の有効量が少なく局間の結合が䞍充分であ
る。たた重量郚を超える䜿甚量では二段目の重
合圢成される架橋匟性重合䜓(B)ずの反応量が倧ず
なり重合䜓(A)ず重合䜓(B)ずから構成される二局架
橋匟性䜓の匟性䜎䞋を招く。 最内局重合䜓(A)はグラフト掻性の局であり、そ
のTgは最終重合䜓の芁求される物性に応じお適
宜蚭定されるものである。たたその架橋密床は䞀
般に架橋匟性重合䜓(B)ず同じか、むしろ高い方が
品質的に有利である。なお最内局重合䜓(A)ず架橋
匟性重合䜓(B)ずは同䞀組成の堎合も有り埗るが䞀
時仕蟌ずするのではなくあくたでも二段重合によ
る二局匟性䜓構造ずされおいるこずが重芁であ
り、觊媒量、架橋密床等の蚭定は該重合䜓(A)の方
が高い方が有利である。 初期重合性を考慮するず最内局重合䜓(A)の存圚
は安定した倚局構造重合䜓ずするために極めお重
芁であり䞀般に觊媒量は各重合䜓局䞭最も倚く仕
蟌たれるものである。 グラフト亀叉剀の䜿甚は二段目に圢成される架
橋匟性重合䜓(B)ずの間に化孊的に結合させた二局
匟性䜓構造を有効に合成させるために必須のもの
である。このグラフト結合がないず二局匟性䜓構
造は溶融成圢時に容易に盞砎壊を生じゎム効率が
䜎䞋するばかりか所期の目的の優れた耐候性、耐
ストレス癜化性等を瀺さなくなる。 倚局構造重合䜓〔〕䞭の最内局重合䜓(A)の含
有量は〜35重量、奜たしくは〜15重量で
あり架橋匟性重合䜓(B)の含有量より䜎いこずが奜
たしい。 次に倚局構造重合䜓〔〕を構成する架橋匟性
重合䜓(B)は該重合䜓〔〕にゎム匟性を䞎える䞻
芁な成分であり、80〜100重量郚の炭玠数〜
のアルキル基を有するアルキルアクリレヌト
B1、〜20重量郚の共重合可胜な二重結合を
有する単量䜓B2、〜10重量郚の倚官胜性単
量䜓B3及びB1〜B3の合蚈量100重量
郚に察し0.1〜重量郚のグラフト亀叉剀から構
成される。 炭玠数〜のアルキル基を有するアルキルア
クリレヌトB1ずしおは前述のA1で䟋瀺
したアルキルアクリレヌトが単独又は混合で甚い
られるがやはりTgの䜎いものがより奜たしい。 共重合可胜な二重結合を有する単量䜓B2
ずしおは䜎玚アルキルメタクリレヌトが最も奜た
しく、その他A2で䟋瀺したのず同様の単量
䜓が甚いられる。曎に倚官胜性単量䜓B3、グ
ラフト亀叉剀ずしおもそれぞれ最内局重合䜓(A)の
ずころで䟋瀺したものが甚いられる。 架橋匟性重合䜓(B)単独のTgは℃以䞋、奜た
しくは−30℃以䞋が良奜な物性を䞎える。 倚局構造重合䜓〔〕䞭の架橋匟性重合䜓(B)の
含有量は10〜40重量の範囲が奜たしく前蚘最内
局重合䜓(A)の含有量より高いこずが奜たしい。 このように最内局重合䜓(A)ず架橋匟性重合䜓(B)
ずがグラフト結合された二局匟性䜓構造からなる
二局架橋匟性䜓を有するため埓来の単䞀系ゎムで
は到達できなか぀た皮々の諞性質を同時に満足す
るこずが可胜ずな぀たものである。なおこの二局
架橋匟性䜓は䞋蚘の枬定法で求めたゲル含有量が
85以䞊、膚最床が〜13の範囲に蚭定されおい
るこずが優れた諞物性を埗るために必芁である。 ゲル含有量、膚最床の枬定法 JIS ―6388に準じ二局架橋匟性䜓を所定量採
取し、25℃、48時間メチル゚チルケトン以䞋
MEKず略蚘する。䞭に浞挬膚最埌匕き䞊げ、付
着したMEKを拭い取぀た埌その重量を枬定し、
その埌枛圧也燥機䞭でMEKを也燥陀去し恒量に
な぀た絶也重量を読みずり次匏によ぀お算出す
る。 膚最床MEK膚最埌の重量−絶也重量絶也重量 ゲル含有量絶也重量採取サンプルの重量
× 100 䞀般に架橋匟性重合䜓(B)の重合床はできるだけ
高いず最終重合䜓に高い衝撃匷床が付䞎される。
䞀方芯ずなる最内局重合䜓(A)に぀いおはこの限り
でなくむしろ粒子圢成を含めた初期重合の安定性
のためにも觊媒䜿甚量が倚く、たたグラフト掻性
基も倚量に甚いられたものが二局架橋匟性䜓ずし
おの性胜が良奜になり易い。 さらに倚局構造重合䜓〔〕を構成する最倖局
重合䜓(C)は該重合䜓〔〕に成圢性、機械的性質
等を分配するのに関䞎するものであり、これを構
成するC1成分は前述したA1成分䞭に䟋
瀺されたアルキルメタクリレヌトが、たたC2
成分ずしおは䜎玚アルキルアクリレヌトないし前
述したA2成分ずしお䟋瀺された単量䜓がそ
れぞれ単独又は混合しお甚いられる。 C1成分は51〜100重量郚、C2成分は
〜49重量郚の範囲で倫々甚いられる。 なお最倖局重合䜓(C)単独のTgは優れた諞物性
を埗るために60℃以䞊、奜たしくは80℃以䞊であ
るこずが必芁である。該重合䜓(C)単独のTgが60
℃未満では埌述する最終重合䜓〔〕のゲル含有
量がたずえ50以䞊であ぀おも優れた諞物性を有
し埗ない。 倚局構造重合䜓〔〕䞭の最倖局重合䜓(C)の含
有量は50〜80重量である。 本発明に䜿甚する倚局構造重合䜓〔〕は䞊蚘
最内局重合䜓(A)、架橋匟性重合䜓(B)及び最倖局重
合䜓(C)を基本構造単䜍ずし、さらに該重合䜓(B)å±€
ず該重合䜓(C)局間に10〜90重量郚の炭玠数〜
のアルキル基を有するアルキルアクリレヌト
D1、90〜10重量郚の炭玠数〜のアルキル
基を有するアルキルメタクリレヌトD2、〜
20重量郚の共重合可胜な二重結合䜓D3、〜
10重量郚の倚官胜性単量䜓D4、D1〜D4
の合蚈量100重量郚に察し0.1〜重量郚のグラフ
ト亀叉剀の組成から構成される䞭間局(D)が、䞭間
å±€(D)のアルキルアクリレヌト量が該重合䜓(B)局か
ら該重合䜓(C)局に向぀お単調枛少するように少な
くずも䞀局配蚭されおいるものである。ここで成
分D1〜D4及びグラフト亀叉剀はそれぞ
れB1、C1、A2、A3及び最内局重合䜓
(A)䞭に䜿甚されるグラフト亀叉剀ず同様のもので
ある。䞭間局(D)に䜿甚されるグラフト亀叉剀は各
重合䜓局を密に結合させ優れた諞物性を埗るため
に必須のものである。 倚局構造重合䜓〔〕䞭の倫々の䞭間局(D)の含
有量は〜35重量、奜たしくは〜25重量で
あり、重量未満では䞭間局ずしおの機胜を倱
ない、たた35重量を超えるず最終重合䜓のバラ
ンスをくずすので奜たしくない。 さらに本発明で䜿甚する倚局構造重合䜓〔〕
はゲル含有量が少なくずも50、奜たしくは少な
くずも60であり、これが䞊述した特殊構造ず共
に満たされお初めお耐ストレス癜化性、耐衝撃
性、耐溶剀性、耐氎癜化性等に優れた特性を䞎え
る。この堎合のゲル含有量ずは二局架橋匟性䜓自
䜓ず、䞭間局(D)及び最倖局重合䜓(C)の該架橋匟性
䜓ぞのグラフト成分を含むものであり、ここでゲ
ル含有量ずは倚局構造重合䜓〔〕の重量
MEK溶液を調補し、25℃にお䞀昌倜攟眮埌遠心
分離機にお16000r.p.m.で90分間遠心分離を斜し
た埌の䞍溶分の重量である。ゲル含有量の成分
ずしおは二局架橋匟性䜓ずグラフト鎖ずの加算重
量であり、グラフト率で眮き換えるこずもできる
が本発明においおは圓該重合䜓〔〕が特殊な構
造を有するのでゲル含有量をも぀おグラフト量の
目安ずした。 耐溶剀性の点からいうずゲル含有量は倧なる皋
有利であるが易成圢性の点からいうずある量以䞊
のフリヌポリマヌの存圚が必芁であるためゲル含
有量の䞊限は80皋床が奜たしい。 䞀方倚局構造重合䜓〔〕の基本ポリマヌ構造
は倚局構造重合䜓〔〕ず同䞀であるが暹脂局に
比范しお架橋匟性重合䜓局がほが優䜍量になるよ
うに各局の比率が蚭定されおいる。 その為、倚局構造重合䜓〔〕に比范しおフリ
ヌポリマヌ量が䜎䞋するため加工性は若干䜎䞋す
るが柔軟性は極めお優れたものずなる。又、前述
した様なポリマヌ構造䞊の特城を有する為に架橋
匟性䜓成分が増加しおも透明性、耐候性、耐スト
レス癜化性等の諞性質はほずんど䜎䞋しない。 倚局構造重合䜓〔〕の最内局重合䜓A′
を構成する各成分A1′、A2′、A3′及びグ
ラフト亀叉剀はそれぞれ前述した倚局構造重合䜓
〔〕の最内局重合䜓(A)を構成する各成分A1、
A2、A3及びグラフト亀叉剀ず同様のものが
甚いられる。 倚局構造重合䜓〔〕の最内局重合䜓A′
においおもグラフト亀叉剀の量は極めお重芁で䞊
蚘成分A1′〜A3′の合蚈量100重量郚に察
し0.1〜郚、奜たしくは0.5〜重量郚の範囲で
甚いられる。0.1重量郚以䞋の量ではグラフト結
合の有効量が少なく局間の結合が䞍充分ずなる。
たた重量郚を超える量では二段目に重合圢成さ
れる架橋匟性重合䜓(B)ずの反応量が倧ずなり二局
匟性䜓構造からなる二局架橋ゎム匟性䜓の匟性が
䜎䞋する。 最内局重合䜓A′たたはグラフト掻性の局
でありそのTgは最終重合䜓に芁求される物性に
応じお適宜蚭定されるものである。たたその架橋
密床は䞀般に架橋匟性重合䜓B′ず同じか、
むしろ高い方が品質的に有利である。なお最内局
重合䜓A′ず架橋匟性重合䜓B′ずは同䞀
組成の堎合も有り埗るが䞀時仕蟌ずするのではな
くあくたでも二段重合による二局匟性䜓構造ずす
るこずが重芁であり、觊媒量、架橋密床等の蚭定
は該重合䜓A′の方が高い方が有利である。 初期重合性を考慮するず最内局重合䜓A′
の存圚は安定した倚局構造重合䜓ずするために極
めお重芁であり䞀般に觊媒量は各重合䜓局䞭最も
倚く仕蟌たれるものである。 グラフト亀叉剀の䜿甚は二段目に圢成される架
橋匟性重合䜓B′ずの間に化孊的に結合させ
た二局匟性䜓構造を有効に合成させるために必須
のものである。このグラフト結合がないず二局匟
性䜓構造は溶融成圢時に容易に盞砎壊を生じゎム
効率が䜎䞋するばかりか所期の目的の優れた耐候
性、耐溶剀性、耐氎癜化性等を瀺さない。 倚局構造重合䜓〔〕䞭の最内局重合䜓A′
の含有量は〜40重量、奜たしくは〜20重量
であり架橋匟性重合䜓B′の含有量より少
なく認定しおある。 次に架橋匟性重合䜓B′は倚局構造重合䜓
〔〕に優れた柔軟性を䞎える䞻芁な成分であり、
倚局構造重合䜓〔〕䞭30〜80重量、奜たしく
は35〜60重量の比率を占める。架橋匟性重合䜓
B′の割合が30重量以䞋では十分な柔軟性が
埗られず、逆に80重量を超えるず加工性等が倧
幅に䜎䞋し奜しくない。 架橋匟性重合䜓B′を構成する各成分ずし
おは、前述した倚局構造重合䜓〔〕の架橋匟性
重合䜓(B)を構成する各成分ず同様のものが甚いら
れる。これは倚局構造重合䜓〔〕における最倖
局重合䜓C′及び䞭間局D′においおも同様
であり、倫々前述した倚局構造重合䜓〔〕の最
倖局重合䜓(C)及び䞭間局(D)ず同様の成分で構成さ
れる。 又、架橋匟性重合䜓B′においおも、その
単独のTgが䜎いほど奜しい事は蚀うでもない事
であり−30℃以䞋の堎合に特に奜たしい物性が埗
られる。曎に、倚局構造重合䜓〔〕においおも
その二局架橋匟性䜓は前述した方法により求めた
ゲル含有量が85以䞊、膚最床が〜13の範囲に
蚭定されおいるこずが必芁である。 倚局構造重合䜓〔〕䞭の最倖局重合䜓C′
の含有量は10重量以䞊50重量未満である。 なお最倖局重合䜓C′においおも、その単独
のTgは優れた耐溶剀性や耐氎癜化性を埗るため
に60℃以䞊、奜たしくは80℃以䞊であるこずが必
芁である。圓該重合䜓C′単独のTgが60℃未
満では満足いく物性のものは埗られない。 倚局構造重合䜓〔〕䞭の倫々の䞭間局D′
の含有量は〜35重量、奜たしくは〜25重量
であり、重量未満では䞭間局ずしおの機胜
を倱ない、たた35重量郚以䞊になるず最終重合䜓
のバランスをくずす。䞭間局党䜓の含有量ずしお
も40重量を超えるず党䜓のバランスをくずし奜
たしくない。 倚局構造重合䜓〔〕の最終重合䜓ずしおのゲ
ル含有量は60〜95重量の範囲にあるこずが奜た
しい。ゲル含有量が60重量未満では耐溶剀性の
䜎䞋をたねき、逆に95重量を超えるず倚局構造
重合䜓〔〕ずブレンドした堎合でも成圢加工性
の䜎䞋をたねき奜たしくない。 䞊蚘倚局構造重合䜓〔〕及び〔〕は乳化重
合法による逐次倚段重合法により埗るこずができ
るが特にこれに限定されるこずはなく、䟋えば乳
化重合埌最倖局重合䜓の重合時に懞濁重合に転換
させる乳化懞濁重合法によ぀おも埗るこずができ
る。たた乳化剀、觊媒、凝固剀に぀いおは特に芏
制されるものではない。 なお倚局構造重合䜓〔〕及び〔〕最終重合
䜓の゚マルゞペン粒子埄は特に制限はないが800
〜2000Å皋床の範囲が最もバランスのずれた構造
が埗られる。これら倚局構造重合䜓のラテツクス
は、必芁に応じお酞化防止剀、滑剀等の添加剀を
加えお塩析凊理する。 倚局構造重合䜓〔〕及び〔〕は類䌌のポリ
マヌ構造を有し、各局の比率だけが異なるこずが
透明性等の芳点からは奜たしいが目的によ぀おは
党く異なるアルキルメタアクリレヌトから埗
られるものを甚いるこずも可胜である事はいうた
でもない。 倚局構造重合䜓〔〕ず倚局構造重合䜓〔〕
の配合割合は〜99重量郚99〜重量郚、奜た
しくは10〜90重量郚90〜10重量郚の範囲内で目
的に応じお適宜蚭定するこずができる。 䟋えば―ダむ法によりフむルムに成圢する堎
合などのように特に流動性が芁求される堎合には
倚局構造重合䜓〔〕の配合割合は50重量郚以
䞋、奜たしくは10〜40重量郚の範囲内に抌えるこ
ずが望たしい。䞀方極めお柔軟であるこずが必芁
ずされる甚途に察しおは圓然のこずながら倚局構
造重合䜓〔〕を50重量郚以䞊、奜たしくは50〜
90重量郚の範囲で甚いるのが望たしい。倚局構造
重合䜓〔〕が50重量郚以䞊含たれる暹脂組成物
は倚局構造重合䜓〔〕が50重量郚以䞋の暹脂組
成物に比べ確かに流動性は䜎䞋するが―ダむで
うすいフむルムを成圢するような堎合を陀き、成
圢䞊困難を感じる事はない。 倚局構造重合䜓〔〕ず倚局構造重合䜓〔〕
ずのブレンドはおのおのの粉䜓をヘンシ゚ルミキ
サヌを甚いる等通垞の方法でブレンドするこずが
できる他、おのおののラテツクスを混合したの
ち、塩析等の凊理を行なうずいう手段でブレンド
するこずもできる。 たた倚局構造重合䜓〔〕ず倚局構造重合䜓
〔〕ずのブレンドに際し玫倖線吞収剀、酞化防
止剀、顔料、滑剀等の䞀般の添加剀を添加するこ
ずもでき、特に玫倖線吞収剀を添加するこずによ
り䞀局耐候性に優れた暹脂組成物ずするこずがで
きる。 たた本発明の倚局構造重合䜓同士を䞊蚘割合で
配合した暹脂組成物〜99重量郚に前述した重合
䜓(i)又は(ii)の矀から遞ばれた少なくずも䞀皮の重
合䜓、又は重合䜓(i)及び(ii)の倫々の矀から遞ばれ
た少なくずも䞀皮の重合䜓同士の混合物を99〜
重量郚配合するこずができる。 本発明においお䜿甚する倚局構造重合䜓〔〕
及び〔〕は䞊述した劂き特定のアルキルアクリ
レヌト又はアルキルメタクリレヌトを䞻成分ずす
る最内局重合䜓(A)又はA′の存圚䞋でアルキ
ルアクリレヌトを䞻成分ずする架橋匟性重合䜓(B)
又はB′を重合し、最倖局ずしおアルキルメ
タクリレヌトを䞻成分ずするTgが少なくずも60
℃の最倖局重合䜓(C)又はC′を配眮し、該重合
䜓(B)又はB′局ず該重合䜓(C)又はC′局ずの
間にアルキルアクリレヌトの量が該重合䜓(B)又は
B′局から該重合䜓(C)又はC′局に向぀お単
調枛少するような䞭間局(D)又はD′を介圚さ
せ、しかも該重合䜓(C)又はC′局以倖の各重合
䜓局が有効にグラフト結合しおおり、か぀特定の
ゲル含有量を有する倚局重合䜓構造をず぀おいる
為これを屈折率が異な぀おも盞溶性のある他の熱
可塑性暹脂ずブレンドした堎合透明性に優れ、ス
トレス癜化性の党くないかもしくは極めお少ない
暹脂組成物ずするこずができるのである。特にメ
チルメタクリレヌト系暹脂ずブレンドした堎合に
は透明性、耐ストレス癜化性、耐候性、耐衝撃性
に優れた暹脂組成物ずするこずができる。 このようにポリマヌブレンド系においおもスト
レス癜化性が極めお小さいこずは驚くべきこずで
ある。これは倚局構造重合䜓〔〕及び〔〕が
有する特殊構造の効果に基くものであり、埓来の
ゎム成分を導入する方法からは予枬し埗ないもの
である。 たた塩化ビニル暹脂、ポリスチレン、AS暹脂、
ポリカヌボネヌト暹脂ずブレンドした堎合には、
倚局構造重合䜓〔〕及び〔〕のブレンド組成
物は䞀皮の耐候性、耐衝撃性改質剀ずしお䜜甚
し、耐候性、耐衝撃性の倧幅な向䞊をもたらす。 曎に、ポリフツ化ビニリデンずのブレンド組成
物は耐候性、透明性、耐ストレス癜化性、耐薬品
性、匷靭さ、成圢性等の諞特性に優れるものであ
り、特にポリフツ化ビニリデン〜50重量郚ず倚
局構造重合䜓〔〕及び〔〕のブレンド組成物
50〜99重量郚ずからなる暹脂組成物はフむルム成
圢甚玠材ずしお優れおおり、透明で匷靭な耐候
性、耐ストレス癜化性、耐薬品性等に優れたフむ
ルムを䞎える。かかるフむルムは通垞の成圢品の
衚面にラミネヌトするこずにより容易に耐候性ず
意匠効果ずを付䞎するこずができ、極めお商品䟡
倀の高いものである。 以䞋実斜䟋により本発明を具䜓的に説明する。 なお実斜䟋䞭の「郚」及び「」はいずれも
「重量郚」及び「重量」である。たた実斜䟋䞭
に甚いられる略語は䞋蚘の通りである。 MMA  メチルメタクリレヌト MA  メチルアクリレヌト BuA  ブチルアクリレヌト 2EHA ゚チルヘキシルアクリレヌト St  スチレン BD  ブチレンゞメタクリレヌ
ト AMA  アリルメタクリレヌト CHP  クメンハむドロパヌオキサむド SFS  ゜ゞりムフオルムアルデヒドスル
ホキシレヌト 実斜䟋䞭に甚いられる各重合䜓局のTgは䟋え
ばポリマヌハンドブツクに蚘茉されおいるTgの
倀から通垞知られおいるFOXの匏 Tgα1Tg1α2Tg2 より蚈算しお求めたものである。 実斜䟋  (1) 倚局構造重合䜓〔〕の補造 冷华噚付きの重合容噚内にむオン亀換氎250
郚、スルフオコハク酞の゚ステル゜ヌダ塩
郚、SFS0.05郚を仕蟌み窒玠気流䞋で撹拌埌
MMA1.6郚、BuA8郚、BD0.4郚、AMA0.1郚
及びCHP0.04郚からなる混合物を仕蟌んだ。70
℃に昇枩埌30分間反応を継続させ最内局重合䜓
(A)の重合を完了した。続いおMMA1.5郚、
BuA22.5郚、BD1郚、AMA0.25郚及びこれら
の単量䜓混合物に察し0.05のCHPを配合した
混合物を60分間にわた぀お添加し、さらに60分
間保持しお重合䜓(A)、(B)の二局からなる二局架
橋匟性䜓を重合した。このようにしお埗られた
二局架橋匟性䜓のMEK䞭での膚最床は10.0、
ゲル含有量は90であ぀た。 続いお䞭間局(D)に盞圓するMMA5郚、BuA5
郚、AMA0.1郚からなる混合物を10分間にわた
぀お添加しお重合し、最埌にMMA52.25郚、
BuA2.75郚の混合物を同様に重合させお最倖局
重合䜓(C)ずし倚局構造重合䜓〔−(1)〕を埗
た。䜆し、䞭間局(D)、最倖局(C)の重合に際しお
は各局で甚いた単量䜓量の0.1に盞圓する
CHPを甚いた。 同様にしお倚局構造重合䜓〔−(2)〕〜〔
−(5)〕、比范重合䜓(1)、(2)、(3)を重合した。 いずれも最終粒子埄は1000〜1500Åであ぀
た。 これらの重合䜓ラテツクスを垞法に埓぀お塩
析し、掗浄・脱氎埌也燥しお也粉を埗た。 これらの組成及び物性を衚に瀺す。 (2) 倚局構造重合䜓〔〕の補造 架橋匟性重合䜓B′の添加時間を90分ず
する以倖は前蚘(1)の倚局構造重合䜓〔〕の補
造ず党く同様の手順により、衚に瀺したボリ
マヌ構造を有する倚局構造重合䜓〔−(1)〕〜
〔−(5)〕及び比范重合䜓(4)を重合した。 これらの重合䜓の最終粒子埄はいずれも1000
〜1500Åの範囲にあ぀た。 これらの重合䜓ラテツクスも垞法に埓぀お塩
析し、掗浄・脱氎埌也燥しお也粉を埗た。 これらの組成及び物性を衚に瀺す。
The present invention relates to a novel acrylic thermoplastic resin composition that is transparent and highly flexible. More specifically, it has a special tapered structure between a crosslinked elastic polymer layer (inner layer) having a two-layer structure and a resin layer (outer layer) with a glass transition temperature (hereinafter abbreviated as Tg) of 60°C or higher. At least one kind of multilayer structure polymer [ ] with excellent transparency, weather resistance, solvent resistance, stress whitening resistance, processability, etc. and a basic polymer structure in which the resin layer is in a predominant amount relative to the crosslinked elastic polymer layer. is obtained by blending the multilayer structure polymer [ ] with at least one transparent and flexible multilayer structure polymer [ ] that has a crosslinked elastic polymer layer that is almost equal to or larger than the resin layer. This invention relates to a novel acrylic thermoplastic resin composition that is transparent and highly flexible, and has excellent weather resistance, solvent resistance, stress whitening resistance, processability, etc. Acrylic resins, particularly methyl methacrylate polymers, are known as resins that have both excellent transparency and weather resistance, and are widely used in cast molded products, extrusion molded products, and the like. However, it is widely known that these methyl methacrylate polymers are generally hard and brittle, making them unsuitable as materials for films and sheets, and that they cannot be used in applications that require flexibility. This is what happened. For this reason, a number of attempts have been made to introduce certain rubber components into methyl methacrylate polymers in order to impart toughness and flexibility, but these have resulted in significant reductions in weather resistance. However, the appearance of methyl methacrylate polymers has deteriorated due to a significant decrease in transparency. Not successful. Furthermore, from the viewpoint of film sheet materials, several methyl methacrylate-based multilayer polymers containing acrylic rubber have been proposed. However, most of these multilayer structured polymers sacrifice the inherent characteristics of methyl methacrylate polymers, such as transparency and weather resistance, in order to impart toughness and flexibility, and are not satisfactory. Furthermore, in these multilayer polymers, flexibility and toughness are contradictory to other properties such as processability (fluidity), weather resistance, and solvent resistance due to constraints on the polymer structure. There are limits to how much flexibility can be added without sacrificing properties. For this reason, even if it is possible to provide flexibility and toughness to the extent that it is not difficult to handle it as a material for films and sheets, the current situation is that it cannot be used for applications that require even greater flexibility. . In view of the current situation, the present inventors developed an acrylic-based material that has excellent stress whitening resistance and solvent resistance, as well as arbitrary flexibility, without sacrificing transparency, weather resistance, and processability. As a result of intensive studies to obtain a polymer, we found a crosslinked elastic polymer layer (inner layer) mainly composed of acrylic acrylate with a two-layer structure and a resin layer mainly composed of alkyl methacrylate with a Tg of 60℃ or higher. (outer layer) and at least one intermediate layer containing alkyl acrylate and alkyl methacrylate as main components and in which the amount of alkyl acrylate monotonically decreases from the crosslinked elastic polymer layer to the resin layer. , and at least one type of multilayer structure polymer [ ] that is transparent and has excellent weather resistance, solvent resistance, stress whitening resistance, processability, etc., and a base polymer in which the resin layer has a predominant amount relative to the crosslinked elastic polymer layer. The structure is the same as the multilayer structure polymer [], but
The object of the present invention can be achieved by blending at least one type of transparent, particularly flexible, multilayer structure polymer containing a crosslinked elastic polymer layer in an amount approximately equal to or greater than that of the resin layer. They discovered this and arrived at the present invention. The gist of the present invention is a first invention comprising a thermoplastic resin composition comprising 1 to 99 parts by weight of at least one kind of multilayer structure polymer [] and 99 to 1 part by weight of at least one kind of multilayer structure polymer []. 1 to 99 parts by weight of at least one kind of multilayer structure polymer [] and 99 to 1 part of at least one kind of multilayer structure polymer []
A resin compound consisting of 1 to 99 parts by weight of the following:
99 to 1 part by weight of at least one polymer selected from group (i) or (ii), or a mixture of at least one polymer selected from each of groups (i) and (ii); The second invention is a thermoplastic resin composition comprising: Polymer (i): A homopolymer of a monomer having the following general formula (a), (b) or (c) or a copolymer consisting of two or more of these monomers. CH 2 = CXY ... (a) However, in the formula, X and Y are H, Cl, F, Br, CH 3 ,
It is either COOH, COOCH 3 , CN, OCOCH 3 , C 6 H 5 , an alkoxy group, OCCH 3 or SO 3 H. CF 2 =CFZ...(b) However, Z in the formula is either H, F, Cl, or CF 3 . However, in the formula, R is a fluoroalkyl group. Polymer (ii): polycarbonate, thermoplastic polyester, polyamide. In the present invention, the multilayer structure polymer [] and the multilayer structure polymer [] have the following polymer structures. Multilayer structure polymer []: 80 to 100 parts by weight of an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms or an alkyl methacrylate having an alkyl group having 1 to 4 carbon atoms (A 1 ), 0 to 20 parts by weight of a copolymer A monomer having a polymerizable double bond (A 2 ), 0 to 10 parts by weight of a polyfunctional monomer (A 3 ), based on 100 parts by weight of the total amount of (A 1 ) to (A 3 ) 0.1
~5 parts by weight of a graft cross-agent, the proportion of which in the multilayer structure polymer is 5 to 35% by weight, the innermost polymer (A), and 80 to 100 parts by weight of a carbon number of 1 to 8. Alkyl acrylate having an alkyl group (B 1 ), 0 to 20 parts by weight of a monomer having a copolymerizable double bond (B 2 ), 0 to 10 parts by weight of a polyfunctional monomer (B 3 ) , 0.1 per 100 parts by weight of the total amount of (B 1 ) to (B 3 )
A crosslinked elastic polymer (B) consisting of ~5 parts by weight of a grafting agent and having a proportion of 10 to 40% by weight in the multilayer polymer [], 51 to 100 parts by weight of a carbon number of 1 to 4 of alkyl methacrylate (C 1 ) and (C 2 ) having 0 to 49 parts by weight of copolymerizable double bonds, the Tg is at least 60°C, and the proportion in the multilayer structure polymer [] is at least 60°C. The outermost layer polymer (C) is 50 to 80% by weight, and the basic structural unit is 10 to 90 parts by weight of carbon number 1 as an intermediate layer (D) between the polymer (B) layer and the polymer (C) layer. Alkyl acrylate (D 1 ) having ~8 alkyl groups, 90 to 10 parts by weight of alkyl methacrylate (D 2 ) having alkyl groups having 1 to 4 carbon atoms, 0 to 20 parts by weight of copolymerizable double bonds 0.1 to 100 parts by weight of the total amount of the monomer (D 3 ), 0 to 10 parts by weight of the polyfunctional monomer (D 4 ), and (D 1 ) to (D 4 ).
An intermediate layer (D) consisting of a composition of ~5 parts by weight of a graft cross-agent, in which the amount of alkyl acrylate in the intermediate layer (D) monotonically decreases from the crosslinked elastic polymer (B) to the outermost layer polymer (C). ), and the gel content of the multilayer polymer is at least 50%. Multilayer structure polymer []: 80 to 100 parts by weight of alkyl acrylate having an alkyl group having 1 to 8 carbon atoms or alkyl methacrylate having an alkyl group having 1 to 4 carbon atoms (A 1 '), 0 to 20 parts by weight Monomer having a copolymerizable double bond (A 2 ′), 0 to 10 parts by weight of polyfunctional monomer (A 3 ′), total amount of (A 1 ′) to (A 3 ′) 0.1 per 100 parts by weight
Innermost layer polymer (A') consisting of ~5 parts by weight of a graft cross-agent and occupying a proportion of 5 to 40% by weight in the multilayer structure polymer [], 80 to 100 parts by weight of a carbon number of 1 to 100%; Alkyl acrylate (B 1 ′) having 8 alkyl groups, 0 to 20 parts by weight of a monomer having a copolymerizable double bond (B 2 ′), 0 to 10 parts by weight of a polyfunctional monomer 0.1 per 100 parts by weight of the total amount of (B 3 ′), (B 1 ′) to (B 3 ′)
A crosslinked elastic polymer (B') consisting of ~5 parts by weight of a grafting agent and having a proportion of 30 to 80% by weight in the multilayer polymer [], 51 to 100 parts by weight of a carbon number of 1 to A multilayered polymer [ ] The outermost layer polymer (C′), which accounts for 10% by weight or more and less than 50% by weight, is the basic structural unit, and an intermediate layer (D) is formed between the polymer (B′) layer and the polymer (C′) layer. 10 to 90 parts by weight of an alkyl acrylate having an alkyl group of 1 to 8 carbon atoms (D 1 ′), 90 to 10 parts by weight of an alkyl methacrylate having an alkyl group of 1 to 4 carbon atoms (D 2 ′) , 0 to 20 parts by weight of a monomer having a copolymerizable double bond (D 3 ′), 0 to 10 parts by weight of a polyfunctional monomer (D 4 ′), (D 1 ′) to ( D 4 ′) 0.1 per 100 parts by weight
The intermediate layer (D') has a composition of ~5 parts by weight of a grafting agent, and the amount of alkyl acrylate in the intermediate layer (D') decreases monotonically from the crosslinked elastic polymer (B') to the outermost layer polymer (C'). A multilayer structure polymer having at least one layer (D'). The features of the present invention are transparency, weather resistance,
A multilayer polymer with excellent stress whitening resistance, solvent resistance, and processability; and a multilayer polymer with excellent flexibility, slightly inferior processability, and excellent transparency, weather resistance, and stress whitening resistance. By blending [], a thermoplastic resin composition can be obtained that has excellent transparency, weather resistance, flexibility, and processability that could not be obtained with conventional multilayer polymers alone. Multilayer structure polymer [ ] and multilayer structure polymer [ ] have the same basic polymer structure, and both have the following characteristics. That is, (1) the crosslinked elastic polymers (B) and (B') have a two-layer elastic structure containing the innermost layer polymers (A) and (A'), respectively, and (2) the resin layer. (3) The ratio of alkyl acrylate between the crosslinked elastic polymer layer and the outermost polymer layer is monotonous from the crosslinked elastic polymer layer to the outermost polymer layer. (4) Chemically grafting the interlayers using a grafting agent; (5) The gel content of the final polymer is at least 50% %. By satisfying all of these requirements, multilayer polymers [] and [] have transparency, weather resistance,
For the first time, the basic characteristics of the multilayer structure polymer composition used in the present invention, which are excellent stress whitening resistance and solvent resistance, can be satisfied, and if even one of these requirements is lacking, a satisfactory product cannot be obtained. In particular, the multilayer structure polymers [ ] and [ ] of the present invention are characterized in that the crosslinked elastic polymer layer is composed of a two-layer elastic body structure containing the innermost layer polymer as an inner layer. In general, acrylic rubber has superior weather resistance compared to diene rubbers, etc., but on the other hand, elastic recovery is slow, deformation due to stress is large, and rubber efficiency is low. That is, there is a limit to the elastic body structure consisting of only one layer obtained by conventional one-stage polymerization in order to provide various properties such as solvent resistance and water whitening resistance as described above while maintaining excellent weather resistance. In order to solve these drawbacks, the multilayer structure polymers [] and [] used in the present invention have the innermost layer polymers (A) and (A') in the core of the crosslinked elastic polymers (B) and (B'). ) exist, respectively.
The presence of the innermost layer polymers (A) and (A') polydispersively relieves the stress concentrated on the crosslinked elastic polymer (B) and (B') layers when stress is applied, As a result, the incidence of microvoids increases and excellent impact resistance is provided even without apparent stress whitening. In the case of multilayer polymer [], the ratio of the resin layer is set to be higher than that of the crosslinked elastic polymer layer, so although the flexibility is slightly lacking, it has characteristics such as weather resistance and solvent resistance. Not only that, but by keeping the gel content of the final polymer below 80%, it also has excellent processability. The alkyl acrylate having an alkyl group having 1 to 8 carbon atoms constituting the innermost layer polymer (A) of the multilayer structure polymer [] may be linear or branched, and may be methyl acrylate, ethyl acrylate,
Propyl acrylate, butyl acrylate, 2
- Ethylhexyl acrylate, n-octyl acrylate, etc. can be used alone or in combination.
Those with low Tg are more preferable. Also, the number of carbon atoms is 1~
The alkyl methacrylate having 4 alkyl groups may be linear or branched, and methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, etc. are used alone or in combination. These alkyl (meth)acrylates (A 1 ) are used in an amount of 80 to 100 parts by weight. In addition, it is most preferable that these alkyl (meth)acrylates are used uniformly in all the multilayer layers, but depending on the final purpose, two or more types of monomers may be mixed, or different types of (meth)acrylates may be used. It's okay to be hit. In addition, the monomer (A 2 ) having a copolymerizable double bond is lower alkyl acrylate, lower alkoxy acrylate, cyanoethyl acrylate,
Acrylic monomers such as acrylamide, acrylic acid, and methacrylic acid are preferred, and are used in an amount of 0 to 20 parts by weight. In addition, styrene, alkyl-substituted styrene, acrylonitrile, methacrylonitrile, etc. can be used in an amount not exceeding 20% by weight in component (A). Furthermore, the polyfunctional monomer (A 3 ) is preferably an alkylene glycol dimethacrylate such as ethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, and propylene glycol dimethacrylate, and divinylbenzene , polyvinylbenzene such as trivinylbenzene, alkylene glycol diacrylate, and the like can also be used. These monomers are effective in bridging the layer in which they are contained,
It does not affect interlayer bonding with other layers.
Even if the polyfunctional monomer (A 3 ) is not used at all, it will give a fairly stable multilayered polymer as long as the grafting agent is present, but it can be used arbitrarily depending on the required physical properties, but the amount used may vary. ranges from 0 to 10 parts by weight. On the other hand, the grafting agent is a copolymerizable allyl, methallyl or crotyl ester of α,β-unsaturated carboxylic acid or dicarboxylic acid, preferably acrylic acid,
Allyl esters of methacrylic acid, maleic acid and fumaric acid are used, with allyl methacrylate being particularly effective. In addition, triallyl cyanurate, triallyl isocyanurate, etc. can also be effectively used. Such graft cross-agents are chemically bonded primarily because the conjugated unsaturated bonds of their esters react much faster than allyl, methallyl, or crotyl groups. During this time, a substantial portion of the allyl group, methallyl group, or crotyl group acts effectively during the polymerization of the next layer to provide a graft bond between two adjacent layers. The amount of graft cross-agent used is extremely important, and is 0.1 parts by weight per 100 parts by weight of the total amount of components (A 1 ) to (A 3 ) above.
It is used in an amount of 5 parts by weight, preferably 0.5 to 2 parts by weight. If the amount used is less than 0.1 part by weight, the effective amount of graft bonding will be small and the bonding between layers will be insufficient. In addition, if the amount used exceeds 5 parts by weight, the amount of reaction with the crosslinked elastic polymer (B) formed in the second stage polymerization becomes large, resulting in a two-layer crosslinked structure consisting of polymer (A) and polymer (B). This causes a decrease in the elasticity of the elastic body. The innermost layer polymer (A) is a graft-active layer, and its Tg is appropriately set depending on the physical properties required of the final polymer. In general, it is advantageous in terms of quality that the crosslinking density is the same as, or even higher than, that of the crosslinked elastic polymer (B). It is possible that the innermost layer polymer (A) and the crosslinked elastic polymer (B) have the same composition, but it is important that they are made into a two-layered elastic body structure through two-stage polymerization, rather than being charged at one time. However, it is advantageous to set the catalyst amount, crosslinking density, etc. higher for the polymer (A). Considering the initial polymerizability, the presence of the innermost layer polymer (A) is extremely important in order to obtain a stable multilayer structure polymer, and the amount of catalyst is generally charged in the largest amount in each polymer layer. The use of a grafting cross-agent is essential for effectively synthesizing a two-layer elastic structure that is chemically bonded to the crosslinked elastic polymer (B) formed in the second stage. Without this graft bond, the two-layer elastomer structure would easily undergo phase destruction during melt molding, resulting in a decrease in rubber efficiency and failing to exhibit the desired excellent weather resistance, stress whitening resistance, etc. The content of the innermost layer polymer (A) in the multilayer structure polymer is 5 to 35% by weight, preferably 5 to 15% by weight, and is preferably lower than the content of the crosslinked elastic polymer (B). Next, the crosslinked elastic polymer (B) constituting the multilayer structure polymer [] is the main component that gives rubber elasticity to the polymer [], and contains 80 to 100 parts by weight of carbon atoms 1 to 8.
Alkyl acrylate having an alkyl group (B 1 ), 0 to 20 parts by weight of a monomer having a copolymerizable double bond (B 2 ), 0 to 10 parts by weight of a polyfunctional monomer (B 3 ) and (B 1 ) to (B 3 ) in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the total amount of the grafting agent. As the alkyl acrylate (B 1 ) having an alkyl group having 1 to 8 carbon atoms, the alkyl acrylates exemplified in (A 1 ) mentioned above may be used alone or in combination, but those with a low Tg are more preferable. Monomer with copolymerizable double bond (B 2 )
The most preferred is lower alkyl methacrylate, and the same monomers as exemplified for (A 2 ) can also be used. Further, as the polyfunctional monomer (B 3 ) and graft cross-agent, those exemplified in the innermost layer polymer (A) are used. The Tg of the crosslinked elastic polymer (B) alone is 0°C or lower, preferably -30°C or lower to provide good physical properties. The content of the crosslinked elastic polymer (B) in the multilayer structure polymer [] is preferably in the range of 10 to 40% by weight, and is preferably higher than the content of the innermost layer polymer (A). In this way, the innermost layer polymer (A) and crosslinked elastic polymer (B)
Because it has a two-layer cross-linked elastic body consisting of a two-layer elastic body structure in which the two rubbers are graft-bonded, it has become possible to simultaneously satisfy various properties that could not be achieved with conventional single-system rubbers. The gel content of this two-layer crosslinked elastic body was determined by the following measurement method.
In order to obtain excellent physical properties, it is necessary to set the swelling degree to 85% or more and the degree of swelling to be in the range of 3 to 13. (Method for measuring gel content and degree of swelling) A predetermined amount of the two-layer crosslinked elastic material was sampled according to JIS K-6388, and methyl ethyl ketone (hereinafter referred to as
Abbreviated as MEK. ), immerse it in water to swell, then pull it out, wipe off the adhered MEK, and measure its weight.
After that, MEK is removed by drying in a vacuum dryer, and the absolute dry weight, which has reached a constant weight, is read and calculated using the following formula. Swelling degree = Weight after MEK swelling - Bone dry weight / Bone dry weight Gel content (%) = Bone dry weight / Weight of collected sample x 100 Generally, the degree of polymerization of the crosslinked elastic polymer (B) should be as high as possible to reduce the final weight. Gives high impact strength to the combination.
On the other hand, for the core innermost layer polymer (A), this is not the case; rather, a large amount of catalyst is used to stabilize the initial polymerization including particle formation, and a large amount of graft active groups are used. The performance as a two-layer crosslinked elastic body tends to be good. Furthermore, the outermost layer polymer (C) constituting the multilayer structure polymer [] is involved in distributing moldability, mechanical properties, etc. to the polymer [], and constitutes (C 1 ) The components include the alkyl methacrylate exemplified in the component (A 1 ) mentioned above, and (C 2 )
As the components, lower alkyl acrylates and the monomers exemplified as component (A 2 ) mentioned above are used alone or in combination. (C 1 ) component is 51 to 100 parts by weight, (C 2 ) component is 0
~49 parts by weight, respectively. The Tg of the outermost layer polymer (C) alone needs to be 60°C or higher, preferably 80°C or higher in order to obtain excellent physical properties. The Tg of the polymer (C) alone is 60
If the temperature is below .degree. C., even if the gel content of the final polymer (described later) is 50% or more, it will not have excellent physical properties. The content of the outermost layer polymer (C) in the multilayer structure polymer is 50 to 80% by weight. The multilayer structure polymer [] used in the present invention has the above-mentioned innermost layer polymer (A), crosslinked elastic polymer (B), and outermost layer polymer (C) as basic structural units, and further includes the polymer (B) layer. and 10 to 90 parts by weight of carbon atoms 1 to 8 between the polymer (C) layers.
Alkyl acrylate (D 1 ) having an alkyl group of from 90 to 10 parts by weight, alkyl methacrylate (D 2 ) having an alkyl group having 1 to 4 carbon atoms, 0 to 10 parts by weight
20 parts by weight of copolymerizable double bond (D 3 ), 0-
10 parts by weight of polyfunctional monomers ( D4 ), ( D1 ) to ( D4 )
The intermediate layer (D) is composed of 0.1 to 5 parts by weight of a grafting agent based on 100 parts by weight of the total amount of the polymer (B). At least one layer is arranged so as to monotonically decrease toward the combined (C) layer. Here, the components (D 1 ) to (D 4 ) and the grafting agent are (B 1 ), (C 1 ), (A 2 ), (A 3 ) and the innermost layer polymer, respectively.
It is similar to the graft cross-agent used in (A). The grafting agent used in the intermediate layer (D) is essential for tightly bonding each polymer layer and obtaining excellent physical properties. The content of each intermediate layer (D) in the multilayer structure polymer [] is 5 to 35% by weight, preferably 5 to 25% by weight, and if it is less than 5% by weight, it will not lose its function as an intermediate layer. If it exceeds 35% by weight, the balance of the final polymer will be disturbed, which is not preferable. Furthermore, the multilayer structure polymer used in the present invention []
has a gel content of at least 50%, preferably at least 60%, which, together with the above-mentioned special structure, provides excellent properties such as stress whitening resistance, impact resistance, solvent resistance, water whitening resistance, etc. . In this case, the gel content includes the two-layer crosslinked elastic body itself and the graft components of the intermediate layer (D) and the outermost layer polymer (C) to the crosslinked elastic body. is 1% by weight of the multilayer polymer [ ]
This is the weight percent of the insoluble matter after a MEK solution was prepared, left overnight at 25°C, and then centrifuged at 16,000 rpm for 90 minutes using a centrifuge. The component of the gel content is the added weight of the two-layer crosslinked elastic body and the grafted chains, and it can also be replaced by the grafting ratio, but in the present invention, since the polymer has a special structure, the gel content is This was used as a guideline for the amount of grafting. From the point of view of solvent resistance, the higher the gel content, the more advantageous it is, but from the point of view of easy moldability, the presence of a certain amount or more of free polymer is necessary, so the upper limit of the gel content is about 80%. preferable. On the other hand, the basic polymer structure of multilayer structure polymer [] is the same as multilayer structure polymer [], but the ratio of each layer is set so that the crosslinked elastic polymer layer is almost in a predominant amount compared to the resin layer. . Therefore, compared to the multilayer structure polymer [], the amount of free polymer is lower, so the processability is slightly lower, but the flexibility is extremely excellent. In addition, since the polymer has the above-mentioned structural characteristics, even if the crosslinked elastomer component increases, properties such as transparency, weather resistance, and stress whitening resistance hardly deteriorate. Innermost layer polymer (A′) of multilayer structure polymer []
The components (A 1 ′), (A 2 ′), (A 3 ′) and the graft cross-agent are each component ( A1 ),
The same ones as (A 2 ), (A 3 ) and grafting cross-agents are used. Innermost layer polymer (A′) of multilayer structure polymer []
The amount of the graft cross-agent is also very important, and is used in the range of 0.1 to 5 parts, preferably 0.5 to 2 parts by weight, based on 100 parts by weight of the above-mentioned components (A 1 ') to (A 3 '). If the amount is less than 0.1 part by weight, the effective amount of graft bonding will be small and the bonding between the layers will be insufficient.
Further, if the amount exceeds 5 parts by weight, the amount of reaction with the crosslinked elastic polymer (B) polymerized in the second stage becomes large, and the elasticity of the two-layer crosslinked rubber elastic body having a two-layer elastic body structure decreases. The innermost layer is a polymer (A') or a graft active layer, and its Tg is appropriately set according to the physical properties required of the final polymer. In addition, its crosslink density is generally the same as that of the crosslinked elastic polymer (B′), or
In fact, the higher the price, the more advantageous it is in terms of quality. Although it is possible that the innermost layer polymer (A') and the crosslinked elastic polymer (B') have the same composition, it is important to create a two-layer elastic body structure through two-stage polymerization rather than one-time charging. However, it is advantageous for the polymer (A') to have a higher catalyst amount, crosslinking density, etc. Considering the initial polymerization, the innermost layer polymer (A′)
The presence of catalytic acid is extremely important in order to obtain a stable multilayer structure polymer, and generally the largest amount of catalyst is incorporated into each polymer layer. The use of a grafting cross-agent is essential for effectively synthesizing a two-layer elastic structure that is chemically bonded to the crosslinked elastic polymer (B') formed in the second stage. Without this graft bond, the two-layer elastomer structure would easily undergo phase destruction during melt molding, resulting in lower rubber efficiency and would not exhibit the desired excellent weather resistance, solvent resistance, water whitening resistance, etc. Innermost layer polymer (A′) in multilayer structure polymer []
The content of is 5 to 40% by weight, preferably 5 to 20% by weight, and is certified to be smaller than the content of the crosslinked elastic polymer (B'). Next, the crosslinked elastic polymer (B') is the main component that gives the multilayer structure polymer [] excellent flexibility.
It accounts for 30 to 80% by weight, preferably 35 to 60% by weight in the multilayer polymer. If the proportion of the crosslinked elastic polymer (B') is less than 30% by weight, sufficient flexibility will not be obtained, and if it exceeds 80% by weight, processability etc. will be significantly reduced, which is not preferable. As each component constituting the crosslinked elastic polymer (B'), the same components as those constituting the crosslinked elastic polymer (B) of the multilayer structure polymer [] described above are used. This is the same for the outermost layer polymer (C') and the intermediate layer (D') in the multilayer structure polymer [], and the outermost layer polymer (C) and the intermediate layer (D') of the multilayer structure polymer [] described above are the same. It consists of the same components as (D). It goes without saying that the lower the individual Tg of the crosslinked elastic polymer (B'), the more preferable it is, and particularly preferable physical properties can be obtained at -30°C or lower. Furthermore, in the case of the multilayer structure polymer [2], it is necessary that the two-layer crosslinked elastic body has a gel content of 85% or more and a swelling degree of 3 to 13, as determined by the method described above. Outermost layer polymer (C′) in multilayer structure polymer []
The content is 10% by weight or more and less than 50% by weight. The outermost layer polymer (C') also needs to have a single Tg of 60°C or higher, preferably 80°C or higher in order to obtain excellent solvent resistance and water whitening resistance. If the Tg of the polymer (C') alone is less than 60°C, satisfactory physical properties cannot be obtained. Each intermediate layer (D′) in the multilayer structure polymer []
The content is 5 to 35% by weight, preferably 5 to 25% by weight; if it is less than 5% by weight, it will not lose its function as an intermediate layer, and if it is more than 35 parts by weight, the balance of the final polymer will be disturbed. If the content of the entire intermediate layer exceeds 40% by weight, the overall balance will be lost, which is not preferable. The gel content of the final polymer of the multilayer structure polymer [] is preferably in the range of 60 to 95% by weight. If the gel content is less than 60% by weight, it will lead to a decrease in solvent resistance, and if it exceeds 95% by weight, it will lead to a decrease in moldability even when blended with a multilayer structure polymer [], which is not preferable. The above-mentioned multilayer structure polymers [] and [] can be obtained by a sequential multi-stage polymerization method using an emulsion polymerization method, but are not particularly limited thereto. It can also be obtained by an emulsion suspension polymerization method involving conversion. Further, there are no particular restrictions on emulsifiers, catalysts, and coagulants. The emulsion particle size of the multilayer structure polymer [] and [] final polymer is not particularly limited, but is 800 mm.
The most balanced structure is obtained in the range of ~2000 Å. The latex of these multilayered polymers is subjected to a salting-out treatment by adding additives such as antioxidants and lubricants, if necessary. Multilayer structure polymers [] and [] have similar polymer structures, and it is preferable from the viewpoint of transparency that only the ratio of each layer differs, but depending on the purpose, they can be obtained from completely different alkyl (meth)acrylates. It goes without saying that it is also possible to use objects. Multilayer structure polymer [] and multilayer structure polymer []
The blending ratio can be appropriately set within the range of 1 to 99 parts by weight/99 to 1 part by weight, preferably 10 to 90 parts by weight/90 to 10 parts by weight, depending on the purpose. For example, in cases where fluidity is particularly required, such as when molding into a film using the T-die method, the blending ratio of the multilayer structure polymer [ ] should be 50 parts by weight or less, preferably within the range of 10 to 40 parts by weight. It is desirable to keep it to a minimum. On the other hand, for applications that require extremely flexibility, it is natural to use a multilayer structure polymer [] of 50 parts by weight or more, preferably 50 to 50 parts by weight.
It is desirable to use it in a range of 90 parts by weight. Resin compositions containing 50 parts by weight or more of the multilayer polymer [] will certainly have lower fluidity than resin compositions containing 50 parts by weight or less of the multilayer polymer [], but they can be molded into thin films using a T-die. You should not experience any difficulty in molding unless you have to. Multilayer structure polymer [] and multilayer structure polymer []
The powders can be blended using a conventional method such as using a Henschel mixer, or they can be blended by mixing the respective latexes and then performing a treatment such as salting out. In addition, when blending the multilayer structure polymer [] and the multilayer structure polymer [], general additives such as ultraviolet absorbers, antioxidants, pigments, and lubricants can be added, and in particular, ultraviolet absorbers can be added. As a result, a resin composition with even better weather resistance can be obtained. In addition, at least one polymer selected from the group of polymers (i) or (ii) described above is added to 1 to 99 parts by weight of the resin composition containing the multilayer structure polymers of the present invention in the above proportions. A mixture of at least one kind of polymer selected from each group of (i) and (ii) is 99 to 1
Parts by weight can be blended. Multilayer structure polymer used in the present invention []
and [] is a crosslinked elastic polymer (B) containing an alkyl acrylate as a main component in the presence of an innermost layer polymer (A) or (A') containing a specific alkyl acrylate or alkyl methacrylate as a main component as described above.
or (B′) is polymerized, and the outermost layer is composed mainly of alkyl methacrylate and has a Tg of at least 60.
The outermost layer polymer (C) or (C') is placed at an intermediate layer (D) or (D') whose amount decreases monotonically from the polymer (B) or (B') layer to the polymer (C) or (C') layer; Each polymer layer other than the polymer (C) or (C') layer is effectively graft-bonded and has a multilayer polymer structure with a specific gel content, so it is considered that the refractive index is different. When blended with other thermoplastic resins with which it is compatible, it is possible to obtain a resin composition with excellent transparency and no or very little stress whitening. In particular, when blended with a methyl methacrylate resin, a resin composition with excellent transparency, stress whitening resistance, weather resistance, and impact resistance can be obtained. It is surprising that stress whitening properties are extremely low even in polymer blend systems. This is based on the effect of the special structure of the multilayer polymers [ ] and [ ], and cannot be predicted from conventional methods of introducing rubber components. Also, vinyl chloride resin, polystyrene, AS resin,
When blended with polycarbonate resin,
The blend composition of the multilayer polymers [ ] and [ ] acts as a kind of weather resistance and impact resistance modifier, and brings about a significant improvement in weather resistance and impact resistance. Furthermore, blend compositions containing polyvinylidene fluoride have excellent properties such as weather resistance, transparency, stress whitening resistance, chemical resistance, toughness, and moldability. Blend composition of and multilayer structure polymer [] and []
A resin composition containing 50 to 99 parts by weight is excellent as a material for film molding, and provides a transparent, tough film with excellent weather resistance, stress whitening resistance, chemical resistance, etc. Such a film can easily impart weather resistance and a design effect by laminating the surface of an ordinary molded article, and has extremely high commercial value. The present invention will be specifically explained below using Examples. Note that "parts" and "%" in the examples are both "parts by weight" and "% by weight." Furthermore, the abbreviations used in the examples are as follows. MMA: Methyl methacrylate MA: Methyl acrylate BuA: Butyl acrylate 2EHA: 2-ethylhexyl acrylate St: Styrene BD: 1,3-butylene dimethacrylate AMA: Allyl methacrylate CHP: Cumene hydroperoxide SFS: Sodium formaldehyde sulfoxylate The Tg of each polymer layer used in the polymer layer can be calculated from the Tg value listed in the Polymer Handbook using the commonly known FOX formula: 1/Tg=α 1 /Tg 1 +α 2 /Tg 2 It is something that Example 1 (1) Production of multilayer polymer [] 250ml of ion-exchanged water was placed in a polymerization container equipped with a cooler.
Part, ester soda salt of sulfosuccinic acid 2
After adding 0.05 parts of SFS and stirring under nitrogen stream.
A mixture consisting of 1.6 parts MMA, 8 parts BuA, 0.4 parts BD, 0.1 part AMA and 0.04 parts CHP was charged. 70
After raising the temperature to ℃, the reaction was continued for 30 minutes to form the innermost layer polymer.
Polymerization of (A) was completed. Next, MMA 1.5 division,
A mixture of 22.5 parts of BuA, 1 part of BD, 0.25 parts of AMA, and 0.05% CHP to these monomer mixtures was added over 60 minutes and held for an additional 60 minutes to form the polymer (A), A two-layer crosslinked elastic body consisting of two layers (B) was polymerized. The degree of swelling of the two-layer crosslinked elastic body thus obtained in MEK was 10.0.
Gel content was 90%. Next is MMA5, which corresponds to the middle class (D), and BuA5.
0.1 parts of MMA was added over 10 minutes for polymerization, and finally 52.25 parts of MMA,
A mixture of 2.75 parts of BuA was similarly polymerized to obtain an outermost layer polymer (C) and a multilayer structure polymer [-(1)]. However, when polymerizing the middle layer (D) and the outermost layer (C), it corresponds to 0.1% of the amount of monomer used in each layer.
CHP was used. Similarly, multilayer polymers [−(2)] to [
-(5)], comparative polymers (1), (2), and (3) were polymerized. In all cases, the final particle diameter was 1000 to 1500 Å. These polymer latexes were salted out in a conventional manner, washed, dehydrated, and dried to obtain dry powder. Their compositions and physical properties are shown in Table 1. (2) Production of multilayer structure polymer [] The table was prepared in exactly the same manner as in the production of multilayer structure polymer [] in (1) above, except that the crosslinked elastic polymer (B') was added for 90 minutes. Multilayer structure polymer having the polymer structure shown in 2 [-(1)] ~
[-(5)] and comparative polymer (4) were polymerized. The final particle size of these polymers is 1000
It was in the range of ~1500 Å. These polymer latexes were also salted out in a conventional manner, washed, dehydrated, and dried to obtain dry powder. Their compositions and physical properties are shown in Table 2.

【衚】【table】

【衚】【table】

【衚】 (3) 暹脂組成物の調補及び評䟡 倚局構造重合䜓〔−(1)〕及び〔−(1)〕を
衚に瀺した割合でブレンドし曎に郚の玫倖
線吞収剀商品名チヌビン―、チバガむギヌ
瀟補を添加しおよく混合し、抌出機によりペ
レツト化した。 埗られたペレツトを70℃で䞀昌倜也燥埌、射
出成圢機を甚いお成圢加工性のテストを行な぀
た。結果を衚に䜵せお瀺した。成圢加工性の
刀断基準は以䞋の通りである。 成圢加工性評䟡基準 〇射出成圢機で容易に成圢できる。 △射出成圢機での成圢がかろうじお可胜。 ×射出成圢機での成圢が困難。 曎に同じペレツトを甚いお―ダむ法により
厚み250Όのシヌトを成圢した。良奜なシヌト
が成圢できた詊料に぀いおはJIS  6714に基
く透明性党光線透過率及び曇䟡の評䟡及び
柔軟性の目安ずしおの匕匵匟性率の枬定を行な
぀た。良奜なシヌトが埗られなか぀た詊料に぀
いおは匕匵匟性率の枬定は行なわず、目芖刀定
により透明性の評䟡を行な぀た。これらの結果
を衚に䜵せお瀺した。 又、良奜に成圢されたシヌトに぀いおはサン
シダむンり゚ザオメヌタヌによる3000時間の加
速曝露詊隓を行ない、その前埌に行な぀た匕匵
砎断䌞床の枬定から砎断䌞床保持率を求め耐候
性の目安ずした。これらの枬定結果を衚に䜵
せお瀺した。又、倚局構造重合䜓〔−(1)〕〜
〔−(5)〕、〔−(1)〕〜〔−(5)〕及び比范重
合䜓(1)〜(4)を衚に瀺した割合でブレンドし、
同様の評䟡を行な぀た。評䟡結果を衚に瀺し
た。本発明品はいずれも透明性、耐候性に優
れ、しかも柔軟性ず加工性ずを適床に兌備しお
いる。なお衚䞭の比(1)〜比(4)は比范重合䜓(1)
〜比范重合䜓(4)を瀺す。
[Table] (3) Preparation and evaluation of resin composition Multilayer structure polymers [-(1)] and [-(1)] were blended in the proportions shown in Table 3, and 2 parts of ultraviolet absorber (trade name Tinuvin-P (manufactured by Ciba Geigy) was added, mixed well, and pelletized using an extruder. After drying the obtained pellets at 70°C for a day and night, a molding processability test was conducted using an injection molding machine. The results are also shown in Table 3. The criteria for determining moldability are as follows. <Moldability evaluation criteria> 〇: Can be easily molded with an injection molding machine. △: Barely possible to mold with an injection molding machine. ×: Difficult to mold with an injection molding machine. Further, the same pellets were molded into a sheet with a thickness of 250 ÎŒm by the T-die method. For the samples that could be molded into good sheets, the transparency (total light transmittance and haze value) was evaluated based on JIS K 6714, and the tensile modulus was measured as a measure of flexibility. For samples from which a good sheet could not be obtained, the tensile modulus was not measured, and the transparency was evaluated by visual judgment. These results are also shown in Table 3. In addition, for well-formed sheets, a 3,000-hour accelerated exposure test is conducted using a Sunshine Weather-Ometer, and the tensile elongation at break is measured before and after the test to determine the elongation retention at break, which is a guideline for weather resistance. And so. These measurement results are also shown in Table 3. Also, multilayer structure polymer [-(1)] ~
[-(5)], [-(1)] to [-(5)] and comparative polymers (1) to (4) were blended in the proportions shown in Table 4,
A similar evaluation was conducted. The evaluation results are shown in Table 4. All of the products of the present invention have excellent transparency and weather resistance, and have appropriate flexibility and workability. Note that ratios (1) to (4) in Table 4 are for comparative polymer (1)
~ Comparative polymer (4) is shown.

【衚】【table】

【衚】 実斜䟋  実斜䟋で合成した倚局構造重合䜓〔−(1)〕
70郚ず倚局構造重合䜓〔−(1)〕30郚ずからなる
暹脂組成物本発明䟋(2)50郚をMMAMA共
重合䜓MMAMA99重量比、ηSP
0.600.10濃床溶液にお枬定50郚ず
ヘンシ゚ルミキサヌを甚いおブレンドした埌、抌
出機によりペレツト化した。 埗られたペレツトを80℃で䞀昌倜也燥し、―
ダむを甚いお0.5mm厚のシヌトを成圢した。この
ブレンドポリマヌのシヌト成圢性は良奜であり、
透明性、光沢等に優れたシヌトが埗られた。曎に
同じペレツトを甚いお射出成圢を甚ないmm厚の
射出成圢板を埗た。埗られた成圢板に぀いお党光
線透過率、ダむンシナタツト衝撃匷床を枬定し
た。党透線透明率は93、ダむンシナタツト衝撃
匷床は35Kg・cmcm2ず共に極めお良奜な倀を瀺し
た。 又、䞊蚘成圢板に぀いおサンシダむンり゚ザオ
メヌタヌにより3000時間の加速曝露詊隓を行な
い、光沢床保持率を枬定した。光沢床保持率は94
ず極めお高く本発明品は耐候性にも優れおいる
こずを瀺した。 実斜䟋  実斜䟋で合成した倚局構造重合䜓〔−(1)〕
60郚、倚局構造重合䜓〔−(1)〕30郚ずポリフツ
化ビニリデン商品名カむナヌ500、ペンりオル
ト瀟補10郚をヘンシ゚ルミキサヌでブレンド
埌、スクリナヌ型抌出機によりペレツト化した。
埗られたペレツトをむンフレヌシペン法により厚
さ80Όのフむルムに成圢した。 埗られたフむルムに぀いお匕匵匷䌞床JIS 
170−に準拠、曇䟡ASTM− 1003−
61に準拠を枬定した。匕匵匟性率×103Kg
cm2、砎断匷床340Kgcm2、砎断䌞床200、曇䟡
4.8ずいずれも極めお良奜な倀を瀺した。 たた埗られたフむルムを亜鉛メツキ0.5mm冷延
鋌板に接着剀を甚いお貌り合わせこの貌合せ詊料
に぀いおデナポン衝撃詊隓先端1/2むンチ、
荷重Kg、萜䞋高さ50cm、枩床20℃にお実斜を
行な぀た。衝撃郚分は党く癜化を呈さずクラツク
等の発生も認められなか぀た。 曎に䞊蚘フむルムをサンシダむンり゚ザオメヌ
タにより3000時間の加速曝露詊隓を行ない、曝露
埌の詊料に぀いお匕匵匷䌞床を枬定した。曝露埌
の詊料の匕匵䌞床保持率未曝露品の䌞床を100
ずしたずきの倀耐候性の尺床ずなるは90
であり、本発明品は耐候性にも優れおいるこずを
瀺した。
[Table] Example 2 Multilayer structure polymer synthesized in Example 1 [-(1)]
50 parts of a resin composition (inventive example (2)) consisting of 70 parts of multilayer structure polymer [-(1)] and 30 parts of multilayer structure polymer [-(1)] were mixed with MMA/MA copolymer (MMA/MA=99/1 weight ratio, ηSP). /C
= 0.60 (measured as a solution with a concentration of 0.10 g/d)) was blended with 50 parts using a Henschel mixer, and then pelletized using an extruder. The obtained pellets were dried at 80℃ for a day and night, and T-
A 0.5 mm thick sheet was formed using a die. This blended polymer has good sheet formability;
A sheet with excellent transparency, gloss, etc. was obtained. Furthermore, using the same pellets, an injection molded plate with a thickness of 2 mm was obtained without injection molding. The total light transmittance and in-situ impact strength of the obtained molded plate were measured. The total wire transparency was 93%, and the in-situ impact strength was 35 kg·cm/cm 2 , both showing extremely good values. Further, the above-mentioned molded plate was subjected to an accelerated exposure test for 3000 hours using a Sunshine Weather-Ometer, and the gloss retention rate was measured. Gloss retention rate is 94
%, indicating that the product of the present invention also has excellent weather resistance. Example 3 Multilayer structure polymer synthesized in Example 1 [-(1)]
60 parts of the multilayer structure polymer [-(1)] and 10 parts of polyvinylidene fluoride (trade name Kynar 500, manufactured by Pennwalt) were blended using a Henschel mixer, and then pelletized using a screw extruder.
The obtained pellets were formed into a film with a thickness of 80 ÎŒm by the inflation method. The tensile strength and elongation (JIS Z
170-2), haze value (ASTM-D 1003-
61) was measured. Tensile modulus 8×10 3 Kg/
cm 2 , breaking strength 340Kg/cm 2 , breaking elongation 200%, haze value
Both values showed extremely good values of 4.8%. In addition, the obtained film was bonded to a galvanized 0.5 mm cold-rolled steel plate using an adhesive, and this bonded sample was subjected to a Dupont impact test (tip R = 1/2 inch,
The test was carried out at a load of 1 kg, a drop height of 50 cm, and a temperature of 20°C). The impacted area did not show any whitening and no cracks were observed. Further, the film was subjected to an accelerated exposure test for 3000 hours using a Sunshine Weatherometer, and the tensile strength and elongation of the exposed sample was measured. Tensile elongation retention rate of sample after exposure (elongation of unexposed product is 100
The value when expressed as %; a measure of weather resistance) is 90%
This showed that the product of the present invention also has excellent weather resistance.

Claims (1)

【特蚱請求の範囲】  䞋蚘倚局構造重合䜓〔〕の少なくずも䞀皮
〜99重量郚ず䞋蚘倚局構造重合䜓〔〕の少な
くずも皮99〜重量郚ずからなる熱可塑性暹脂
組成物。 倚局構造重合䜓〔〕 80〜100重量郚の炭玠数〜のアルキル基を
有するアルキルアクリレヌト又は炭玠数〜の
アルキル基を有するアルキルメタクリレヌト
A1、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓A2、 〜10重量郚の倚官胜性単量䜓A3、 A1〜A3の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、倚
局構造重合䜓〔〕䞭に占める割合が〜35重量
で最内局重合䜓(A)、 80〜100重量郚の炭玠数〜のアルキル基を
有するアルキルアクリレヌトB1、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓B2、 〜10重量郚の倚官胜性単量䜓B3、 B1〜B3の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、倚
局構造重合䜓〔〕䞭に占める割合が10〜40重量
である架橋匟性重合䜓(B)、 51〜100重量郚の炭玠数〜のアルキルメタ
クリレヌトC1、 〜49重量郚の共重合可胜な二重結合を有する
単量䜓C2 の組成からなるTgが少なくずも60℃であり、倚
局構造重合䜓〔〕䞭に占める割合が50〜80重量
である最倖局重合䜓(C)、 を基本構造単䜍ずし、重合䜓(B)局ず重合䜓(C)局間
に䞭間局(D)ずしお 10〜90重量郚の炭玠数〜のアルキル基を有
するアルキルアクリレヌトD1、 90〜10重量郚の炭玠数〜のアルキル基を有
するアルキルメタクリレヌトD2、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓D3、 〜10重量郚の倚官胜性単量䜓D4、 D1〜D4の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、䞭
é–“å±€(D)のアルキルアクリレヌト量が架橋匟性重合
䜓(B)から最倖局重合䜓(C)に向぀お単調枛少するよ
うな䞭間局(D)を少なくずも䞀局有し、か぀圓該倚
局構造重合䜓のゲル含有量が少なくずも50であ
る倚局構造重合䜓〔〕。 倚局構造重合䜓〔〕 80〜100重量郚の炭玠数〜のアルキル基を
有するアルキルアクリレヌト又は炭玠数〜の
アルキルを有するアルキルメタクリレヌト
A1′、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓A2′、 〜10重量郚の倚官胜性単量䜓A3′、 A1′〜A3′の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、倚
局構造重合䜓〔〕䞭に占める割合が〜40重量
である最内局重合䜓A′、 80〜100重量郚の炭玠数〜のアルキル基を
有するアルキルアクリレヌトB1′、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓B2′、 〜10重量郚の倚官胜性単量䜓B3′、 B1′〜B3′の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、倚
局構造重合䜓〔〕䞭に占める割合が30〜80重量
である架橋匟性重合䜓B′、 51〜100重量郚の炭玠数〜のアルキルメタ
クリレヌトC1′、 〜49重量郚の共重合可胜な二重結合を有する
単量䜓C2′ の組成からなるTgが少なくずも60℃であり、倚
局構造重合䜓〔〕䞭に占める割合が10重量以
侊50重量未満である最倖局重合䜓C′を基本
構造単䜍ずし、重合䜓B′局ず重合䜓C′局
間に䞭間局D′ずしお 10〜90重量郚の炭玠数〜のアルキル基を有
するアルキルアクリレヌトD1′、 90〜10重量郚の炭玠数〜のアルキル基を有
するアルキルメタクリレヌトD2′、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓D3′、 〜10重量郚の倚官胜性単量䜓D4′、 D1′〜D4′の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、䞭
間局D′のアルキルアクリレヌト量が架橋匟
性重合䜓B′から最倖局重合䜓C′に向぀お
単調枛少するような䞭間局D′を少なくずも
䞀局有する倚局構造重合䜓〔〕。  䞋蚘倚局構造重合䜓〔〕の少なくずも䞀皮
〜99重量郚ず䞋蚘倚局構造重合䜓〔〕の少な
くずも䞀皮99〜重量郚ずからなる暹脂配合物
〜99重量郚に䞋蚘(i)又は(ii)の矀から遞ばれた少な
くずも䞀皮の重合䜓、又は(i)及び(ii)の倫々の矀か
ら遞ばれた少なくずも䞀皮の重合䜓の混合物を99
〜重量郚配合しおなる熱可塑性暹脂組成物。 倚局構造重合䜓〔〕 80〜100重量郚の炭玠数〜のアルキル基を
有するアルキルアクリレヌト又は炭玠数〜の
アルキル基を有するアルキルメタクリレヌト
A1、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓A2、 〜10重量郚の倚官胜性単量䜓A3、 A1〜A3の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、倚
局構造重合䜓〔〕䞭に占める割合が〜35重量
で最内局重合䜓(A)、 80〜100重量郚の炭玠数〜のアルキル基を
有するアルキルアクリレヌトB1、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓B2、 〜10重量郚の倚官胜性単量䜓B3、 B1〜B3の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、倚
局構造重合䜓〔〕䞭に占める割合が10〜40重量
である架橋匟性重合䜓(B)、 51〜100重量郚の炭玠数〜のアルキルメタ
クリレヌトC1、 〜49重量郚の共重合可胜な二重結合を有する
単量䜓C2 の組成からなるTgが少なくずも60℃であり、倚
局構造重合䜓〔〕䞭に占める割合が50〜80重量
である最倖局重合䜓(C)、 を基本構造単䜍ずし、重合䜓(B)局ず重合䜓(C)局間
に䞭間局(D)ずしお 10〜90重量郚の炭玠数〜のアルキル基を有
するアルキルアクリレヌトD1、 90〜10重量郚の炭玠数〜のアルキル基を有
するアルキルメタクリレヌトD2、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓D3、 〜10重量郚の倚官胜性単量䜓D4、 D1〜D4の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、䞭
é–“å±€(D)のアルキルアクリレヌト量が架橋匟性重合
䜓(B)から最倖局重合䜓(C)に向぀お単調枛少するよ
うな䞭間局(D)を少なくずも䞀局有し、か぀圓該倚
局構造重合䜓のゲル含有量が少なくずも50であ
る倚局構造重合䜓〔〕。 倚局構造重合䜓〔〕 80〜100重量郚の炭玠数〜のアルキル基を
有するアルキルアクリレヌト又は炭玠数〜の
アルキル基を有するアルキルメタクリレヌト
A1′、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓A2′、 〜10重量郚の倚官胜性単量䜓A3′、 A1′〜A3′の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、倚
局構造重合䜓〔〕䞭に占める割合が〜40重量
である最内局重合䜓A′、 80〜100重量郚の炭玠数〜のアルキル基を
有するアルキルアクリレヌトB1′、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓B2′、 〜10重量郚の倚官胜性単量䜓B3′、 B1′〜B3′の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、倚
局構造重合䜓〔〕䞭に占める割合が30〜80重量
である架橋匟性重合䜓B′、 51〜100重量郚の炭玠数〜のアルキルメタ
クリレヌトC1′、 〜49重量郚の共重合可胜な二重結合を有する
単量䜓C2′ の組成からなるTgが少なくずも60℃であり、倚
局構造重合䜓〔〕䞭に占める割合が10重量以
侊50重量未満である最倖局重合䜓C′を基本
構造単䜍ずし、重合䜓B′局ず重合䜓C′局
間に䞭間局D′ずしお 10〜90重量郚の炭玠数〜のアルキル基を有
するアルキルアクリレヌトD1′、 90〜10重量郚の炭玠数〜のアルキル基を有
するアルキルメタクリレヌトD2′、 〜20重量郚の共重合可胜な二重結合を有する
単量䜓D3′、 〜10重量郚の倚官胜性単量䜓D4′、 D1′〜D4′の合蚈量100重量郚に察し0.1
〜重量郚のグラフト亀叉剀の組成からなり、䞭
間局D′のアルキルアクリレヌト量が架橋匟
性重合䜓B′から最倖局重合䜓C′に向぀お
単調枛少するような䞭間局D′を少なくずも
䞀局有する倚局構造重合䜓〔〕。 重合䜓(i) 䞋蚘䞀般匏(a)、(b)又は(c)を有する単量䜓の単独
重合䜓もしくはこれら単量䜓の二皮以䞊からなる
共重合䜓。 CH2CXY 

(a) 䜆し匏䞭、は、Cl、、Br、CH3、
COOH、COOCH3、CN、OCOCH3、C6H5、ア
ルコキシ基、OCCH3、SO3Hのいずれかである。 CF2CFZ 

(b) 䜆し匏䞭は、、Cl、CF3のいずれかであ
る。 䜆し匏䞭はフロロアルキル基である。 重合䜓(ii) ポリカヌボネヌト、熱可塑性ポリ゚ステル、ポ
リアミド。
[Scope of Claims] 1. A thermoplastic resin composition comprising 1 to 99 parts by weight of at least one of the following multilayer structure polymers [] and 99 to 1 part by weight of at least one of the following multilayer structure polymers []. Multilayer structure polymer []: 80 to 100 parts by weight of an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms or an alkyl methacrylate having an alkyl group having 1 to 4 carbon atoms (A 1 ), 0 to 20 parts by weight of a copolymer A monomer having a polymerizable double bond (A 2 ), 0 to 10 parts by weight of a polyfunctional monomer (A 3 ), based on 100 parts by weight of the total amount of (A 1 ) to (A 3 ) 0.1
The composition consists of ~5 parts by weight of a graft cross-agent, which accounts for 5-35% by weight of the innermost layer polymer (A) in the multilayer structure polymer, and 80-100 parts by weight of a carbon number of 1-8. Alkyl acrylate having an alkyl group (B 1 ), 0 to 20 parts by weight of a monomer having a copolymerizable double bond (B 2 ), 0 to 10 parts by weight of a polyfunctional monomer (B 3 ) , 0.1 per 100 parts by weight of the total amount of (B 1 ) to (B 3 )
A crosslinked elastic polymer (B) consisting of ~5 parts by weight of a grafting agent and having a proportion of 10 to 40% by weight in the multilayer polymer [], 51 to 100 parts by weight of a carbon number of 1 to 4 alkyl methacrylate (C 1 ), 0 to 49 parts by weight of a monomer (C 2 ) having a copolymerizable double bond, and has a Tg of at least 60°C, The outermost layer polymer (C), which accounts for 50 to 80% by weight, is the basic structural unit, and 10 to 90 parts by weight of the intermediate layer (D) is formed between the polymer (B) layer and the polymer (C) layer. Alkyl acrylate (D 1 ) having an alkyl group having 1 to 8 carbon atoms, 90 to 10 parts by weight of an alkyl methacrylate (D 2 ) having an alkyl group having 1 to 4 carbon atoms, 0 to 20 parts by weight of a copolymerizable Monomer having a double bond (D 3 ), 0 to 10 parts by weight of polyfunctional monomer (D 4 ), and 0.1 to 100 parts by weight of the total amount of (D 1 ) to (D 4 ).
An intermediate layer (D) consisting of a composition of ~5 parts by weight of a graft cross-agent, in which the amount of alkyl acrylate in the intermediate layer (D) monotonically decreases from the crosslinked elastic polymer (B) to the outermost layer polymer (C). ), and the gel content of the multilayer polymer is at least 50%. Multilayer structure polymer []: 80 to 100 parts by weight of alkyl acrylate having an alkyl group having 1 to 8 carbon atoms or alkyl methacrylate having an alkyl group having 1 to 4 carbon atoms (A 1 '), 0 to 20 parts by weight of co-monomer. Monomer having a polymerizable double bond (A 2 ′), 0 to 10 parts by weight of a polyfunctional monomer (A 3 ′), total amount of (A 1 ′) to (A 3 ′) 100 0.1 per part by weight
Innermost layer polymer (A') consisting of ~5 parts by weight of a graft cross-agent and occupying a proportion of 5 to 40% by weight in the multilayer structure polymer [], 80 to 100 parts by weight of a carbon number of 1 to 100%; Alkyl acrylate (B 1 ′) having 8 alkyl groups, 0 to 20 parts by weight of a monomer having a copolymerizable double bond (B 2 ′), 0 to 10 parts by weight of a polyfunctional monomer 0.1 per 100 parts by weight of the total amount of (B 3 ′), (B 1 ′) to (B 3 ′)
A crosslinked elastic polymer (B') consisting of ~5 parts by weight of a grafting agent and having a proportion of 30 to 80% by weight in the multilayer polymer [], 51 to 100 parts by weight of a carbon number of 1 to A multilayered polymer [ ] The outermost layer polymer (C′), which accounts for 10% by weight or more and less than 50% by weight, is the basic structural unit, and an intermediate layer (D) is formed between the polymer (B′) layer and the polymer (C′) layer. 10 to 90 parts by weight of an alkyl acrylate having an alkyl group of 1 to 8 carbon atoms (D 1 ′), 90 to 10 parts by weight of an alkyl methacrylate having an alkyl group of 1 to 4 carbon atoms (D 2 ′) , 0 to 20 parts by weight of a monomer having a copolymerizable double bond (D 3 ′), 0 to 10 parts by weight of a polyfunctional monomer (D 4 ′), (D 1 ′) to ( D 4 ′) 0.1 per 100 parts by weight
The intermediate layer (D') has a composition of ~5 parts by weight of a grafting agent, and the amount of alkyl acrylate in the intermediate layer (D') decreases monotonically from the crosslinked elastic polymer (B') to the outermost layer polymer (C'). A multilayer structure polymer having at least one layer (D'). 2 Resin blend 1 consisting of 1 to 99 parts by weight of at least one of the following multilayer structure polymers [] and 99 to 1 parts by weight of at least one of the following multilayer structure polymers []
~99 parts by weight of at least one polymer selected from the following groups (i) or (ii), or a mixture of at least one polymer selected from each of the groups (i) and (ii).
A thermoplastic resin composition containing ~1 part by weight. Multilayer structure polymer []: 80 to 100 parts by weight of an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms or an alkyl methacrylate having an alkyl group having 1 to 4 carbon atoms (A 1 ), 0 to 20 parts by weight of a copolymer A monomer having a polymerizable double bond (A 2 ), 0 to 10 parts by weight of a polyfunctional monomer (A 3 ), based on 100 parts by weight of the total amount of (A 1 ) to (A 3 ) 0.1
The composition consists of ~5 parts by weight of a graft cross-agent, which accounts for 5-35% by weight of the innermost layer polymer (A) in the multilayer structure polymer, and 80-100 parts by weight of a carbon number of 1-8. Alkyl acrylate having an alkyl group (B 1 ), 0 to 20 parts by weight of a monomer having a copolymerizable double bond (B 2 ), 0 to 10 parts by weight of a polyfunctional monomer (B 3 ) , 0.1 per 100 parts by weight of the total amount of (B 1 ) to (B 3 )
A crosslinked elastic polymer (B) consisting of ~5 parts by weight of a grafting agent and having a proportion of 10 to 40% by weight in the multilayer polymer [], 51 to 100 parts by weight of a carbon number of 1 to 4 alkyl methacrylate (C 1 ), 0 to 49 parts by weight of a monomer (C 2 ) having a copolymerizable double bond, and has a Tg of at least 60°C, The outermost layer polymer (C), which accounts for 50 to 80% by weight, is the basic structural unit, and 10 to 90 parts by weight of the intermediate layer (D) is formed between the polymer (B) layer and the polymer (C) layer. Alkyl acrylate (D 1 ) having an alkyl group having 1 to 8 carbon atoms, 90 to 10 parts by weight of an alkyl methacrylate (D 2 ) having an alkyl group having 1 to 4 carbon atoms, 0 to 20 parts by weight of a copolymerizable Monomer having a double bond (D 3 ), 0 to 10 parts by weight of polyfunctional monomer (D 4 ), and 0.1 to 100 parts by weight of the total amount of (D 1 ) to (D 4 ).
An intermediate layer (D) consisting of a composition of ~5 parts by weight of a graft cross-agent, in which the amount of alkyl acrylate in the intermediate layer (D) monotonically decreases from the crosslinked elastic polymer (B) to the outermost layer polymer (C). ), and the gel content of the multilayer polymer is at least 50%. Multilayer structure polymer []: 80 to 100 parts by weight of alkyl acrylate having an alkyl group having 1 to 8 carbon atoms or alkyl methacrylate having an alkyl group having 1 to 4 carbon atoms (A 1 '), 0 to 20 parts by weight Monomer having a copolymerizable double bond (A 2 ′), 0 to 10 parts by weight of polyfunctional monomer (A 3 ′), total amount of (A 1 ′) to (A 3 ′) 0.1 per 100 parts by weight
Innermost layer polymer (A') consisting of ~5 parts by weight of a graft cross-agent and occupying a proportion of 5 to 40% by weight in the multilayer structure polymer [], 80 to 100 parts by weight of a carbon number of 1 to 100%; Alkyl acrylate (B 1 ′) having 8 alkyl groups, 0 to 20 parts by weight of a monomer having a copolymerizable double bond (B 2 ′), 0 to 10 parts by weight of a polyfunctional monomer 0.1 per 100 parts by weight of the total amount of (B 3 ′), (B 1 ′) to (B 3 ′)
A crosslinked elastic polymer (B') consisting of ~5 parts by weight of a grafting agent and having a proportion of 30 to 80% by weight in the multilayer polymer [], 51 to 100 parts by weight of a carbon number of 1 to A multilayered polymer [ ] The outermost layer polymer (C′), which accounts for 10% by weight or more and less than 50% by weight, is the basic structural unit, and an intermediate layer (D) is formed between the polymer (B′) layer and the polymer (C′) layer. 10 to 90 parts by weight of an alkyl acrylate having an alkyl group of 1 to 8 carbon atoms (D 1 ′), 90 to 10 parts by weight of an alkyl methacrylate having an alkyl group of 1 to 4 carbon atoms (D 2 ′) , 0 to 20 parts by weight of a monomer having a copolymerizable double bond (D 3 ′), 0 to 10 parts by weight of a polyfunctional monomer (D 4 ′), (D 1 ′) to ( D 4 ′) 0.1 per 100 parts by weight
The intermediate layer (D') has a composition of ~5 parts by weight of a grafting agent, and the amount of alkyl acrylate in the intermediate layer (D') decreases monotonically from the crosslinked elastic polymer (B') to the outermost layer polymer (C'). A multilayer structure polymer having at least one layer (D'). Polymer (i): A homopolymer of a monomer having the following general formula (a), (b) or (c) or a copolymer consisting of two or more of these monomers. CH 2 = CXY ... (a) However, in the formula, X and Y are H, Cl, F, Br, CH 3 ,
It is either COOH, COOCH 3 , CN, OCOCH 3 , C 6 H 5 , an alkoxy group, OCCH 3 or SO 3 H. CF 2 =CFZ...(b) However, Z in the formula is either H, F, Cl, or CF 3 . However, in the formula, R is a fluoroalkyl group. Polymer (ii): polycarbonate, thermoplastic polyester, polyamide.
JP9820582A 1982-06-07 1982-06-08 Thermoplastic resin composition Granted JPS58215444A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP9820582A JPS58215444A (en) 1982-06-08 1982-06-08 Thermoplastic resin composition
AU15319/83A AU546248B2 (en) 1982-06-07 1983-06-02 Acrylic graft copolymer blends
CA000429512A CA1196128A (en) 1982-06-07 1983-06-02 Thermoplastic acrylic resin composition
US06/500,571 US4452941A (en) 1982-06-07 1983-06-02 Thermoplastic acrylic resin composition
DE8383105554T DE3368663D1 (en) 1982-06-07 1983-06-06 Thermoplastic acrylic resin composition
EP83105554A EP0096412B1 (en) 1982-06-07 1983-06-06 Thermoplastic acrylic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9820582A JPS58215444A (en) 1982-06-08 1982-06-08 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS58215444A JPS58215444A (en) 1983-12-14
JPS6320459B2 true JPS6320459B2 (en) 1988-04-27

Family

ID=14213488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9820582A Granted JPS58215444A (en) 1982-06-07 1982-06-08 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS58215444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165526A1 (en) 2011-05-31 2012-12-06 䞉菱レむペン株匏䌚瀟 Acrylic resin composition, molded object thereof, process for producing film, and acrylic resin film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074605A1 (en) 2009-12-15 2011-06-23 䞉菱レむペン株匏䌚瀟 Method for imparting embossed shapes to acrylic resin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358554A (en) * 1976-11-05 1978-05-26 Mitsubishi Rayon Co Ltd Thermoplastic resin composition
JPS5722064A (en) * 1980-07-15 1982-02-04 Canon Inc Ink jet recording device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358554A (en) * 1976-11-05 1978-05-26 Mitsubishi Rayon Co Ltd Thermoplastic resin composition
JPS5722064A (en) * 1980-07-15 1982-02-04 Canon Inc Ink jet recording device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165526A1 (en) 2011-05-31 2012-12-06 䞉菱レむペン株匏䌚瀟 Acrylic resin composition, molded object thereof, process for producing film, and acrylic resin film

Also Published As

Publication number Publication date
JPS58215444A (en) 1983-12-14

Similar Documents

Publication Publication Date Title
US4508875A (en) Multi-layer structure polymer composition
JPS638983B2 (en)
JPS581694B2 (en) thermoplastic resin composition
JPS62230841A (en) Impact-resistant methacrylate resin composition
JPH0315650B2 (en)
JPS59122513A (en) Polymer having multi-layered structure
JPS6219309B2 (en)
JPS6320459B2 (en)
JPH10101748A (en) Acrylic resin film
JPH03288640A (en) Laminated film
JP2958177B2 (en) Acrylic resin composition
JPS6334898B2 (en)
JPS649195B2 (en)
JPH08319326A (en) Multistage polymer with improved weatherability
JPS58222138A (en) Thermoplastic resin composition
JPH0422937B2 (en)
JPH0242382B2 (en)
EP0210450B1 (en) Coating film for a high luminance reflector
JP3422431B2 (en) Acrylic thermoplastic resin composition
JPS59127754A (en) Laminated structure having weatherproofing
JPS649194B2 (en)
JPH03163152A (en) Multilayered polymer resin composition
JPH0314069B2 (en)
JPS59152856A (en) Multilayer structure polymer
JPS6410015B2 (en)