JPS6320433A - Production of high strength sintered material - Google Patents

Production of high strength sintered material

Info

Publication number
JPS6320433A
JPS6320433A JP16616186A JP16616186A JPS6320433A JP S6320433 A JPS6320433 A JP S6320433A JP 16616186 A JP16616186 A JP 16616186A JP 16616186 A JP16616186 A JP 16616186A JP S6320433 A JPS6320433 A JP S6320433A
Authority
JP
Japan
Prior art keywords
powder
sintering
sintered
sintered material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16616186A
Other languages
Japanese (ja)
Inventor
Yoshitaka Takahashi
義孝 高橋
Akira Manabe
明 真鍋
Shuntaro Sudo
俊太郎 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16616186A priority Critical patent/JPS6320433A/en
Publication of JPS6320433A publication Critical patent/JPS6320433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a high strength sintered material without carrying out sintering at a high temp. or using graphite powder by mixing Fe or Fe alloy powder with sintering activating powder, compacting the mixture, sintering it and carburizing or carbonitriding the resulting sintered material. CONSTITUTION:Fe or Fe alloy powder is mixed with 0.5-10wt% sintering activating powder prepd. by adding 0.5-7% C to powder having the same composition as the Fe or Fe alloy powder or similar in composition to the Fe or Fe alloy powder. The powdery mixture is compacted and sintered and the resulting sintered material is carburized or carbonitrided, hardened and tempered. The activating action of the sintering activating powder is completely demonstrated and the matrix of the sintered material is strengthened by the carburization or carbonitriding, so a high strength sintered material can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高い強度を有する鉄系焼結材料の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a ferrous sintered material having high strength.

(従来の技術) 鉄系焼結材料は最近では強度を必要とする部品にも採用
されつつあり、鉄系焼結材料の強度向上は炭素の添加に
よるのが効率的かつ容易であり、コスト面でも合金元素
の添加による場合と比較して有利であるため一般に多く
用いられている◇ (発明が解決しようとする問題点) しかしfP同一炭素量におけるFe−C系焼結材料と炭
素鋼とを比較すると、Fe−C系焼結材料の強度が劣っ
ている。この原因としては、焼結材料が気孔を通常10
〜20%含んでいるからであり、鍛造等の外力によシ気
孔量を1%以下に低下させても、炭素鋼と同等の強度を
得るのは難しい。これは、焼結材料の強度が気孔量のほ
かにマトリックス強度およびネック部強度に大きく左右
されるためであり、マ) IJラックス度が炭素鋼と同
一組成とした場合、焼結材料の強度は炭素鋼と同レベル
になると考えられることにより、ネックの強度が十分で
ないことによると考えられる。
(Conventional technology) Iron-based sintered materials have recently been adopted for parts that require strength, and adding carbon to improve the strength of iron-based sintered materials is efficient and easy, and is cost-effective. However, it is commonly used because it is advantageous compared to the addition of alloying elements. (Problem to be solved by the invention) In comparison, the strength of the Fe-C based sintered material is inferior. The reason for this is that the sintered material usually has 10 pores.
This is because it contains ~20% of carbon steel, and even if the pore volume is reduced to 1% or less by external force such as forging, it is difficult to obtain a strength equivalent to that of carbon steel. This is because the strength of the sintered material is greatly influenced by the matrix strength and neck strength in addition to the pore content. This is thought to be due to the fact that the strength of the neck is not sufficient, as it is thought to be on the same level as carbon steel.

他方、特開昭59−38351号公報記載の技術では、
焼結材料の強度を確保するため、低合金鋼粉末を原料と
して真空または減圧等雰井気のもとて特殊高温焼結を行
なっているoしかし、例えば減圧雰囲気炉はメッシェベ
ルト炉に比べて生産性が悪・く設備費が高いはかシか、
  1200℃を越える高温での焼結が必要でありラン
ニングコストも嵩むこととなる。
On the other hand, in the technique described in Japanese Patent Application Laid-open No. 59-38351,
In order to ensure the strength of the sintered material, special high-temperature sintering is performed using low-alloy steel powder as a raw material in a vacuum or reduced pressure atmosphere. Is it bad performance and high equipment costs?
Sintering at a high temperature of over 1200° C. is required, which increases running costs.

上記問題点を解決するために1本発明者らは鉄基合金粉
末に焼結活性化粉末および黒鉛粉末を添加することによ
り、高温焼結を行なわずに高強度化をはかった焼結材料
の製造方法(%願昭61−18642号)を開発したが
、これは黒鉛粉末を同時に添加しているため、この黒鉛
粉末によシ焼結活性化粉末が本来もっている活性化作用
t−100%発揮することができていなかった。
In order to solve the above problems, the present inventors added sintering activated powder and graphite powder to iron-based alloy powder to create a sintered material with high strength without high-temperature sintering. We have developed a manufacturing method (%Gan Sho 61-18642), but since graphite powder is added at the same time, this graphite powder eliminates the activation effect that the sintered activated powder originally has by t-100%. I wasn't able to show my full potential.

本発明は上記の問題点を解決するためのものであり、通
常マトリックス強化のために添加される黒鉛粉末を使用
せずに、高い強度を有する焼結材料の製造方法を提供す
ることを目的とするO (問題点を解決するための手段) 本発明は、鉄または鉄基合金粉末圧、該鉄基台金粉末と
同一または近似した組成に炭素α5〜7重:tciIを
加えてなる焼結活性化粉末α5〜10重量L4t−添加
混合し、この混合粉末を成形後、焼結し、浸炭焼入焼戻
し処理または浸炭浸窒焼入焼戻し処理を施すことを特徴
とする・本発明において使用するペース粉末である鉄ま
たは鉄基合金粉末は、主に市販の5AE411:10系
または5AEJ600系粉末であるが、これらに限定さ
れるものではない。上記粉末は通常α1〜α5重量嗟(
以下単にチ)の酸素を含有する。
The present invention is intended to solve the above problems, and aims to provide a method for producing a sintered material with high strength without using graphite powder, which is usually added to strengthen the matrix. (Means for Solving the Problems) The present invention provides a sintered product comprising iron or iron-based alloy powder, a composition of which is the same as or similar to that of the iron-based metal powder, and tciI (5 to 7 carbon atoms) added thereto. Activated powder α5 to 10 weight L4t is added and mixed, and this mixed powder is molded, sintered, and subjected to carburizing, quenching, and tempering treatment or carbonitriding, quenching, and tempering treatment.Used in the present invention. The iron or iron-based alloy powder that is the pace powder is mainly commercially available 5AE411:10 series or 5AEJ600 series powder, but is not limited to these. The above powder usually has a weight of α1 to α5 (
Hereinafter, it will simply contain (i) oxygen.

本発明者らは、ペース粉末と9わけ低合金鋼粉末に、該
粉末中の酸化物を還元するのに十分な量の炭素を含む焼
結活性化粉末を添加することによシ、通常焼結に用いら
れる分解アンモニアガス、N、ペースガスなどの還元性
ガスを使い、1200℃以上の高温焼結を必要とせずに
上記粉末の焼結を促進・活性化しうろことを見出した。
The inventors have developed a conventional sintering method by adding to the pace powder and 90% low alloy steel powder a sinter-activated powder containing sufficient carbon to reduce the oxides in the powder. We have discovered that the sintering of the above powder can be promoted and activated without requiring high-temperature sintering of 1200° C. or higher by using a reducing gas such as decomposed ammonia gas, N, or pace gas used for sintering.

焼結活性化粉末中の炭素以外の組成については、活性化
には直接的な関与はないが、焼結後においてペース粉末
と同等の組織および強度を与えるためには、ペース粉末
の組成と近似させることか望ましく、このことによりペ
ース粉末組成に合わせた焼結活性化粉末を用いるのが良
い。
The composition other than carbon in the sintered activated powder is not directly involved in activation, but in order to give the same structure and strength as the paste powder after sintering, it is necessary to approximate the composition of the paste powder. Therefore, it is preferable to use a sintering activated powder that matches the composition of the paste powder.

焼結活性化粉末の粉末粒度は添加される重量係が一定で
ある場合、よシ細粒のものほどペース粉末との接触箇所
が増加し、活性化効率が良くなる。また、粗粒のものほ
ど圧縮性に悪影響を及ぼす割合が高くなるため、−10
0メツシ為の粉末を使うことが好まし7い・ 本発明に係る焼結活性化粉末は、製造法によらず有効に
活性作用をなすもので、例えば水アトマイズ法、ガスア
トマイズ法、粉砕法、あるいは酸化物還元法などによっ
て製造される◇焼結活性化粉末は、基本組成として炭素
を含み、これにペース粉末の組成と近似する組成となる
よう1通常Cr、 Mn、 Mo、 Ni、 Cu、 
Co、 8i、P。
When the particle size of the sintered activation powder is constant, the finer the particles, the more contact points with the pace powder and the better the activation efficiency. In addition, the coarser the grain, the higher the rate of negative impact on compressibility, so -10
It is preferable to use a powder for zero mesh. The sintered activated powder according to the present invention has an effective activation effect regardless of the manufacturing method, such as water atomization method, gas atomization method, pulverization method, Alternatively, the sintered activated powder, which is produced by an oxide reduction method, contains carbon as a basic composition, and 1 usually contains Cr, Mn, Mo, Ni, Cu, etc. to have a composition similar to that of the paste powder.
Co, 8i, P.

Bなどの合金元素の一種または二種以上を含み、残余は
実質的にFeからなるものである。
It contains one or more alloying elements such as B, and the remainder consists essentially of Fe.

この焼結活性化粉末の炭素量は、15〜7.0%であり
、これは(L5%未満では活性化の効果が小さく、ある
いは活性化の効果が顕われず、ZO慢を超えると活性化
の効果が飽和状態となシかつ粉末の製造が困難となるた
めである。また焼結活性化粉末の添加量は、α5〜10
%であり、これはα5悌未満では効果の発生部位が少な
くトータルとしての活性化効果が小さく、また10憾を
超えると圧縮性に悪影響を及ぼすためである。
The carbon content of this sintered activated powder is 15 to 7.0%, which means that if it is less than L5%, the activation effect is small or no activation effect is evident, and if it exceeds ZO This is because the effect of sintering will not be saturated and it will be difficult to manufacture the powder.Also, the amount of sintering activated powder added should be α5 to 10.
%, this is because if it is less than α5, the number of areas where the effect occurs is small and the total activation effect is small, and if it is more than 10, it will have a negative effect on compressibility.

本発明は、辷れまで述べてきたペース粉末に焼結活性化
粉末を添加混合し、成形後焼結し。
In the present invention, sintering activated powder is added to and mixed with the above-described paste powder, and the mixture is molded and then sintered.

しかる後に浸炭焼入焼戻し処理または浸炭浸窒焼入焼戻
し処理を施す・ この浸炭焼入焼戻し処理は、平衡炭素量α5〜1.5憾
の雰凹気中、850〜1000℃に30〜180分間保
持後、水中または油中にて急冷するか、あるいF1a5
o〜1000℃に30〜180分間保持後さらに750
〜950℃に5〜60分間保持後、水中または油中にて
急冷する・さらに焼戻しは必要に応じ行ない、150〜
500℃に加熱保持後、冷却する。
After that, carburizing and quenching and tempering treatment or carburizing and nitriding and quenching and tempering are performed. This carburizing and quenching and tempering treatment is carried out at 850 to 1000°C for 30 to 180 minutes in an atmosphere with an equilibrium carbon content of α5 to 1.5. After holding, quench in water or oil, or F1a5
After holding at o~1000℃ for 30~180 minutes, further 750℃
After holding at ~950℃ for 5 to 60 minutes, quenching in water or oil and further tempering as necessary, to a temperature of 150~
After heating and maintaining at 500°C, it is cooled.

浸炭浸窒焼入焼戻し処理は、平衡炭素量α2〜1.0チ
および平衡窒素量α1〜α7チの雰囲気中。
The carburizing, nitriding, quenching and tempering treatment is carried out in an atmosphere with an equilibrium carbon content of α2 to 1.0 and an equilibrium nitrogen content of α1 to α7.

820〜960℃に30〜180分間保持後、油中また
は水中にて急冷する・さらに焼戻しは必要に応じ行ない
、150〜500℃に加熱保持後、冷却する。
After being held at 820 to 960°C for 30 to 180 minutes, it is rapidly cooled in oil or water. Tempering is further performed as necessary, and after being heated and held at 150 to 500°C, it is cooled.

この焼入温度は、上記範囲よシ低温では焼入れが不十分
となり、逆に範囲より高温では結晶粒の粗大化などによ
シ強度向上が不十分となる◎これまで述べてきたように
1本発明の焼結材料は粉末を原料としているため、粉末
間の結びつきが最も重要な要素である・これはマトリッ
クスすなわち個々の粉末自体が強化されていても、粉末
同士が相互に結合されていなければ、所望の強度や耐摩
耗性は得られないからである。
If the quenching temperature is lower than the above range, the quenching will be insufficient, and if the temperature is higher than the range, the strength will not be sufficiently improved due to coarsening of crystal grains. Since the sintered material of the invention is made from powder, the bond between the powders is the most important element. This means that even if the matrix, that is, the individual powders themselves, are strengthened, if the powders are not bonded to each other, This is because the desired strength and abrasion resistance cannot be obtained.

このため、粉末間の結合力すなわちネックの強化が焼結
材料の特性向上に最も重要であるQ本発明は、ベース粉
末に焼結活性化粉末を添加混合し、成形後焼結すること
によりネックの形成、成長を促進し、ネックを強化した
のち、次工程の浸炭または浸炭浸窒処理によシマトリッ
クス強化に必要な炭素を雰囲気中よシ浸炭させ、これに
よりマトリックスの強化をはかり。
For this reason, strengthening the bonding force between powders, that is, strengthening the neck, is the most important factor in improving the properties of sintered materials.Q The present invention improves the strength of the neck by adding and mixing sintering activated powder to the base powder, and sintering it after molding. After promoting the formation and growth of carbon fibers and strengthening the neck, the next process of carburizing or carbonitriding removes the carbon necessary to strengthen the matrix in the atmosphere, thereby strengthening the matrix.

ネックの強化と併せて焼結材料の高強度化をはかったも
のである。
In addition to strengthening the neck, the strength of the sintered material was also increased.

また本発明は、浸炭または浸炭浸窒処理時の加熱を利用
して、焼入を行ない、さらに必要に応じて焼戻しを行な
い、よシー層の強度向上をはかろうとしたものであるが
、焼入処理を行なわず、浸炭または浸炭浸窒後、徐冷し
た焼結体でも、高強度化することは、上記したようにネ
ックの強化が焼結材料の特性向上に最も重要であること
よシ明らかである。
Further, the present invention attempts to improve the strength of the sheath layer by performing quenching using heating during carburizing or carbo-nitriding treatment, and further tempering as necessary. Even if the sintered body is slowly cooled after carburizing or carbo-nitriding without any initial treatment, it is possible to achieve high strength because strengthening the neck is the most important factor in improving the properties of sintered materials, as described above. it is obvious.

(作用) 焼結材料を製造する工穆においてネックが形成されるの
は、焼結時の昇温過程であり、均熱過程でさらにネック
が成長する。このネックの形成に対して、粉末表面の酸
化物層の有無が大きな影響を及ぼすことを本発明者は解
明した・すなわち、粉末表面に酸化物層が存在するとネ
ックの形成は阻止され、酸化物層が取シ除かれた時点で
初めてネックの形成が始まる@通常の焼結では還元性の
雰囲気を用いることにより、粉末表面の酸化物を還元除
去しているが、圧粉体の密度が高くなると、圧粉体内部
へのガスの浸入がむづかしく還元作用は期待できない。
(Function) In the process of manufacturing sintered materials, necks are formed during the temperature raising process during sintering, and the necks further grow during the soaking process. The present inventor has discovered that the presence or absence of an oxide layer on the powder surface has a significant effect on the formation of this neck. In other words, the presence of an oxide layer on the powder surface prevents the formation of a neck, and Neck formation begins only when the layer is removed. In normal sintering, oxides on the powder surface are reduced and removed by using a reducing atmosphere, but the density of the powder compact is high. In this case, it is difficult for gas to penetrate into the compact, and a reducing effect cannot be expected.

高強度焼結材料の場合、密度を高くして用いるのが一般
的であり、その点ネックの形成が遅れて不利になる・ したがって、ネックの形成を促進するには、雰囲気以外
の方法で酸化物を取シ除くことが必要となる◇本発明は
この作用を焼結活性化粉末の働きにより積極的に行うこ
とにより、ネックの形成を早め、このこと罠よってネッ
クの成長をも促進させるものである。すなわち、焼結活
性化粉末中の炭素によシ、昇温過程の低い温度域でベー
ス粉末表面の酸化物層を還元除去することにより、ネッ
クの形成を促進させるものである。この反応はおよそ6
00℃付近からおこるため、均熱温度に至るまでにネッ
クは成長する〇このことよfi 1200℃以上での高
温焼結を必要とせずに、十分なネックの強化がなされる
・また焼結にひきつづき、浸炭焼入焼戻し処理または浸
炭浸窒焼入焼戻し処理を施すことによシ、マトリックス
強化がなされ、ネック形成に負の効果を示す黒鉛粉末の
添加を必要としない。
In the case of high-strength sintered materials, it is common to use them at high densities, which is disadvantageous because the formation of necks is delayed. Therefore, in order to promote the formation of necks, oxidation methods other than the atmosphere must be used. It is necessary to remove the object.◇The present invention actively performs this action using the sintered activated powder, thereby accelerating the formation of necks, which also promotes the growth of necks by traps. It is. That is, carbon in the sintered activated powder promotes the formation of necks by reducing and removing the oxide layer on the surface of the base powder in the low temperature range of the heating process. This reaction is approximately 6
Since this occurs from around 00℃, the neck will grow by the time the soaking temperature is reached.This means that the neck will be sufficiently strengthened without the need for high temperature sintering at temperatures above 1200℃. By subsequently carrying out a carburizing, quenching and tempering treatment or a carburizing, nitriding, quenching and tempering treatment, the matrix is strengthened and does not require the addition of graphite powder, which has a negative effect on neck formation.

(実施例) 次に、本発明の具体的実施例を比較例と対比しつつ説明
する0なお、重量幅は単に係と記載する。
(Example) Next, specific examples of the present invention will be explained while comparing them with comparative examples. Note that the weight range is simply written as "related".

実施例1 市販の低Cr合金粉末(Fe−1,1%Cr−174M
n−α25%Mo、川崎製鉄M4)と焼結活性化粉末(
Fe−1,04Cr−175%Mn−α28%Mo−A
61C)5%と潤滑剤のステアリン酸亜鉛粉末(以下潤
滑剤)1169GとをV型混合機で混合後、JSPM標
準の引張試験片形状の金型を用い圧粉体密度7.05f
/−の試験片を成形した。この圧粉体を分解アンモニア
雰囲気中1150℃で80分間、焼結を行なった。次に
この焼結体を平衡炭素量18%の雰囲気中、900℃で
120分間保持し、浸炭後60℃の油中に投入し急冷し
た0続いて焼戻しを施した0焼戻しは、185℃で60
分間保持後、大気中放冷した。得られた試験片の炭素量
はα59チだった。
Example 1 Commercially available low Cr alloy powder (Fe-1, 1% Cr-174M
n-α25%Mo, Kawasaki Steel M4) and sintered activated powder (
Fe-1,04Cr-175%Mn-α28%Mo-A
61C) 5% and the lubricant zinc stearate powder (hereinafter referred to as lubricant) 1169G were mixed in a V-type mixer, and the green compact density was 7.05f using a JSPM standard tensile test piece-shaped mold.
/- test pieces were molded. This green compact was sintered at 1150° C. for 80 minutes in a decomposed ammonia atmosphere. Next, this sintered body was held at 900°C for 120 minutes in an atmosphere with an equilibrium carbon content of 18%, and after carburizing, it was put into oil at 60°C and rapidly cooled. 60
After holding for a minute, it was allowed to cool in the atmosphere. The carbon content of the obtained test piece was α59.

実施例2 実施例1と基本的に同一の組成、方法により焼結体を製
造した0次に浸炭浸窒焼入焼戻し処理を行なった0処理
は、平衡炭素ii[L7チ、平衡窒素1(14チの雰囲
気中、890℃で120分間保持後、60℃の油中へ投
入し急冷した・焼戻しは実施例1の基本的に同じ方法で
行なった。
Example 2 A sintered body was manufactured using basically the same composition and method as in Example 1. The zero treatment in which carburizing, nitriding, quenching and tempering was performed was carried out using equilibrium carbon ii [L7], equilibrium nitrogen 1 ( After being held at 890° C. for 120 minutes in an atmosphere of 14° C., the material was put into oil at 60° C. to be rapidly cooled and tempered in basically the same manner as in Example 1.

得られた試験片の炭素量Vi14嗟だった◇実施例3 市販の低Ni合金粉末(Fe−1,9%Ni −a46
c4Mo、神戸製鋼製)と焼結活性化粉末(Fe−1,
81Ni−α5チMO−ム1係C)3チと潤滑剤α6%
とをV型混合機で混合した◇この混合粉を引張試験片に
成形後、分解アンモニア雰囲気中、1150℃で80分
間、焼結を行なった。次に浸炭焼入焼戻し処理を、実施
例1と基本的に同じ方法で行なった。
The carbon content Vi of the obtained test piece was 14 times. Example 3 Commercially available low Ni alloy powder (Fe-1,9%Ni-a46
c4Mo, Kobe Steel) and sintered activated powder (Fe-1,
81Ni-α5-chi MO-me 1 C) 3-chi and lubricant α6%
The mixed powder was mixed in a V-type mixer. This mixed powder was formed into a tensile test piece, and then sintered at 1150° C. for 80 minutes in a decomposed ammonia atmosphere. Next, carburizing, quenching and tempering treatment was performed basically in the same manner as in Example 1.

比較例1 実施例1と同じ低Cr合金粉末及び焼結活性化粉末3憾
に黒鉛粉末(日本黒鉛&!A、C,P、) (L 4チ
と潤滑剤α6チとをV型混合機で混合後、7.05r/
−の引張試験圧粉体を成形した◇焼結は実施例1と同じ
方法とし、分解アンモニア雰囲気中、1150℃で80
分間行なった。次に真空焼入れを行なった。真空熱処理
炉を用い、900℃で30分間保持後、60℃の油中に
投入急冷し焼入を行なった◎焼戻しは、実施例1と同じ
185℃で60分間とした。得られた試験片の炭素量は
[141%だった。
Comparative Example 1 The same low Cr alloy powder and sintered activated powder as in Example 1 were mixed with graphite powder (Japanese graphite &! A, C, P,) (L 4 and lubricant α6 in a V-type mixer After mixing at 7.05r/
A tensile test compact of -
I did it for a minute. Next, vacuum hardening was performed. Using a vacuum heat treatment furnace, it was held at 900°C for 30 minutes, then put into oil at 60°C to be rapidly cooled and hardened. ◎ Tempering was performed at 185°C for 60 minutes, the same as in Example 1. The carbon content of the obtained test piece was 141%.

比較例2 実施例3の組成に黒鉛粉末α4チを添加した以外は、実
施例3と基本的に同じ方法にて混粉、成形および焼結を
行なった0次に真空焼入れを行なった。焼入焼戻しは比
較例1と基本的に同じ方法にて行なった。得られた試験
片の炭素量は145%だった。
Comparative Example 2 Except for adding graphite powder α4 to the composition of Example 3, the powder was mixed, molded, and sintered in basically the same manner as in Example 3, followed by zero-order vacuum quenching. Quenching and tempering was performed basically in the same manner as in Comparative Example 1. The carbon content of the obtained test piece was 145%.

比較例3 実施例1の低Cr合金粉末と黒鉛粉末α5悌と潤滑剤(
16%とをV型混合機で混合後、引張試験片を成形した
。焼結は実施例1と基本的に同じ方法とし1分解アンモ
ニア雰囲気中、1150℃で80分間とした0熱処理は
、真空焼入焼戻し処理とし、条件は比較例1と同一とし
た。得られた試験片の炭素量はα4チだった。
Comparative Example 3 Low Cr alloy powder of Example 1, graphite powder α5 and lubricant (
After mixing with 16% in a V-type mixer, a tensile test piece was molded. The sintering process was basically the same as in Example 1, and the heat treatment was performed at 1150° C. for 80 minutes in an atmosphere of 1 decomposed ammonia, and the conditions were the same as in Comparative Example 1. The carbon content of the obtained test piece was α4.

以上実施例1〜3および比較例1〜3で得られた試験片
を使用して強度比較のために引張試験を行ない、比較評
価する。
Using the test pieces obtained in Examples 1 to 3 and Comparative Examples 1 to 3, a tensile test was conducted to compare the strength and comparative evaluation was performed.

引張強さの測定は、室温中クロスヘッドスピード2■/
端の条件で行なった。
Tensile strength was measured at room temperature with a crosshead speed of 2
This was done under extreme conditions.

この結果を図面に示した。The results are shown in the drawing.

実施例1と比較例1は、はぼ同一組成であるが、実施例
1の引張強さは比較例1よシ約100N/−高く、強度
がすぐれている。また実施例2も実施例1と同じ組成で
あり熱処理の方法が異なるものであるが、これも同等の
強度を示している。
Although Example 1 and Comparative Example 1 have almost the same composition, the tensile strength of Example 1 is about 100 N/- higher than that of Comparative Example 1, and is superior in strength. Further, although Example 2 has the same composition as Example 1 and the heat treatment method is different, it also shows the same strength.

さらに比較例3は焼結活性化粉末を含まないことを除い
て比較例1とほぼ同一組成であるが、引張強さは著しく
低下している・ 実施例3と比較例2も、はぼ同一組成であるが、実施例
3の引張強さは比較例2より約8ON/−高くなってい
る。
Furthermore, Comparative Example 3 has almost the same composition as Comparative Example 1 except that it does not contain sinter-activated powder, but the tensile strength is significantly lower. Example 3 and Comparative Example 2 are also almost the same. Regarding the composition, the tensile strength of Example 3 is approximately 8 ON/- higher than that of Comparative Example 2.

これらよシ本発明が焼結材料の強度向上に有効であるこ
とがわかる。
These results show that the present invention is effective in improving the strength of sintered materials.

(発明の効果ン 以上のように本発明によれば、焼結時、ペース粉末の組
成と同−又は近似する組成をもつ焼結活性化粉末の働き
によシ、ベース粉末中の酸化物を速やかに還元し焼結を
促進し、もってネックの形成が効果的に強化されること
から、従来のように特殊な焼結雰囲気条件下で1200
℃以上の高温焼結を行わなくとも、該高温焼結を施した
材料と同等以上の強度を得ることができるO この焼結体をさらに浸炭または浸炭浸窒処理によシマト
リックス強化の効果も相加され、従来のように黒鉛粉末
を加えることなく焼結材料はより高強度となる◎ これらのことより本発明によると高温焼結を行なうこと
なく高強度焼結材料を製造できることから、設備費およ
び製造費を安くすることができる。
(Effects of the Invention) As described above, according to the present invention, during sintering, oxides in the base powder are 1200 under special sintering atmosphere conditions as in conventional
Even without performing high-temperature sintering at temperatures above ℃, it is possible to obtain strength equal to or higher than that of materials subjected to high-temperature sintering.O This sintered body can be further carburized or carbonitrided to strengthen the matrix. As a result, the sintered material has higher strength without adding graphite powder as in the conventional method.◎ From these facts, according to the present invention, high-strength sintered material can be manufactured without high-temperature sintering, so the equipment The cost and manufacturing cost can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 鉄または鉄基合金粉末に、該鉄基合金粉末と同一または
近似した組成に炭素0.5〜7重量%を加えてなる焼結
活性化粉末0.5〜10重量%を添加混合し、この混合
粉末を成形後、焼結し、浸炭焼入焼戻し処理または浸炭
浸窒焼入焼戻し処理を施すことを特徴とする高強度焼結
材料の製造方法。
Add and mix 0.5 to 10% by weight of sintered activated powder, which is made by adding 0.5 to 7% by weight of carbon to the same or similar composition as the iron or iron-based alloy powder, to iron or iron-based alloy powder, and mix this powder. A method for producing a high-strength sintered material, which comprises molding a mixed powder, sintering it, and subjecting it to carburizing, quenching and tempering treatment or carburizing, nitriding, quenching and tempering treatment.
JP16616186A 1986-07-15 1986-07-15 Production of high strength sintered material Pending JPS6320433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16616186A JPS6320433A (en) 1986-07-15 1986-07-15 Production of high strength sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16616186A JPS6320433A (en) 1986-07-15 1986-07-15 Production of high strength sintered material

Publications (1)

Publication Number Publication Date
JPS6320433A true JPS6320433A (en) 1988-01-28

Family

ID=15826200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16616186A Pending JPS6320433A (en) 1986-07-15 1986-07-15 Production of high strength sintered material

Country Status (1)

Country Link
JP (1) JPS6320433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279916A (en) * 1993-02-12 1994-10-04 Agency Of Ind Science & Technol Method for accelerating formation of finer alloy structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279916A (en) * 1993-02-12 1994-10-04 Agency Of Ind Science & Technol Method for accelerating formation of finer alloy structure

Similar Documents

Publication Publication Date Title
US5613180A (en) High density ferrous power metal alloy
US3901661A (en) Prealloyed steel powder for formation of structural parts by powder forging and powder forged article for structural parts
JPH0987794A (en) Production of ferrous sintered alloy showing hardened structure
MXPA00007460A (en) Iron-graphite composite powders and sintered articles produced therefrom.
JP3258765B2 (en) Manufacturing method of high-strength iron-based sintered body
JPS583901A (en) Manufacture of sliding member
US2489839A (en) Process for carburizing compacted iron articles
JP3272886B2 (en) Alloy steel powder for high strength sintered body and method for producing high strength sintered body
JPS6320433A (en) Production of high strength sintered material
US2489838A (en) Powder metallurgy process for producing steel parts
JPH0849047A (en) Alloy steel powder for powder metallurgy
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
JPS6318001A (en) Alloy steel powder for powder metallurgy
JPS61276949A (en) Manufacture of sintered parts
US2295334A (en) Metallurgy of ferrous metals
JPS62202046A (en) Manufacture of high strength sintered body
JP4054649B2 (en) Method for producing ferrous sintered alloy exhibiting quenched structure
JPS6233756A (en) Carburizing and nitriding method
JPS6320431A (en) Production of free cutting sintered material
JPH03219040A (en) High strength sintered steel and its manufacture
JPH0225502A (en) Alloy steel powder for high strength sintered part having excellent carburization
JPH0459362B2 (en)
JPS5856020B2 (en) Method for manufacturing sintered mechanical parts with excellent specific strength
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
JPS62177148A (en) Production of high-strength sintered member