JPS63203870A - Acidic group-containing carbonaceous fiber - Google Patents

Acidic group-containing carbonaceous fiber

Info

Publication number
JPS63203870A
JPS63203870A JP2808087A JP2808087A JPS63203870A JP S63203870 A JPS63203870 A JP S63203870A JP 2808087 A JP2808087 A JP 2808087A JP 2808087 A JP2808087 A JP 2808087A JP S63203870 A JPS63203870 A JP S63203870A
Authority
JP
Japan
Prior art keywords
fiber
carbonaceous
fibers
reaction
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2808087A
Other languages
Japanese (ja)
Inventor
克之 中村
和幸 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2808087A priority Critical patent/JPS63203870A/en
Publication of JPS63203870A publication Critical patent/JPS63203870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸性基含有炭素質繊維に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to acidic group-containing carbonaceous fibers.

さらに詳しくは、酸性基とノ・ロゲンを保有した極細な
気相法炭素質繊維に関するものである。
More specifically, the present invention relates to ultrafine vapor-grown carbonaceous fibers containing acidic groups and nitrogen.

(従来の技術) 炭素繊維は、その優れた機械的物性から各種の複合材料
に活用され、近年急速に需要が伸びつつある。しかし、
従来の炭素繊維は、有機繊維を焼成し炭化させる等複雑
な工程により製造されており、コスト面で限界があつ几
。これに対し、炭化水素類を熱分解させ気相反応によっ
て基板上に炭素繊維を生成させる方法が試みられている
(Prior Art) Carbon fiber is used in various composite materials due to its excellent mechanical properties, and demand for it has been rapidly increasing in recent years. but,
Conventional carbon fibers are manufactured through complicated processes such as firing and carbonizing organic fibers, which has a cost limit. In contrast, a method has been attempted in which hydrocarbons are thermally decomposed and carbon fibers are produced on a substrate through a gas phase reaction.

さらに本発明者らは、炭化水素類を特定の有機系の金属
化合物及びキャリアガスと共に加熱空間に導入し、基板
上ではなく空間内で、一種の浮遊状態で、極めて細く微
細な、かつ特異構造を有する炭素質繊維の合成に成功し
たこの方法は簡潔な方法で工業的に価値の高い方法であ
る。
Furthermore, the present inventors introduced hydrocarbons into a heating space together with a specific organic metal compound and a carrier gas, and created extremely thin, fine, and unique structures in a kind of floating state within the space rather than on the substrate. This method, which succeeded in synthesizing carbonaceous fibers having the following properties, is a simple and industrially valuable method.

(発明が解決しようとする問題点) ここで得られる炭素質繊維は特異な構造を有し結晶性、
配向性に優れ、それゆえに優れた機械的特性、電気的特
性、あるいは電極材などへの適性を有し実用化が期待さ
れる。しかしながらこのような構造上の完べき性故に、
他の材料例えば樹脂や水などの極性溶剤との接着性やぬ
れが悪く、その用途に限界があった。
(Problems to be solved by the invention) The carbonaceous fibers obtained here have a unique structure, are crystalline,
It has excellent orientation, and therefore has excellent mechanical properties, electrical properties, and suitability for electrode materials, and is expected to be put into practical use. However, due to this structural perfection,
It has poor adhesion and wettability with other materials such as resins and polar solvents such as water, which limits its use.

(問題点を解決するための手段) 本発明者らは、上記炭素質繊維について、その表面を改
質する方法を種々検討してき次が、特にその結晶構造か
ら来る反応性の特異性、形状から来る極細、微細な繊維
であるがゆえの反応方法、条件の選択、反応制御の工夫
、反応処理する装置、更に炭素質繊維そのものの反応処
理時の形態などについて検討を加えてきた。その結果、
繊維本体に損傷を与えることなく酸性官能基を保有させ
ることに成功し本発明に到達した。
(Means for Solving the Problems) The present inventors have studied various methods for modifying the surface of the above-mentioned carbonaceous fibers. Due to the ultra-fine and fine fibers to be produced, we have investigated the reaction method, selection of conditions, reaction control devices, reaction treatment equipment, and the form of the carbonaceous fiber itself during reaction treatment. the result,
The present invention was achieved by successfully retaining acidic functional groups without damaging the fiber body.

すなわち、本発明は、酸性官能基を2〜250μeq/
f 及びハロゲンを0.03〜3重量%有し、直径が0
,01〜4μmの炭素質繊維である。
That is, in the present invention, the acidic functional group is
f and 0.03 to 3% by weight of halogen, and the diameter is 0.
, 01 to 4 μm carbonaceous fiber.

本発明において、炭素質繊維は、直径0.01〜4μm
であり、好ましくはo、oi〜2μm特に0.02〜1
μmである。繊維の長さは特に制限がないが、補強材と
して用いる場合には長い方が好ましく、繊維の長さくL
)/繊維径(D)が10以上、特に50以上が好ましい
In the present invention, the carbonaceous fiber has a diameter of 0.01 to 4 μm.
and preferably o, oi to 2 μm, especially 0.02 to 1
It is μm. There is no particular restriction on the length of the fibers, but when used as a reinforcing material, the longer the better, and the fiber length L
)/fiber diameter (D) is preferably 10 or more, particularly preferably 50 or more.

本発明の炭素質繊維は、電子顕微鏡で観察すると、芯の
部分とこれを取りまく一見して年輪状の炭素層からなる
特異な形状を有している気相成長法で形成される繊維で
あり、炭素層は黒鉛又は黒鉛に容易に転化しうる性質を
有する。すなわち、本発明でいう炭素質繊維とは気相成
長法で形成され九炭素繊維やこれを熱処理して得られる
黒鉛に近い繊維などを総称した炭素質繊維である。
The carbonaceous fiber of the present invention is a fiber formed by a vapor growth method and has a unique shape consisting of a core and a carbon layer surrounding it that looks like an annual ring when observed with an electron microscope. , the carbon layer has the property of being easily converted into graphite or graphite. That is, the carbonaceous fiber as used in the present invention is a general term for carbonaceous fibers such as nine-carbon fibers formed by a vapor phase growth method and fibers similar to graphite obtained by heat-treating these fibers.

又、本発明の炭素質繊維は、滴定法による酸性基量が、
該炭素質繊維11当92〜250μeqあシ、好ましく
は5〜200μeqs特に10〜150μeqの範囲で
ある。この酸性基の量が2μsq以下では、樹脂、バイ
ンダーあるいは水とのぬれが充分でなく、一方、250
μsq以上では該炭素質繊維の特異な性質が十分に発揮
できなくなる。滴定法による酸性基の定量法は、試料的
52を共栓付三角フラスコに秤量し、”/so NのN
aOH40−をホールピペットで正確に加え、更に水を
適当量加え時々振夛まぜながら20分間放置後、超音波
加振器に15分間浸す。この溶液をダルマフラスコに移
し水を加えて容量を正確にした後、正確にA量をホール
ピペットで採取し、1/)ONのHC/、で滴定する。
In addition, the carbonaceous fiber of the present invention has an acidic group content determined by a titration method of
The carbonaceous fiber 11 is in a range of 92 to 250 μeq, preferably 5 to 200 μeq, particularly 10 to 150 μeq. If the amount of acidic groups is less than 2 μsq, wetting with the resin, binder or water is insufficient;
If it exceeds μsq, the unique properties of the carbonaceous fiber cannot be fully exhibited. To quantify acidic groups by titration, sample 52 is weighed into an Erlenmeyer flask with a stopper, and
Accurately add aOH40- with a whole pipette, add an appropriate amount of water, leave to stand for 20 minutes with occasional shaking, and then immerse in an ultrasonic vibrator for 15 minutes. Transfer this solution to a Daruma flask, add water to make the volume accurate, then take out exactly the amount A with a whole pipette, and titrate with 1/) ON HC/.

滴定は電位差滴定装置を用い滴定曲線から酸性基量を求
める。
For titration, use a potentiometric titrator to determine the amount of acidic groups from the titration curve.

本発明において、ハロゲンとしては、フッ素、塩素、臭
素、ヨウ素であるが、好ましくは、塩素又は臭素であり
フッ素やヨウ素に比べこれらを付加し、かつ、酸性基を
導入する後述の反応において制御が容易であり好ましい
。ハロゲンの量は0.03〜3重仝チであり、このハロ
ゲンは、炭素質FB、維の生成段階では存在せず、後反
応によって酸性基の導入の際に導入されるものであり、
それ故に、酸性基の導入効果と相互作用効果があると思
われ、大量の酸性基を導入することなく、本発明の目的
である炭素質繊維のぬれや接着性の改善に効果があられ
れる。このため、ハロゲン含量が0.03重量%以下で
は酸性基を大量に導入する必要があり好ましくなく、一
方、ハロゲン含量を多くすると、これを導入する際に炭
素質繊維を劣化させる傾向があシ好ましくない。それ故
、ハロゲンの含量は、好ましくは0.05〜2重量%、
特に0.08〜1.2重量−の範囲である。
In the present invention, halogens include fluorine, chlorine, bromine, and iodine, but chlorine or bromine is preferable, and it is easier to add these than fluorine or iodine, and to control the reaction described below for introducing acidic groups. It is easy and preferable. The amount of halogen is 0.03 to 3 times, and this halogen is not present in the carbonaceous FB and fiber generation stage, but is introduced during the post-reaction when acidic groups are introduced.
Therefore, it is thought that there is an interaction effect with the introduction of acidic groups, and the improvement of the wettability and adhesion of carbonaceous fibers, which is the objective of the present invention, can be achieved without introducing a large amount of acidic groups. For this reason, if the halogen content is 0.03% by weight or less, it is not preferable because a large amount of acidic groups must be introduced, whereas if the halogen content is increased, the carbonaceous fiber tends to deteriorate when introduced. Undesirable. Therefore, the content of halogen is preferably 0.05 to 2% by weight,
In particular, it is in the range of 0.08 to 1.2 weight.

本発明において、酸性基及びハロゲンを導入する方法と
しては、原料の炭素質繊維を含酸素化合物及び含ハロゲ
ン化合物の存在下に加熱したりその他の方法で励起反応
i妃る方法が最も好ましいが、質繊維を加熱したり、そ
の他の方法で励起反応させ次いで含酸素化合物と反応さ
せる方法も好ましく、更には、別法として逆の順に反応
させる方法も用い得る。
In the present invention, the most preferable method for introducing acidic groups and halogens is to heat the raw material carbon fiber in the presence of an oxygen-containing compound and a halogen-containing compound, or to perform an excitation reaction using other methods. It is also preferable to heat the fibers or cause them to undergo an excitation reaction using other methods, and then to react with the oxygen-containing compound, and as an alternative method, it is also possible to use a method in which the reaction is carried out in the reverse order.

含酸素化合物としては、酸素、オゾン、−酸化炭素、二
酸化炭素、水などの無機系の酸素化合物、特に酸素が好
ましく、他にメタノール、アセトン、ホルムアルデヒド
、アセトアルデヒド、酢酸などの有機化合物も用い得る
As the oxygen-containing compound, inorganic oxygen compounds such as oxygen, ozone, carbon oxide, carbon dioxide, and water, particularly oxygen, are preferable, and organic compounds such as methanol, acetone, formaldehyde, acetaldehyde, and acetic acid may also be used.

含ハロゲン化合物としては、フッ素、塩素、臭素、ヨウ
素、フッ化水素、塩化水素、臭化水素、ヨウ化水素の他
、塩素酸、臭素酸、塩化臭素など又、塩化メチル、塩化
エチル、四塩化炭素、臭化メチルなどの有機系ハロゲン
化合物も用いられるが、好ましくは無機系のハロゲン化
合物、特に、ct、 Br2t HCt+ HBrなど
である。又、この反応の際希釈ガスとしてAr @ H
e +へ゛)12などのガスを用いることが出来る。
Examples of halogen-containing compounds include fluorine, chlorine, bromine, iodine, hydrogen fluoride, hydrogen chloride, hydrogen bromide, and hydrogen iodide, as well as chloric acid, bromic acid, bromine chloride, and methyl chloride, ethyl chloride, and tetrachloride. Organic halogen compounds such as carbon and methyl bromide may also be used, but inorganic halogen compounds are preferred, particularly ct, Br2t HCt+ HBr, and the like. In addition, Ar @ H is used as a diluent gas during this reaction.
A gas such as e + 12 can be used.

これらの含酸素化合物や含ハロゲン化合物を同素質繊維
を350〜1200℃の範囲、特に400〜1000℃
の範囲で熱反応させる方法であり、この際、含酸素化合
物として酸素を用いる場合、この酸素濃度を低めの0.
1〜25容量チとしてHCt。
These oxygen-containing compounds and halogen-containing compounds are added to allotropic fibers at temperatures ranging from 350 to 1,200°C, particularly from 400 to 1,000°C.
In this method, when oxygen is used as the oxygen-containing compound, the oxygen concentration is lowered to 0.
HCt as 1-25 capacity.

C22,HBr又はBr2を存在させ(0,01−15
容量チ)窒素ガスでキャリヤーして反応させると極めて
温和に例えば、400〜1200℃、好ましくは450
〜1000℃で反応を進めることができ好ましい。
C22, HBr or Br2 present (0,01-15
Capacity h) If the reaction is carried out with nitrogen gas, the reaction will be very mild, e.g. 400 to 1200°C, preferably 450°C.
It is preferable that the reaction can proceed at a temperature of ~1000°C.

他の反応方法としては、特殊励起処理する方法であり、
特殊励起処理としては、プラズマ処理、電子線照射処理
、X線やrillなど放射線の照射処理、紫外線やレー
ザー光の照射などがあげられるが、このうち好ましい方
法としては、プラズマ処理及び電子線照射処理が効果が
高く好ましい。
Other reaction methods include special excitation treatment,
Examples of special excitation treatments include plasma treatment, electron beam irradiation treatment, radiation treatment such as X-rays and rills, and irradiation with ultraviolet rays and laser light. Among these, preferred methods include plasma treatment and electron beam irradiation treatment. is highly effective and preferable.

このうち、プラズマ処理方法を例にあげるならば、主に
無機ガスをキャリアとして用い、低周波放電、高周波放
電、マイクロ波放電、直流グロー放電、コロナ放電など
により発生させたプラズマを用いるのが便利であり、こ
のプラズマ状態に炭素質繊維をさらすことによって行う
Among these, to give an example of plasma processing methods, it is convenient to mainly use inorganic gas as a carrier and use plasma generated by low frequency discharge, high frequency discharge, microwave discharge, DC glow discharge, corona discharge, etc. This is done by exposing carbonaceous fibers to this plasma state.

ここで無機ガスとしては、例えば、Ar 、 He 。Here, examples of the inorganic gas include Ar and He.

NHs 、 N、 、 N2の個含酸素化合物の0□、
 Cow COzなど種々使用でき、又、これらのガス
の混合ガスも使用できる。好ましいキャリアガスとして
は、Hrt He、 N2e a2. o、特にAr+
 N2I o、あるいはこれらの混合ガスで′6シ、こ
れらのキャリアガス中に含酸素化合物及び含ハロゲン化
合物を混合させて用いる。
NHs, N, , N2 oxygen-containing compounds 0□,
Various gases such as Cow and COz can be used, and mixtures of these gases can also be used. Preferred carrier gases include Hrt He, N2e a2. o, especially Ar+
N2Io or a mixed gas thereof is used, and an oxygen-containing compound and a halogen-containing compound are mixed in these carrier gases.

プラズマを発生させるときのガスの圧力は0.001T
orr # l気圧、特KO,1m100Torrであ
り、プラズマ処理する時間はガス種、プラズマ発生電源
の能力、処理する炭素質繊維の形状や形態などによって
変化するものの、一般には0.01秒〜20分、好まし
くは0.1枚・〜lO分、特に0.5秒〜5分であシ、
これより短時間では表面の改質効果が出に<<、一方こ
の範囲以上では炭素質繊維の表面エツチングが顕著にな
るなど好ましくない状態が発生してくる0 含酸素化合物及び含ハロゲン化合物と上記のように反応
させて得られる本発明の炭素質繊維は、必要に応じて、
テイジング材や表面改良の補助材を付着させるなどして
実用に供することが出来る。
The gas pressure when generating plasma is 0.001T
orr #l atmospheric pressure, special KO, 1 m 100 Torr, and the plasma treatment time varies depending on the gas type, the capacity of the plasma generation power source, the shape and form of the carbon fiber to be treated, etc., but generally it is 0.01 seconds to 20 minutes. , preferably 0.1 sheets/~lO minutes, especially 0.5 seconds~5 minutes,
If the time is shorter than this, the surface modification effect will appear. On the other hand, if it exceeds this range, unfavorable conditions such as noticeable surface etching of carbon fibers will occur. Oxygen-containing compounds and halogen-containing compounds The carbonaceous fiber of the present invention obtained by reacting as in
It can be put to practical use by attaching a tasing material or an auxiliary material for surface improvement.

例えば、樹脂やゴムなどとの複合強化用に供する場合、
エポキシ樹脂、フェノール樹脂、不飽和エステル系樹脂
、アミド系樹脂、シリコン系樹脂、ゴムラテックスある
いはこれらの混合物などが好んで使用できる。
For example, when used for composite reinforcement with resin, rubber, etc.
Epoxy resins, phenolic resins, unsaturated ester resins, amide resins, silicone resins, rubber latex, or mixtures thereof can be preferably used.

(実施例) 以下、本発明を実施例により説明する。(Example) The present invention will be explained below using examples.

実施例1 直径が0.08〜0.3μmの気相成長法炭素質繊維(
トリスアセチルアセトナト鉄と、ベンゼンを1400℃
の加熱空間に導入し浮遊状態で合成した。)をプレスで
圧縮し、これを管状電気炉の反応管中に詰め、反応管中
の空気を窒素で置換した。次いで電気炉1700℃に加
熱した後、酸素3.0容量チ、lIC11,0容景チを
含む窒素ガスを流し8分間反応させた。冷却後得られた
炭素質繊維の酸性基量とハロゲン量を測定し、それぞれ
88μeq/y及び0.6重量%の結果を得た0この繊
維は水に浸漬しやすく又、エポキシ樹脂との複合成形に
よって良好な補強効果が顕著に認められ、例えば、曲げ
強度が向上した。
Example 1 Vapor-grown carbonaceous fiber with a diameter of 0.08 to 0.3 μm (
Trisacetylacetonate iron and benzene at 1400℃
It was introduced into the heating space of 2000 and synthesized in a floating state. ) was compressed using a press, and this was packed into a reaction tube of a tubular electric furnace, and the air in the reaction tube was replaced with nitrogen. Next, the electric furnace was heated to 1,700° C., and then nitrogen gas containing 3.0 volumes of oxygen and 11.0 volumes of lIC was flowed to react for 8 minutes. After cooling, the amount of acidic groups and the amount of halogen in the obtained carbonaceous fiber were measured, and the results were 88 μeq/y and 0.6% by weight, respectively.0 This fiber is easy to soak in water, and it is difficult to combine with epoxy resin. A good reinforcing effect was clearly observed by the molding, for example, the bending strength was improved.

比較例1 実施例1で用いた原料の炭素質繊維は酸性基0.5μe
q/f以下、ハロゲンは0であった。この繊維は水につ
けてもぬれず浮き上ってしまう。又、エポキシ樹脂との
複合成形物も成形品の強度が全く改善されなかった。
Comparative Example 1 The raw carbon fiber used in Example 1 had an acidic group of 0.5 μe.
Below q/f, halogen was 0. Even when this fiber is soaked in water, it does not get wet and floats up. Moreover, the strength of the molded product of the composite molded product with the epoxy resin was not improved at all.

実施例2 実施例1の原料炭素質繊維を2500℃で20分間加熱
処理して得た黒鉛質の炭素質繊維を用い、実施例1と同
様の実験を行った。この際、酸素濃度2.5容量チとし
加熱温度も650℃とした。得られた炭素質線維の酸性
基量は25μeq/r、ハロゲン量は0.6重量%であ
った。
Example 2 The same experiment as in Example 1 was conducted using graphite carbonaceous fibers obtained by heat-treating the raw carbon fibers of Example 1 at 2500° C. for 20 minutes. At this time, the oxygen concentration was set to 2.5 volumes, and the heating temperature was also set to 650°C. The amount of acidic groups in the obtained carbonaceous fibers was 25 μeq/r, and the amount of halogen was 0.6% by weight.

実施例3 実施例1と同様の実験を酸素濃度1.7容量チ、11c
t1.2 容fjk % 、反応温度’r s o o
℃、反応時間を5分で行い、酸性基72μeq/gsハ
ロゲン含量0.7重f%の炭素質繊維を得た。
Example 3 An experiment similar to Example 1 was carried out using an oxygen concentration of 1.7 volume and 11c.
t1.2 Volume fjk %, reaction temperature 'r s o o
The reaction time was 5 minutes at 0.degree. C. to obtain carbonaceous fibers having acidic groups of 72 .mu.eq/gs and a halogen content of 0.7 wt.%.

実施例4 直径0.1〜0.5μmの気相成長法炭素質繊維(浮遊
状態で合成し几)をプレスで圧縮し、これを高周波プラ
ズマ(13,56■b)装置に設置し、10−” To
rr以下に排気した後、酸素5容量チ、塩素1容量チ含
有のアルゴンガスを流し0.1Torrに調整した。高
周波電源を200Wの出力で発振し、プラズマを発生さ
せ、8分間プラズマ処理を行った。プラズマ停止後、大
気中に取り出し1時間放置後、酸性基量及びハロゲン量
を測定し、それぞれ65μeq/g 及び0.9重量%
を得た。
Example 4 Vapor-grown carbonaceous fibers (synthesized in a floating state) with a diameter of 0.1 to 0.5 μm were compressed using a press, and this was placed in a high-frequency plasma (13,56■b) device. -”To
After exhausting to below rr, argon gas containing 5 volumes of oxygen and 1 volume of chlorine was flowed to adjust the pressure to 0.1 Torr. A high frequency power source was oscillated at an output of 200 W to generate plasma, and plasma treatment was performed for 8 minutes. After stopping the plasma, it was taken out into the atmosphere and left for 1 hour, and then the amount of acidic groups and the amount of halogen were measured, and they were 65μeq/g and 0.9% by weight, respectively.
I got it.

実施例5 実施例4で用いた炭素質繊維をポリエチレン製袋に入れ
、袋内のガスを酸素lO容′1tts1塩素2容量チ含
有のアルゴンガスに置換した後、20 Mradの電子
線を照射し、ついで袋を開封し大気中に取り出した。1
時間放置後、酸性官能基及びノーロゲン量を測定し次結
果、それぞれ21μeq/g及び0.8重量%を得た。
Example 5 The carbonaceous fibers used in Example 4 were placed in a polyethylene bag, and the gas inside the bag was replaced with argon gas containing 1 liter of oxygen, 1 tts of chlorine, 2 volumes of chlorine, and then irradiated with an electron beam of 20 Mrad. Then, the bag was opened and taken out into the atmosphere. 1
After standing for a period of time, the amounts of acidic functional groups and nologen were measured and the results were 21 μeq/g and 0.8% by weight, respectively.

(発の効果) 本発明の炭素質繊維は、適度に酸性官能基と710ゲン
を含有しているため、ゴムや樹脂との接着性やぬれ性が
良好になっており、このため、これらと複合、混合がし
やすく、かつ、複合材として用いる場合、機械的特性が
良好に改善される。それ故、樹脂やゴムなどの強化材と
して極めて有用である。又、種々の化合物も吸着するよ
うな機能繊維としても有効である。
(Effect of ignition) Since the carbonaceous fiber of the present invention contains a moderate amount of acidic functional groups and 710 gene, it has good adhesion and wettability with rubber and resin. It is easy to compose and mix, and when used as a composite material, the mechanical properties are favorably improved. Therefore, it is extremely useful as a reinforcing material for resins, rubber, etc. It is also effective as a functional fiber that can adsorb various compounds.

Claims (1)

【特許請求の範囲】[Claims] 酸性基を2〜250μeq/g及びハロゲンを0.03
〜3重量%有し、直径が0.01〜4μmの炭素質繊維
2-250μeq/g of acidic groups and 0.03 halogens
~3% by weight carbonaceous fibers with a diameter of 0.01~4μm
JP2808087A 1987-02-12 1987-02-12 Acidic group-containing carbonaceous fiber Pending JPS63203870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2808087A JPS63203870A (en) 1987-02-12 1987-02-12 Acidic group-containing carbonaceous fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2808087A JPS63203870A (en) 1987-02-12 1987-02-12 Acidic group-containing carbonaceous fiber

Publications (1)

Publication Number Publication Date
JPS63203870A true JPS63203870A (en) 1988-08-23

Family

ID=12238797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2808087A Pending JPS63203870A (en) 1987-02-12 1987-02-12 Acidic group-containing carbonaceous fiber

Country Status (1)

Country Link
JP (1) JPS63203870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106606A (en) * 1989-10-02 1992-04-21 Yazaki Corporation Fluorinated graphite fibers and method of manufacturing them
EP1059685A3 (en) * 1999-06-11 2002-02-27 Toyo Boseki Kabushiki Kaisha Carbon electrode material for vanadium-based redox-flow type battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106606A (en) * 1989-10-02 1992-04-21 Yazaki Corporation Fluorinated graphite fibers and method of manufacturing them
EP1059685A3 (en) * 1999-06-11 2002-02-27 Toyo Boseki Kabushiki Kaisha Carbon electrode material for vanadium-based redox-flow type battery

Similar Documents

Publication Publication Date Title
Park et al. Surface characteristics of fluorine-modified PAN-based carbon fibers
US6372192B1 (en) Carbon fiber manufacturing via plasma technology
TW200906717A (en) Method for purifying carbon material containing carbon nanotube, carbon material obtained by the purification method, and resin molded body, fiber, heat sink, sliding member, field emission source material, conductive assistant for electrode, catalys
CN1170398A (en) Preparation of perfluorocarbons
US20020165078A1 (en) Silicon carbide powder and method for producing the same
JPS63312923A (en) Wire preform material for carbon fiber reinforced aluminum composite material
US3776829A (en) Aminated carbon fibers
JP2755431B2 (en) Carbon fiber reinforced carbon composite material
US3746560A (en) Oxidized carbon fibers
US4911983A (en) Adhesion structures and method of producing the same
JPS63203870A (en) Acidic group-containing carbonaceous fiber
Böhringer et al. Collisional vibrational quenching of O2+ (v) and other molecular ions in planetary atmospheres
US3833402A (en) Graphite fiber treatment
JPWO2014084042A1 (en) Double-walled carbon nanotube-containing composite
JPS5950011A (en) Three-component interlaminar graphite compound consisting of graphite, alkali metallic fluoride and fluorine, its manufacture, and electrically conductive material made of it
JP2981023B2 (en) Porous carbon fiber, method for producing the same, method for producing porous graphite fiber, and method for treating porous carbon fiber
JPS63196772A (en) Acidic group-containing carbonaceous fiber
US4603157A (en) Intermediate for composite material
JPH1025627A (en) Acrylic carbon fiber
Pełech et al. Effect of treating method on the physicochemical properties of amine-functionalized carbon nanotubes
JPS63196770A (en) Carbonaceous fiber having organic part
RU2660852C1 (en) Method for the covalent functionalization of carbon nanotubes with simultaneous ultrasound dispersion for introducing epoxy compositions
JPS63203869A (en) Carbonaceous fiber having acidic functional group
KR102529546B1 (en) Producing method of graphene using organic compound having low molecular weight
JPS63196773A (en) Epoxy group-containing carbonaceous fiber