JPS63203742A - Aluminum alloy for dat drum - Google Patents

Aluminum alloy for dat drum

Info

Publication number
JPS63203742A
JPS63203742A JP3442187A JP3442187A JPS63203742A JP S63203742 A JPS63203742 A JP S63203742A JP 3442187 A JP3442187 A JP 3442187A JP 3442187 A JP3442187 A JP 3442187A JP S63203742 A JPS63203742 A JP S63203742A
Authority
JP
Japan
Prior art keywords
drum
alloy
friction
machinability
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3442187A
Other languages
Japanese (ja)
Inventor
Shigenori Yamauchi
重徳 山内
Kazuhisa Shibue
渋江 和久
Hideo Sano
秀男 佐野
Yoshimasa Okubo
喜正 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP3442187A priority Critical patent/JPS63203742A/en
Publication of JPS63203742A publication Critical patent/JPS63203742A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop an Al alloy having superior wear resistance, friction characteristic, machinability, and forgeability and suitable for drum for digital audio tape recorder, by incorporating specific amounts of Si, Cu, Mg, or further at least one element among Sn, Pb, and Bi to Al. CONSTITUTION:An Al alloy which has a composition containing, by weight, 14-25% Si, 0.5-5.0% Cu, and 0.3-3.0% Mg of further containing one or more kinds among 0.2-2.0% Sn, 0.2-2.0% Pb, and 0.2-2.0% Bi is refined and then cooled rapidly at >=10<2> deg.C/sec cooling rate so as to be formed into an Al-alloy powder in which the average grain size of Si grains and the average distance among Si grains are regulated to 0.3-3.5mum and <=10mum, respectively. This powder is subjected to heating and vacuum degassing and then to hot pressing so as to be formed into a drum. In this way, the lightweight drum for digital audio tape recorder excellent in wear resistance, machinability and forgeability and reduced in friction coefficient can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はDAT (ディジタル オーディオテープレコ
ーダー)のドラムに用いられる高度なrI4摩耗性、摩
擦特性とすぐれた切削性および鍛造性を有するアルミニ
ウム合金に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an aluminum alloy having high rI4 wear and friction properties and excellent machinability and forgeability for use in drums of DAT (digital audio tape recorders). .

[従来の技術] DATにおいては磁気テープがドラムの周囲を回転、走
行し、記録、再生が行われる。したがって、そのドラム
材料には次のような特性が要求される。
[Prior Art] In a DAT, a magnetic tape rotates and runs around a drum to perform recording and reproduction. Therefore, the drum material is required to have the following properties.

(a)非磁性・・・磁気テープが接触するので非磁性で
あることが必要である。
(a) Non-magnetic: Since the magnetic tape comes into contact with it, it must be non-magnetic.

(b)導電性・・・帯電を防止するために導電性が必要
である。
(b) Conductivity: Conductivity is necessary to prevent charging.

(C)軽但・・・高速回転するため軽伍であることが必
要である。
(C) Lightweight: Because it rotates at high speed, it must be lightweight.

(d)耐摩耗性・・・ドラムが摩耗すると正確な記録再
生ができないので耐摩耗性が必要で ある。特にDATではメタルテープや 蒸着テープが使われるので、高度の耐 摩耗性が必要である。
(d) Abrasion resistance: If the drum is worn out, accurate recording and reproduction cannot be performed, so abrasion resistance is necessary. In particular, DAT uses metal tape or vapor-deposited tape, so a high degree of abrasion resistance is required.

(e)摩擦係数が小さく、安定していること・・・テー
プとの摩擦係数が大きいと、テープ にかかる張力が大きくなり、正確な記 録再生ができない。したがって、摩擦 係数は小さく安定していなければなら ない。特にDATの場合、メタルテー プヤ蒸着テープが使われ、これらのテ ープの場合、酸化鉄テープと比較して、摩擦係数が大き
く、また走行時間とと もに、摩擦係数が増大しやすいので、 ドラム材料には高度な摩擦特性が要求 される。
(e) The coefficient of friction is small and stable: If the coefficient of friction with the tape is large, the tension applied to the tape becomes large, making accurate recording and reproduction impossible. Therefore, the coefficient of friction must be small and stable. Particularly in the case of DAT, metal tape or vapor-deposited tape is used, and these tapes have a higher friction coefficient than iron oxide tape, and the friction coefficient tends to increase with running time, so the drum material is Advanced friction properties are required.

Cf)切削性・・・ドラムを高精度に仕上げるため、切
削性がよく、仕上げ面粗度が小さく なければならない。
Cf) Machinability: In order to finish the drum with high precision, it must have good machinability and low finished surface roughness.

((J) 111造性・・・冷間鍛造により成形するこ
とがあり、その場合には鍛造性が要求される。
((J) 111 Formability: It may be formed by cold forging, and in that case, forgeability is required.

従来、これらの諸要求に応えるべく、各種アルミニウム
合金(221B、4032、A 390等)の適用テス
トが行われている。
Conventionally, in order to meet these various demands, various aluminum alloys (221B, 4032, A 390, etc.) have been tested for application.

[発明が解決しようとする問題点] 上記従来の材料で、前述のすべての特性を満足する材料
はない。特に耐摩耗性、摩擦係数の安定性、切削性の3
特性を同時に満たす材料はない。すなわち、2218合
金の場合、切削性は良好でおるが、耐摩耗性が劣り、ま
た摩擦係数もやや大きい。Siを約12%添加した40
32合金の場合、耐摩耗性はかなり向上し、摩擦係数、
切削性は良好であるものの、やはりDAT用材料として
は十分でない。Slを約17%添加したA 390合金
の場合、耐摩耗性は良好となるが、Si粒子が粗大であ
るため切削バイトのチッピングや摩耗が発生したり、仕
上げ面粗度が粗くなるなど、切削性が悪く、また摩擦係
数も大きく不安定となる。
[Problems to be Solved by the Invention] Among the conventional materials described above, there is no material that satisfies all of the above-mentioned characteristics. Especially wear resistance, stability of friction coefficient, and machinability.
There is no material that satisfies all these properties at the same time. That is, in the case of 2218 alloy, the machinability is good, but the wear resistance is poor and the coefficient of friction is also somewhat large. 40 with approximately 12% Si added
In the case of 32 alloy, the wear resistance is considerably improved, and the coefficient of friction,
Although the machinability is good, it is still not sufficient as a DAT material. In the case of A390 alloy containing approximately 17% Sl, the wear resistance is good, but the coarse Si particles cause chipping and wear of the cutting tool, and the roughness of the finished surface becomes rough. In addition, the friction coefficient is large and unstable.

本発明は前述の特性を満足するDATのドラムに好適な
材料を提供するものでおる。
The present invention provides a material suitable for a DAT drum that satisfies the above-mentioned characteristics.

[問題点を解決するための手段] 本発明は重信基準でSi:14〜25%、Cu:0.5
〜5.0%、Mg:0.3〜3.0%を含み、あるいは
さらに3n :  0.2〜2.0%、Pb:0.2〜
2.0%および[Si:0.2〜2.0%のうちの一種
以上を含み、残り不可避不純物とAlよりなる合金であ
って、Si粒子の平均粒径が0.3〜3.5μm1平均
粒子間距離が10μm以下であることを特徴とするDA
Tのドラム用アルミニウム合金である。
[Means for solving the problems] The present invention uses Si: 14 to 25% and Cu: 0.5% based on Shigenobu standards.
~5.0%, Mg: 0.3~3.0%, or further 3n: 0.2~2.0%, Pb: 0.2~
2.0% and [Si: 0.2 to 2.0%, and the remaining unavoidable impurities and Al, the average particle size of Si particles is 0.3 to 3.5 μm1 DA characterized by an average interparticle distance of 10 μm or less
This is an aluminum alloy for T drums.

上記組成中各成分の添加理由は下記のとおりである。The reasons for adding each component in the above composition are as follows.

Si:耐摩耗性を向上させる。この耐摩耗性は後述する
ようにSi粒子径が適切な大ぎさの場合に発揮される。
Si: Improves wear resistance. This wear resistance is exhibited when the Si particle diameter is appropriately large, as will be described later.

また、Siは摩擦係数を下げる効果も有する。Si最が
14%未満では耐摩耗性が不足する。一方5ifflが
25%を越えると、81粒子が大きくなりやすく、この
ため摩擦係数が大きくなり、また、不安定(走行時間と
ともに摩擦係数が増大する)になる。さらに冷間鍛造性
が不良になる。
Furthermore, Si also has the effect of lowering the coefficient of friction. If the Si content is less than 14%, wear resistance is insufficient. On the other hand, if 5iffl exceeds 25%, the 81 particles tend to become large, which increases the coefficient of friction and also makes it unstable (the coefficient of friction increases with running time). Furthermore, cold forgeability becomes poor.

Cu:CuはMCIと共存して時効硬化性を付与し、硬
度、耐摩耗性を向上させる。下限未満ではこの効果が十
分でなく、上限を越えると加工性や延性が低下する。
Cu: Cu coexists with MCI to impart age hardenability and improve hardness and wear resistance. If it is less than the lower limit, this effect will not be sufficient, and if it exceeds the upper limit, workability and ductility will decrease.

Mg:Cuと共存して時効硬化性を付与し、硬度、耐摩
耗性を向上させる。下限未満ではこの効果が十分でなく
、上限を越えると加工性や延性が低下する。
Mg: Coexists with Cu to impart age hardenability and improve hardness and wear resistance. If it is less than the lower limit, this effect will not be sufficient, and if it exceeds the upper limit, workability and ductility will decrease.

3n、Pb、B i :切削性(切屑処理性)を向上さ
せ、精密加工に適するようにする。下限未満では効果が
十分でなく、上限を越えると鍛造性や延性が低下する。
3n, Pb, B i : Improves machinability (chip disposal properties) and makes it suitable for precision machining. If it is less than the lower limit, the effect will not be sufficient, and if it exceeds the upper limit, forgeability and ductility will decrease.

父、Si粒子の平均粒径や粒子間距離の限定については
下記のとありである。
The limitations on the average particle diameter of Si particles and the distance between particles are as follows.

Si粒子の平均粒径:0.3μm未満では耐摩耗性が劣
る。3.5μmを越えると摩擦係数が大きくなり、また
、走行時間とともに摩1察係数が増大するようになる。
Average particle size of Si particles: If it is less than 0.3 μm, wear resistance is poor. If it exceeds 3.5 μm, the friction coefficient becomes large, and the friction coefficient increases with running time.

Si粒子の平均粒子間距離=10μmを越えると切削後
の面粗度が粗く、不均一になり、テ−プとの摩擦係数が
大きくなる。
If the average interparticle distance of Si particles exceeds 10 μm, the surface roughness after cutting will become rough and uneven, and the coefficient of friction with the tape will increase.

本発明に従うアルミニウム合金材は、前述の合金組成に
おいて、上記規定されたSi粒子の平均粒径および平均
粒子間距離を与えるために、各種の製造方法に従って製
造することが可能でおるが、一般に以下のような方法で
WA造することが望ましい。
The aluminum alloy material according to the present invention can be manufactured according to various manufacturing methods in order to provide the above-specified average particle size and average interparticle distance of Si particles in the above-mentioned alloy composition, but generally, the following methods can be used: It is desirable to make WA using the following method.

すなわち、まず発明合金組成のアルミニウム合金を溶解
後、得られた溶湯を急冷凝固させる。
That is, first, an aluminum alloy having the invention alloy composition is melted, and then the obtained molten metal is rapidly solidified.

この際の冷却速度は、Si粒子の平均粒径を微細にする
ために102℃/S以上とする。一般には冷却速度が1
02〜b を用いれば、適切な81粒子の平均粒径および平均粒子
間距離となる。また冷却速度が104℃/Sを越える粉
末製造方法、例えば単ロール法、双ロール法、スプラッ
トクーリング法などを用いることも可能であるが、この
場合はSi粒子の平均粒径が小さくなりすぎるので、粉
末の成形工程のいずれかく例えば真空脱気工程、ホット
プレス工程、押出工程必るいはHIP工程〉あるいは熱
処理工程において、350〜550’Cに加熱しSi粒
子を平均0.3μm以上に成長させることが必要である
The cooling rate at this time is set to 102° C./S or more in order to make the average particle size of the Si particles fine. Generally, the cooling rate is 1
If 02~b is used, an appropriate average particle size and average interparticle distance of 81 particles will be obtained. It is also possible to use a powder manufacturing method in which the cooling rate exceeds 104°C/S, such as a single roll method, twin roll method, or splat cooling method, but in this case, the average particle size of the Si particles becomes too small. , in any powder molding process, such as vacuum degassing process, hot press process, extrusion process or HIP process, or heat treatment process, heat to 350 to 550'C to grow Si particles to an average size of 0.3 μm or more. It is necessary.

このようにして1qられた粉末を成形してドラム用アル
ミニウム合金材とする。具体的には(a)予備圧縮−容
器封入−加熱真空脱ガスー押出、(b)予備圧縮−容器
封入−加熱真空脱ガスーホットプレス、(C)予備圧縮
−容器封入−加熱真空脱ガスーホットプレスー容器除去
−押出、(d)予備圧縮−容器封入一加熱真空脱ガス−
HIP(高温等方圧圧縮)、(e)予備圧縮−加熱−押
出等の工程により、成形が行われる。更に具体的には前
記(a)の工程にあっては、アルミニウム合金粉末を真
密度の60〜90%程度まで予備圧縮した後に所定の容
器に封入して300〜550℃、望ましくは350〜5
20℃に加熱し真空排気を行い、脱ガスを行う。脱ガス
時の加熱温度が300℃未満の場合、脱ガスが不十分と
なり最終製品に膨れが生じたり、ガスに起因する欠陥が
残留し問題となる。加熱温度が550℃を越えるとSi
粒子が成長し、粗大になるので避ける必要がある。また
、520℃を越えるとSi粒子が成長し粗大化する傾向
を有するので、加熱時間を必まり長時間としない様注意
を要する。
1 q of powder thus obtained is molded into an aluminum alloy material for a drum. Specifically, (a) precompression - container filling - heating vacuum degassing - extrusion, (b) precompression - container filling - heating vacuum degassing - hot press, (C) precompression - container filling - heating vacuum degassing - hot press. Container removal - extrusion, (d) Pre-compression - container filling - heating vacuum degassing -
Molding is performed through steps such as HIP (high temperature isostatic pressing) and (e) precompression-heating-extrusion. More specifically, in step (a), the aluminum alloy powder is pre-compressed to about 60-90% of its true density, then sealed in a predetermined container and heated at 300-550°C, preferably 350-550°C.
Heat to 20°C, evacuate, and degas. If the heating temperature during degassing is less than 300° C., degassing will be insufficient, causing problems such as blistering in the final product and remaining defects due to gas. When the heating temperature exceeds 550℃, Si
This should be avoided as it will cause the particles to grow and become coarse. Furthermore, if the temperature exceeds 520° C., Si particles tend to grow and become coarse, so care must be taken not to make the heating time too long.

次に脱ガス処理が施された予備圧検品(ビレット)を3
00〜520℃の温度に加熱し、押出を行う。押出温度
が520℃を越えるとSi粒子が粗大になりやすく、ま
た550℃を越えると押出割れを生じやすいので避けた
方がよい。
Next, the pre-pressure inspection product (billet) that has been subjected to degassing treatment is
Extrusion is carried out by heating to a temperature of 00 to 520°C. If the extrusion temperature exceeds 520°C, the Si particles tend to become coarse, and if it exceeds 550°C, extrusion cracks tend to occur, so it is better to avoid this.

また、前記手法(b)は押出に替えてホットプレスによ
りアルミニウム合金材としたもの、(C)はホットプレ
スの後容器を切削除去し押出したもの、(d)は押出に
替えてH’ I P処理によりアルミニウム合金材を得
るもの、更に(e)は予備圧縮後学気中、真空中または
N 2 、A r等のガス中で加熱して脱ガスし、その
後押出するものである。
In addition, in method (b), the aluminum alloy material is produced by hot pressing instead of extrusion, in method (C), the container is cut and removed after hot pressing, and in method (d), H' I is produced instead of extrusion. An aluminum alloy material is obtained by P treatment, and (e) is a method in which after preliminary compression, the material is degassed by heating in a gas atmosphere, a vacuum, or a gas such as N 2 or Ar, and then extruded.

[実施例] 表1のNo、1〜N 0.13の合金を溶解し、急冷凝
固粉末を作成した。ここでNo、12のみ単ロール法(
冷却速度105〜106℃/S)によりリボンとし、粉
砕を行った。その他はガスアトマイズ(冷却速度102
〜104℃/S)により粉末とし、粒径297μ以下に
分級した。
[Example] Alloys No. 1 to No. 0.13 in Table 1 were melted to create rapidly solidified powders. Here, only No. 12 is single roll method (
It was made into a ribbon at a cooling rate of 105 to 106° C./S) and pulverized. Others are gas atomized (cooling rate 102
~104°C/S) and classified to a particle size of 297μ or less.

表1 真密度の70〜75%まで予備圧縮し、Al容器に封入
して加熱しながら真空脱気を行った。加熱温度はNo、
12の場合Si粒子を成長させないように300℃とし
、N O,13は逆にSi粒子を成長させるために53
0’Cとした。その他の加熱温度は一500℃とした。
Table 1 The samples were pre-compressed to 70 to 75% of their true density, sealed in an Al container, and vacuum degassed while heating. The heating temperature is No.
In the case of 12, the temperature was set at 300°C to prevent the growth of Si particles, and in the case of NO,13, the temperature was set at 53°C to prevent the growth of Si particles.
It was set to 0'C. The other heating temperatures were -500°C.

こうして封入したビレットを350℃に加熱し、押出比
14にて押出し、外径40mmの棒を得た。
The thus encapsulated billet was heated to 350° C. and extruded at an extrusion ratio of 14 to obtain a rod with an outer diameter of 40 mm.

N o、 14〜N o、 16の合金は溶解後外径1
50mmの鋳塊を作成し、これを上記と同条件で押出し
た。
Alloys No. 14 to No. 16 have an outer diameter of 1 after melting.
A 50 mm ingot was prepared and extruded under the same conditions as above.

以上No、 ’l 〜N0.16の押出棒に495°C
X 2hr→水冷→175℃X 10hrの熱処理を行
った。この材料についてSi粒子の平均粒子径、平均粒
子間距離、ビッカース硬さを測定した。またダイヤモン
ドバイトを用いて切削試験を行い、切削性(バイト摩耗
およびチッピング、切削処理性、仕上げ面平均粗さ)を
評価した。更にメタルテープを1500hr走行させた
時のドラムの摩耗量、メタルテープを摺動させたときの
摩擦係数(摺動回数5回目、500回目100回目に測
定)を評価した。
495°C on the extrusion rod of No. 1~N0.16
Heat treatment was performed for 2 hours → water cooling → 175° C. for 10 hours. The average particle diameter of Si particles, average interparticle distance, and Vickers hardness of this material were measured. A cutting test was also conducted using a diamond cutting tool to evaluate the machinability (bit wear and chipping, cutting processability, and average finished surface roughness). Furthermore, the amount of wear on the drum when the metal tape was run for 1500 hours, and the friction coefficient when the metal tape was slid (measured at the 5th, 500th, and 100th sliding) were evaluated.

以上の評価結果を表2に示す。The above evaluation results are shown in Table 2.

表2 本発明合金No、1〜No、9はSi粒子径、粒子間距
離が所定の範囲内にあり、耐摩耗性にすぐれ、摩1寮係
数は低く安定しており、切削性も良好である。これに対
し、N O,10はSi量が少ないため摩耗量が大きく
、N 0.11はSi量が多くSi粒子径が大きいため
摩擦係数が増大傾向を示している。N O,12はSi
粒子径が小さいため摩耗量が大きく、No、13はSi
粒子径が大きいために摩擦係数が大きく、増大傾向を示
す。
Table 2 Inventive alloys No. 1 to No. 9 have Si particle diameters and interparticle distances within specified ranges, have excellent wear resistance, have low and stable friction coefficients, and have good machinability. be. On the other hand, N 2 O.10 has a small amount of Si, so the amount of wear is large, and N 0.11 has a large amount of Si and a large Si particle diameter, so the friction coefficient tends to increase. N O, 12 is Si
Because the particle size is small, the amount of wear is large, and No. 13 is Si
Because the particle size is large, the coefficient of friction is large and tends to increase.

N 0.14はSi量が少ないため摩耗量が大きい。When N is 0.14, the amount of wear is large because the amount of Si is small.

N o、 15はSi粒子径および粒子間距離が大きい
ため摩擦係数が大きく、増大傾向を示す。また切削性も
不良である。No、16はSi量が少ないため摩耗量が
大きい。
No. 15 has a large Si particle diameter and a large interparticle distance, so the friction coefficient is large and shows an increasing tendency. Moreover, the machinability is also poor. No. 16 has a large amount of wear due to a small amount of Si.

[発明の効果] 本発明合金は、高度な耐摩耗性、摩擦特性とすぐれた切
削性を有し、DATのドラムに好適な材料である。
[Effects of the Invention] The alloy of the present invention has high wear resistance, friction properties, and excellent machinability, and is a suitable material for DAT drums.

Claims (2)

【特許請求の範囲】[Claims] (1)重量基準でSi:14〜25%、Cu:0.5〜
5.0%、Mg:0.3〜3.0%、残り不可避不純物
とAlよりなる合金であつて、Si粒子の平均粒径が0
.3〜3.5μm、平均粒子間距離が10μm以下であ
ることを特徴とする DATのドラム用アルミニウム合金。
(1) Si: 14~25%, Cu: 0.5~ by weight
5.0%, Mg: 0.3 to 3.0%, remaining unavoidable impurities and Al, and the average particle size of Si particles is 0.
.. An aluminum alloy for DAT drums, characterized in that the average interparticle distance is 3 to 3.5 μm and 10 μm or less.
(2)重量基準でSi:14〜25%、Cu:0.5〜
5.0%、Mg:0.3〜3.0%を含み、さらにSn
:0.2〜2.0%、Pb:0.2〜2.0%およびB
1:0.2〜2.0%のうちの一種以上を含み、残り不
可避不純物とAlよりなる合金であって、Si粒子の平
均粒径が0.3〜3.5μm、平均粒子間距離が10μ
m以下であることを特徴とするDATのドラム用アルミ
ニウム合金。
(2) Si: 14~25%, Cu: 0.5~ by weight
5.0%, Mg: 0.3 to 3.0%, and further Sn
:0.2-2.0%, Pb:0.2-2.0% and B
1: An alloy containing one or more of 0.2 to 2.0%, remaining unavoidable impurities, and Al, the average grain size of Si particles is 0.3 to 3.5 μm, and the average interparticle distance is 10μ
An aluminum alloy for DAT drums, which is characterized by having a diameter of less than m.
JP3442187A 1987-02-19 1987-02-19 Aluminum alloy for dat drum Pending JPS63203742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3442187A JPS63203742A (en) 1987-02-19 1987-02-19 Aluminum alloy for dat drum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3442187A JPS63203742A (en) 1987-02-19 1987-02-19 Aluminum alloy for dat drum

Publications (1)

Publication Number Publication Date
JPS63203742A true JPS63203742A (en) 1988-08-23

Family

ID=12413739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3442187A Pending JPS63203742A (en) 1987-02-19 1987-02-19 Aluminum alloy for dat drum

Country Status (1)

Country Link
JP (1) JPS63203742A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115338A (en) * 1988-10-25 1990-04-27 Showa Alum Corp Aluminum alloy having excellent wear resistance and machinability
JPH03250418A (en) * 1990-02-28 1991-11-08 Hitachi Ltd Rotary drum device
EP0469618A2 (en) * 1990-08-03 1992-02-05 Sony Corporation Magnetic head drum and method of manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115338A (en) * 1988-10-25 1990-04-27 Showa Alum Corp Aluminum alloy having excellent wear resistance and machinability
JPH03250418A (en) * 1990-02-28 1991-11-08 Hitachi Ltd Rotary drum device
EP0469618A2 (en) * 1990-08-03 1992-02-05 Sony Corporation Magnetic head drum and method of manufacturing same

Similar Documents

Publication Publication Date Title
JPS627828A (en) Al alloy with high li and si content and its production
JP3173452B2 (en) Wear-resistant covering member and method of manufacturing the same
JPS60208443A (en) Aluminum alloy material
JPS63203742A (en) Aluminum alloy for dat drum
US2881511A (en) Highly wear-resistant sintered powdered metal
JPH0610086A (en) Wear resistant aluminum alloy and working method therefor
JP3525439B2 (en) Target member and method of manufacturing the same
JPS6150132B2 (en)
US4236925A (en) Method of producing sintered material having high damping capacity and wearing resistance and resultant products
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPS60187654A (en) Aluminum alloy for parts to contact with magnetic tape having excellent corrosion resistance
EP0577944B1 (en) High-strength aluminum-based alloy, and compacted and consolidated material thereof
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
JPS6086237A (en) Cu-alloy for slide member
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
JPH0261021A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPS6328987B2 (en)
JP2909108B2 (en) Target member and method of manufacturing the same
JPS6213422B2 (en)
JPH11302807A (en) Manufacture of aluminum alloy for compressor vane
JPH02149633A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JP2605866B2 (en) Manufacturing method of composite compound dispersion type Cu-Zn-A (1) sintered alloy with excellent wear resistance
JPS63137137A (en) Sintered steel excellent in machinability