JPS6320362A - Vibration-proof composite material - Google Patents

Vibration-proof composite material

Info

Publication number
JPS6320362A
JPS6320362A JP61164440A JP16444086A JPS6320362A JP S6320362 A JPS6320362 A JP S6320362A JP 61164440 A JP61164440 A JP 61164440A JP 16444086 A JP16444086 A JP 16444086A JP S6320362 A JPS6320362 A JP S6320362A
Authority
JP
Japan
Prior art keywords
vibration
weight
reactive liquid
piezoelectric
powder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61164440A
Other languages
Japanese (ja)
Inventor
Shunjiro Imagawa
今川 俊次郎
Toshihiro Harima
播磨 俊宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP61164440A priority Critical patent/JPS6320362A/en
Publication of JPS6320362A publication Critical patent/JPS6320362A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a vibration-proof composite material which has a high logarithmic decrement, excellent vibration-proofness and high Younger's modulus, by integrally mixing a thermosetting resin material with a reactive liquid rubber and a piezoelectric material powder. CONSTITUTION:100pts.wt. thermosetting resin material (A) (e.g., an epoxy resin) is mixed with 50-150pts.wt. reactive liquid rubber (B) (e.g., liquid styrene/ butadiene rubber) and 100-4,000pts.wt. piezoelectric material powder (C) (e.g., polyvinylidene fluoride). The mixture is integrally molded to obtain the desired vibration-proof composite material. When external vibrational energy is applied to this material, the vibrational energy is absorbed by the piezoelectric material powder to convert it into electrical charge. Vibration is absorbed by synergism of the vibration-damping effect between the resin material and the reactive liquid rubber and a frictional effect by these material and the piezoelectric material powder and a high logarithmic decrement can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体製造工業等において微細な不要振動を除
去するのに使用される防振複合体に関す(発明の背景) 近年、半導体集積回路(IC)技術の発展に伴い、半導
体チップに集積される素子密度も非常に大きくなってい
る。このため、半導体チップ上のICパターンを構成し
ている線の幅は、たとえば1μm程度と非常に細くなっ
ている。このような高密度の集積回路を製造する装置で
は、外部から与えられる、あるいは自身が発生する極く
微少な振動によっても、製品の品質に大きな影響が及ぶ
ようになってきた。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a vibration isolating composite used to eliminate minute unnecessary vibrations in the semiconductor manufacturing industry, etc. (Background of the Invention) In recent years, semiconductor integrated circuits With the development of (IC) technology, the density of elements integrated into semiconductor chips has also increased significantly. Therefore, the width of the lines constituting the IC pattern on the semiconductor chip is very thin, for example, about 1 μm. In devices that manufacture such high-density integrated circuits, the quality of the products has come to be greatly affected by even the slightest vibrations applied from the outside or generated by the devices themselves.

このような振動に対する対策としては、振動の発生源と
なっている機器の剛性化や、これらの機器との共振回避
、防振系の設置など、設計上の観点から考慮されていた
が、必ずしも充分といえろものではなかった。
Countermeasures against such vibrations have been considered from a design perspective, such as increasing the rigidity of the equipment that is the source of vibration, avoiding resonance with these equipment, and installing vibration isolation systems. It wasn't quite enough.

そこで、防振対策として、振動の発生源に振動を減衰さ
せる材料を用いることが検討されている。
Therefore, as an anti-vibration measure, consideration is being given to using materials that dampen vibrations at the source of the vibrations.

一般に、振動理論によれば、外部に及ぼす振動の影響を
小さくするためには、振動伝達のエネルギー損失比(Q
−つや対数減衰率(δ)が大きいことが重視されている
。この他に防振材料の質重、弾性係数(K)などの特性
も考慮されることがある。
Generally, according to vibration theory, in order to reduce the influence of vibration on the outside, the energy loss ratio (Q
- Emphasis is placed on a large gloss logarithmic attenuation rate (δ). In addition to this, characteristics such as the weight and elastic modulus (K) of the vibration-proof material may also be taken into consideration.

従来の防振材としては、たとえばゴム、防振金属(合金
)、フェライト複合材料などが知られている。このうち
、ゴムは対数減衰率は大きいが、弾性係数としてヤング
率を評価したとき、ヤング率が小さいという点で問題が
あった。また、防振金属はヤング率は大きいが、対数減
衰率が小さい点で問題があった。さらに、フェライト複
合材料はヤング率が大きく、対数減衰率が大きいという
利点を有しているが、強磁性材料を含有するため、配向
磁化によって磁気フラックスの発生が見られるという点
で、高密度集積回路の製造装置や精密機器などの防振材
としては不適当であった。
Conventional anti-vibration materials include, for example, rubber, anti-vibration metals (alloys), and ferrite composite materials. Among these, rubber has a large logarithmic damping rate, but when Young's modulus is evaluated as an elastic modulus, there is a problem in that the Young's modulus is small. Furthermore, although vibration-proof metals have a large Young's modulus, they have a problem in that they have a small logarithmic damping rate. Furthermore, ferrite composite materials have the advantage of having a large Young's modulus and a large logarithmic attenuation rate, but because they contain ferromagnetic materials, magnetic flux is generated due to oriented magnetization. It was unsuitable as a vibration isolating material for circuit manufacturing equipment, precision equipment, etc.

そこで、本願の出願人は上記事情に鑑み、特開昭60−
51750号公報において、圧電体粉末材料と高分子樹
脂材料の混合一体物からなり、この混合一体物には漏電
経路が形成されている防振複合体を搗案した。
Therefore, in view of the above circumstances, the applicant of the present application
In Japanese Patent No. 51750, an anti-vibration composite body was designed, which was made of a mixed body of a piezoelectric powder material and a polymeric resin material, and in which a leakage path was formed in the mixed body.

(発明の目的) 本発明の目的は、上記防振複合体よりもさらに対数減衰
率が大きな防振特性がさらに改善された防振複合体を提
供することである。
(Objective of the Invention) An object of the present invention is to provide a vibration-proofing composite which has further improved vibration-damping characteristics and has a larger logarithmic damping rate than the vibration-proofing composite described above.

(発明の構成) このため、本発明は、熱硬化性樹脂材料と反応性液状ゴ
ムと圧電体粉末材料との混合一体物からなることを特徴
としている。
(Structure of the Invention) Therefore, the present invention is characterized in that it consists of a mixed and integrated product of a thermosetting resin material, a reactive liquid rubber, and a piezoelectric powder material.

上記混合一体物には導電体粉末材料を含有させてもよい
The above-mentioned mixed body may contain a conductive powder material.

上記熱硬化性樹脂としては、たとえば、ポリイミド、ポ
リアミドイミド、ポリウレタン、シリコーン、アリル樹
脂、エポキシ樹脂、不飽和ポリエステル、アミノ樹脂、
フェノール樹脂などがある。
Examples of the thermosetting resin include polyimide, polyamideimide, polyurethane, silicone, allyl resin, epoxy resin, unsaturated polyester, amino resin,
There are phenolic resins, etc.

上記反応性液状ゴムとしては、液状ブタジェン共重合体
やジエン共重合体の末端基を官能基で変性した共重合体
などがある。
Examples of the reactive liquid rubber include liquid butadiene copolymers and diene copolymers whose terminal groups are modified with functional groups.

このうち、液状ブタジェン共重合体としては、たとえば
、液状アクリロニトリルブタジェンゴムや液状スチレン
ブタジェンゴム等がある。
Among these, examples of liquid butadiene copolymers include liquid acrylonitrile butadiene rubber and liquid styrene butadiene rubber.

また、ジエン共重合体の末端基を官能基で変性した共重
合体としては、たとえば、末端カルボキシル基ポリブタ
ジェンや末端水酸基ポリブタジェン等がある。
Examples of copolymers in which the terminal groups of diene copolymers are modified with functional groups include polybutadiene with carboxyl terminal groups and polybutadiene with hydroxyl terminal groups.

上記反応性液状ゴムは、上記熱硬化性樹脂材料100重
1部に対し、50重量部ないし150重量部含有す、る
。これは上記反応性液状ゴムの含有量が50重量部以下
となると、防振複合体が硬くなり、減衰特性が劣り、逆
に、上記反応性液状ゴムの含有量が150重量部以上で
は、防振複合体のヤング率が小さく、強度が低下するか
らである。
The reactive liquid rubber is contained in an amount of 50 to 150 parts by weight per 100 parts by weight of the thermosetting resin material. This is because when the content of the reactive liquid rubber is less than 50 parts by weight, the vibration damping composite becomes hard and the damping properties are poor, whereas when the content of the reactive liquid rubber is 150 parts by weight or more, This is because the Young's modulus of the vibratory composite is small and the strength is reduced.

上記圧電体粉末材料としては、たとえば、ポリフッ化ビ
ニリデン、三フッ化エチレンーPVDF共重合体など高
分子圧電体粉末材料、PbTiOs系、P b(T t
、 Z r)03の二成分あるいは三成分系、L i 
N b O3系、LiTaO3系、BaTiO3などの
夫々の各種固溶変成体のような無機圧電体粉末材料があ
る。
Examples of the piezoelectric powder material include polymeric piezoelectric powder materials such as polyvinylidene fluoride, trifluoroethylene-PVDF copolymer, PbTiOs, Pb(T t
, Z r)03 binary or ternary system, Li
There are inorganic piezoelectric powder materials such as various solid solution metamorphosed materials such as NbO3-based, LiTaO3-based, and BaTiO3.

上記圧電体粉末材料は、熱硬化性樹脂材料100重量部
に対し、100重量部ないし4000重量部含有される
。これは上記圧電体粉末材料の含有量が100重量部以
下となると、圧電効果が小さく、防振複合体の減衰特性
が劣り、逆に、上記圧電体粉末材料の含有量が4000
以上になると、防振複合体がもろくなり、強度も低下す
るからである。
The piezoelectric powder material is contained in an amount of 100 to 4000 parts by weight based on 100 parts by weight of the thermosetting resin material. This is because when the content of the piezoelectric powder material is 100 parts by weight or less, the piezoelectric effect is small and the damping characteristics of the vibration-proof composite are poor;
This is because if the vibration-proof composite becomes brittle and its strength decreases.

次に、このような熱硬化性樹脂、反応性液状ゴム、圧電
体粉末材料の混合一体物の中に導電体粉末材料を含ませ
ると、この導電体粉末材料により漏電経路が形成される
。この漏電経路を形成する上記導電体粉末材料としては
たとえば次のようなものがある。
Next, when a conductive powder material is included in the integrated mixture of the thermosetting resin, reactive liquid rubber, and piezoelectric powder material, a leakage path is formed by the conductive powder material. Examples of the above-mentioned conductive powder materials that form this leakage path include the following.

すなわち、導電体粉末材料の種類としては、たとえば、
カーボン、黒鉛、カーボン抵抗などのカーボン系微少体
、金属粉、半導電性高分子樹脂材料、Snow、ZnO
などの半導電性無機材料、絶縁性高分子樹脂材料または
絶縁性無機材料の表面に導電性皮膜を形成したものがあ
る。
That is, the types of conductor powder materials include, for example:
Carbon, graphite, carbon-based microscopic objects such as carbon resistors, metal powder, semiconductive polymer resin materials, Snow, ZnO
There are materials in which a conductive film is formed on the surface of a semiconductive inorganic material, an insulating polymer resin material, or an insulating inorganic material such as.

上記導電体粉末材料は、防振複合体中に漏電経路を形成
する機能を有ケるが、添加により防振複合体の強度が向
上する。この添加量は上記熱硬化性樹脂100重量部に
対して、1重量部ないし100重量部が適当な値であり
、100重量部以上となると、防振複合体の成形性が低
下する。
The conductor powder material has the function of forming a leakage path in the vibration-proof composite, and its addition improves the strength of the vibration-proof composite. The appropriate amount of addition is 1 part by weight to 100 parts by weight per 100 parts by weight of the thermosetting resin, and if it exceeds 100 parts by weight, the moldability of the vibration-damping composite will deteriorate.

上記漏電経路は、防振複合体に振動エネルギーが加えら
れると、振動エネルギーが圧電体粉末材料に吸収されて
電荷に変換され、発生した電荷は圧電体粉末材料の周囲
または圧電体粉末材料そのものに存在する漏電経路から
漏電し、熱として消費され、すなわち振動エネルギーを
鴇エネルギーに変換することによって、大きな対数減衰
率が得られる。
The above-mentioned leakage path is such that when vibration energy is applied to the vibration isolation composite, the vibration energy is absorbed by the piezoelectric powder material and converted into electric charge, and the generated electric charge is transferred to the surroundings of the piezoelectric powder material or to the piezoelectric powder material itself. A large logarithmic damping rate is obtained by leaking current from the existing leakage path and dissipating it as heat, that is, converting vibrational energy into tow energy.

(発明の効果) 本発明によれば、防振複合体が熱硬化性樹脂材料と反応
性液状ゴムと圧電体粉末材料との混合−体物からなるも
のであるから、この防振複合体に外部から振動エネルギ
ーが加えられると、振動エネルギーが圧電体粉末材料に
吸収されて電荷に変換されることにより振動吸収が行な
われる一方、高分子樹脂と反応性液状ゴムの振動ダンピ
ング効果およびそれらと圧電体粉末材料の摩擦効果が相
乗して振動吸収が行なわれ、大きな対数減衰率を得るこ
とができる。混合一体物に導電体粉末材料か含まれると
、漏電経路が形成され、振動エネルギーが加えられてこ
の振動エネルギーが圧電体粉末材料が吸収されて電荷に
変換され、この電荷が漏電経路から漏電して熱として放
散されることにより振動吸収が行なわれることになる。
(Effects of the Invention) According to the present invention, since the vibration isolating composite is made of a mixture of a thermosetting resin material, a reactive liquid rubber, and a piezoelectric powder material, the vibration isolating composite has When vibrational energy is applied from the outside, the vibrational energy is absorbed by the piezoelectric powder material and converted into electric charge, thereby absorbing the vibration. On the other hand, the vibration damping effect of the polymer resin and reactive liquid rubber and the piezoelectricity The frictional effects of the body powder material combine to absorb vibrations, and a large logarithmic damping rate can be obtained. When a conductive powder material is included in the mixture, a leakage path is formed, vibration energy is applied, and the piezoelectric powder material absorbs this vibrational energy and converts it into an electric charge, and this electric charge leaks through the leakage path. Vibration absorption is achieved by dissipating the heat as heat.

また、本発明によれば、熱硬化性樹脂材料および反応性
液状ゴムが圧電体粉末材料を構成している各粒子間の空
隙を埋め込んでいるので、圧電体粉末材料が有している
剛性によりヤング率が大きな防振複合体を得ることがで
きる。
Further, according to the present invention, since the thermosetting resin material and the reactive liquid rubber fill the voids between the particles constituting the piezoelectric powder material, the rigidity of the piezoelectric powder material can be improved. A vibration damping composite with a large Young's modulus can be obtained.

さらに、本発明によれば、防振複合体は非強磁性の材料
により構成されているので、配向磁化による磁気フラッ
クスの発生もなくすことができる。
Furthermore, according to the present invention, since the vibration-proof composite is made of a non-ferromagnetic material, generation of magnetic flux due to oriented magnetization can also be eliminated.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

エポキシ樹脂100グラム、反応性液状ゴムI00グラ
ムを溶剤6グラムとともに、見合攪拌した。
100 grams of epoxy resin and 100 grams of reactive liquid rubber were mixed together with 6 grams of solvent.

次に、上記で得られたエポキシ樹脂と液状ブタジェン共
重合体の混合物中に、圧電体粉末材料2200グラムと
、溶剤200グラムとともに混合し、上記圧電体粉末材
料およびカーボンファイバー粉末を均一に分散させた。
Next, 2200 grams of piezoelectric powder material and 200 grams of solvent were mixed into the mixture of the epoxy resin and liquid butadiene copolymer obtained above, and the piezoelectric powder material and carbon fiber powder were uniformly dispersed. Ta.

上記のようにして得られた組成物中の溶剤を留去させる
ため、この組成物を一昼夜、自然放置した後、lmmH
g/3Hrで真空留去した。この場合、自然放置を省略
し、l mmHg/ 5 Hrで真空留去してもよい。
In order to distill off the solvent in the composition obtained as described above, this composition was left to stand naturally for a day and night, and then lmmH
Distilled in vacuo at g/3Hr. In this case, leaving to stand naturally may be omitted and vacuum distillation may be performed at 1 mmHg/5 Hr.

得られた組成物を150℃、35Kgf/cm’で、3
0分間ホットプレスして、縦×横×厚さが75mmx 
75 mmx 2 mmの防振複合体を作成した。
The obtained composition was heated at 150°C and 35Kgf/cm' for 3
Hot press for 0 minutes, length x width x thickness 75mm x
A vibration isolation composite of 75 mm x 2 mm was made.

このようにして得られた防振複合体のサンプル(以下、
サンプルlという。)の中央部に約20craの高さか
ら、重さ2グラムの鋼球を落下させて衝撃を与え、次式 より対数減衰率δを求めたところ、δ=0.22であっ
た。ただし、上記(1)式において、AnおよびAn+
、は夫々上記鋼球が当たったときに、上記サンプルlに
発生した振動のn番目およびn−1−1番目の振幅であ
る。
A sample of the anti-vibration composite obtained in this way (hereinafter referred to as
It is called sample l. ) from a height of about 20 cra to give an impact, the logarithmic attenuation rate δ was determined from the following equation, and δ = 0.22. However, in the above formula (1), An and An+
, are the n-th and n-1-1-th amplitudes of vibrations generated in the sample l when the steel ball hits the sample, respectively.

上記実施例において、カーボンファイバ粉末の量を20
グラムとしたサンプル2ては、対数減衰率δは、δ=0
.24であった。
In the above example, the amount of carbon fiber powder was 20
For sample 2 in grams, the logarithmic decay rate δ is δ=0
.. It was 24.

また、上記実施例において、カーホンファイバ粉末の量
を30グラムとしたサンプル3ては、δ=0.22であ
った。
Further, in the above example, in sample 3 in which the amount of carphone fiber powder was 30 grams, δ=0.22.

以上をまとめると、次の第1表の通りである。The above is summarized in Table 1 below.

第1表 次に、上記実施例の効果を確かめるため、特開昭60−
51750号公報の実施例1ないし4により夫々比較例
1ないし4を製作した。
Table 1 Next, in order to confirm the effect of the above embodiment,
Comparative Examples 1 to 4 were produced based on Examples 1 to 4 of Japanese Patent No. 51750, respectively.

すなわち、比較例1は、PZT扮末84重量%、カーボ
ン粉末1重量%、ポリエステル樹脂15重量%の割合で
混合し、重合材を添加したのち充分に脱泡し、シート状
に成形し、このシート状成形体を100℃で2時間加熱
重合することにより製作した。
That is, in Comparative Example 1, 84% by weight of PZT powder, 1% by weight of carbon powder, and 15% by weight of polyester resin were mixed, the polymer material was added, the air was sufficiently defoamed, and the mixture was formed into a sheet. A sheet-like molded body was produced by heating and polymerizing it at 100°C for 2 hours.

比較例2は、BaTiO3粉末84重量%、カーボン粉
末1重量%、ポリエステル樹脂15重量%の割合で混合
し、その後、比較例1と同様に熱処理することにより製
作した。
Comparative Example 2 was produced by mixing 84% by weight of BaTiO3 powder, 1% by weight of carbon powder, and 15% by weight of polyester resin, and then heat-treating in the same manner as in Comparative Example 1.

比較例3は、BaTiO3粉末表面に無電解メッキ法に
よりニッケルの導電性被膜を形成し、このBaTiO3
粉末88重量%、ポリエステル樹脂12重量%を混合し
、脱泡したのちシート状に成形し、このシート状成形体
を2時間、加熱重合することにより製作した。
In Comparative Example 3, a nickel conductive film was formed on the surface of BaTiO3 powder by electroless plating, and this BaTiO3
88% by weight of powder and 12% by weight of polyester resin were mixed, defoamed and then molded into a sheet, and this sheet-shaped molded product was produced by heating and polymerizing for 2 hours.

比較例4は、半導体化剤を微量含宵させたBaT i 
O3半導体粉末8.8重量%、ポリエステル樹脂12重
M%を混合し、脱泡したのちシート状に成形し、このシ
ート状成形体を100℃で2時間加熱重合することによ
り製作した。
Comparative Example 4 is BaTi containing a trace amount of a semiconducting agent.
It was manufactured by mixing 8.8% by weight of O3 semiconductor powder and 12% by weight of polyester resin, defoaming, molding into a sheet, and heating and polymerizing this sheet-shaped molded product at 100° C. for 2 hours.

以上の比較例1ないし比較例4について、対数減衰率δ
を測定したところ、次の第2表に示すような結果を得た
Regarding the above Comparative Examples 1 to 4, the logarithmic attenuation rate δ
When measured, the results shown in Table 2 below were obtained.

第2表 上記第2表を第1表と比較すれば明らかなように、実施
例1ないし実施例3の防振複合体では、対数減衰率δが
比較例1ないし比較例4のいずれのものよりも改善され
ていることが分かる。なお、弾性率の特性について測定
したところ、その値は比較例よりも小さかったが、ゴム
の弾性率に比べて値が大きく、実用上何ら支障のないも
のであった。
Table 2 As is clear from the comparison of Table 2 above with Table 1, the anti-vibration composites of Examples 1 to 3 have logarithmic damping rates δ of any of Comparative Examples 1 to 4. It can be seen that it is improved. In addition, when the characteristic of elastic modulus was measured, the value was smaller than that of the comparative example, but the value was larger than the elastic modulus of rubber, and there was no problem in practical use.

Claims (2)

【特許請求の範囲】[Claims] (1)熱硬化性樹脂材料と反応性液状ゴムと圧電体粉末
材料との混合一体物からなり、この混合一体物中には、
上記熱硬化性樹脂材料100重量部に対し、反応性液状
ゴムは50重量部ないし150重量部、上記圧電体粉末
材料は100重量部ないし4000重量部、夫々含まれ
ていることを特徴とする防振複合体。
(1) Consists of a mixture of thermosetting resin material, reactive liquid rubber, and piezoelectric powder material, and this mixture includes:
50 to 150 parts by weight of the reactive liquid rubber and 100 to 4000 parts by weight of the piezoelectric powder material are contained in 100 parts by weight of the thermosetting resin material, respectively. Shaking complex.
(2)前記混合一体物中には、さらに導電体粉末材料が
含まれており、この導電体粉末材料は熱硬化性樹脂材料
100重量部に対して1重量部ないし100重量部含ま
れていることを特徴とする特許請求の範囲第1項記載の
防振複合体。
(2) The integrated mixture further contains a conductive powder material, and this conductive powder material is contained in an amount of 1 part by weight to 100 parts by weight based on 100 parts by weight of the thermosetting resin material. The anti-vibration composite according to claim 1, characterized in that:
JP61164440A 1986-07-11 1986-07-11 Vibration-proof composite material Pending JPS6320362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61164440A JPS6320362A (en) 1986-07-11 1986-07-11 Vibration-proof composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61164440A JPS6320362A (en) 1986-07-11 1986-07-11 Vibration-proof composite material

Publications (1)

Publication Number Publication Date
JPS6320362A true JPS6320362A (en) 1988-01-28

Family

ID=15793203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61164440A Pending JPS6320362A (en) 1986-07-11 1986-07-11 Vibration-proof composite material

Country Status (1)

Country Link
JP (1) JPS6320362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008021191A2 (en) * 2006-08-09 2008-02-21 The Johns Hopkins University Piezoelectric compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051750A (en) * 1983-08-30 1985-03-23 Murata Mfg Co Ltd Vibration-proofing composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051750A (en) * 1983-08-30 1985-03-23 Murata Mfg Co Ltd Vibration-proofing composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008021191A2 (en) * 2006-08-09 2008-02-21 The Johns Hopkins University Piezoelectric compositions
WO2008021191A3 (en) * 2006-08-09 2008-08-21 Univ Johns Hopkins Piezoelectric compositions
US8641919B2 (en) 2006-08-09 2014-02-04 The Johns Hopkins University Piezoelectric compositions
US9484524B2 (en) 2006-08-09 2016-11-01 The Johns Hopkins University Piezoelectric compositions

Similar Documents

Publication Publication Date Title
JPS6146498B2 (en)
KR101237001B1 (en) Composition for complex sheet, complex sheet comprising the same, and preparation method of the complex sheet
US20030008969A1 (en) Heat-radiating electromagnetic wave absorber
WO2018181606A1 (en) Heat-conducting member and heat-dissipating structure including said heat-conducting member
US7374814B2 (en) Soft magnetic powder material containing a powdered lubricant and a method of manufacturing a soft magnetic powder compact
KR20110102840A (en) Resin composition for electronic component encapsulation and electronic component device
JP2017128476A (en) Composite filler and thermosetting material
KR101612596B1 (en) Laminate and method for producing component for power semiconductor modules
KR20150052591A (en) Composition for complex sheet, complex sheet comprising the same, and preparation method of the complex sheet
JP6624561B2 (en) Resin sheet, inductor parts
JPS6320362A (en) Vibration-proof composite material
WO2021039630A1 (en) Insulating resin composition, insulating resin cured body, layered body and circuit base board
JP2018087305A (en) Sheet-like thermosetting resin composition, and resin sheet, module component, power device and coil component prepared therewith
JPH02117935A (en) Casting resin composition
JP4154685B2 (en) Resin magnet
KR101887337B1 (en) The laminate
JPS6351447B2 (en)
DE4041962A1 (en) Polymer-bonded anisotropic magnet materials - contain 80-95 wt. per cent strontium and/or barium hexa:ferrite, in polymer matrix obtd. by poly addn. of di:epoxide and amine
JP2017128475A (en) Composite filler and thermosetting material
WO2021112135A1 (en) Compound and molded object
WO2021241541A1 (en) Resin composition and electronic component
Mudumba et al. Effect of silicone on dynamic mechanical properties of epoxy resin filled with imide powder
WO2017010363A1 (en) Flame-retardant composite magnetic body
JP6596611B1 (en) Thermosetting composition and paste
JPS598718A (en) Epoxy resin composition