JPS6320301B2 - - Google Patents

Info

Publication number
JPS6320301B2
JPS6320301B2 JP15723983A JP15723983A JPS6320301B2 JP S6320301 B2 JPS6320301 B2 JP S6320301B2 JP 15723983 A JP15723983 A JP 15723983A JP 15723983 A JP15723983 A JP 15723983A JP S6320301 B2 JPS6320301 B2 JP S6320301B2
Authority
JP
Japan
Prior art keywords
molybdenum
single crystal
producing
crystal
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15723983A
Other languages
Japanese (ja)
Other versions
JPS6050160A (en
Inventor
Yutaka Hiraoka
Masatoshi Okada
Tadayuki Fujii
Ryoji Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP15723983A priority Critical patent/JPS6050160A/en
Publication of JPS6050160A publication Critical patent/JPS6050160A/en
Publication of JPS6320301B2 publication Critical patent/JPS6320301B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高温用に適するモリブデン材料の製造
法に関する。更に詳しくは高温での使用に耐え、
且つ比較的低い温度においても十分な延性を有す
るモリブデン材料の製造法に関する。 高融点金属の1つであるモリブデン材料は、高
温強度に優れ、また熱膨張係数が小さく、熱伝導
性が良好であるなどの特性を有するので、高温用
材料として適している。しかしながら、温度上昇
に伴つて再結晶あるいは結晶成長等の組織変化が
起こり、材料の脆化が著しい欠点がある。 高温においても大きな組織変化がなく、また比
較的低い温度においても十分な延性を有するモリ
ブデン材料を得ることができれば、電気、電子部
品材料、あるいは原子炉材料としてより広汎な用
途を開くことができると考えられる。 従来、モリブデン材料として、モリブデン多結
晶に浸炭処理を施したものが知られている。 (特許第1067574号明細書参照)該モリブデン
材料は、延性―脆性遷移温度(以下DBTTと記
載する)は−100〜−120℃であるが、高温での長
時間使用により脆化する欠点があつた。 本発明者らはこの欠点を改善すべく研究の結
果、Ca及びまたはMgを総量で0.003〜0.12原子%
モリブデン多結晶に含有させ、これを2000〜2300
℃で焼鈍して2次再結晶により単結晶化させた。
(特願昭58−012928号)このような単結晶は、い
わゆる結晶粒界が存在しない結晶であるので、温
度上昇に伴う組織変化がなく、延性も優れたもの
となつた。しかし、比較的低い温度においては、
その延性が単結晶表面に残存する島結晶により損
われることが分つた。(DBTTは−120℃であ
る。) ここに言う島結晶とは、単結晶の表面に島状に
存在する100〜300μmの大きさの結晶粒をいう。 本発明の目的は高温においても大きな組織変化
がなく、また比較的低い温度においても、十分な
延性を有する任意形状のモリブデン材料の製造法
を提供するにある。 本発明者らは前記目的を達成すべく更に研究を
重ねた結果、モリブデン多結晶にモリブデンを単
結晶化させる元素例えば、Mg,Caの単独もしく
は混合物を一定量例えば0.003〜0.12原子%(総
量として)含有させ、これを成型加工した後、2
次再結晶により単結晶化し、その表面に炭素を真
空蒸着させて、真空中で加熱鈍して浸炭すると、
高温での使用に耐え、また比較的低い温度におい
ても十分な延性を有するモリブデン材料が得られ
ることを究明し得た。この知見に基づいて本発明
を完成した。 本発明の要旨は、モリブデン多結晶を単結晶化
する作用を有する元素を含んだモリブデン多結晶
を成型加工し、これを2次再結晶により単結晶化
した後、その表面に浸炭処理を行うことを特徴と
するモリブデン材料の製造法にある。 本発明におけるモリブデン多結晶を単結晶化す
る作用を有する元素としては、前記したMg、Ca
のほか、Al,Siが挙げられる。多結晶への添加
量は0.003〜0.12原子%程度が好ましい。これよ
り少ないと単結晶化し難く、これより多いと、優
れた単結晶が得難い。これを成型加工する。例え
ば250〜300℃に加熱し成型する。 この成型加工は多結晶時に行うことが必要であ
り、単結晶にした後加工すると、高温時に加工部
が多結晶となり、脆化する。成型加工したものを
2000〜2300℃で約1時間焼鈍すると2次再結晶に
より単結晶となる。 得られた単結晶の表面に例えば真空蒸着法によ
り炭素を被覆し、真空中で1200〜1500℃で一定時
間保持することにより浸炭を行うことができる。 この浸炭処理による材料の炭素量は最終的に
0.0010〜0.0030重量%であることが望ましい。炭
素量が少ない場合には島結晶とモリブデン基地と
の界面の強化が不十分であり、逆に炭素量が多い
場合には界面及びモリブデン基地自体が再び脆化
する傾向にある。 このような浸炭処理によると、モリブデンに有
害な酸素、窒素の汚染は全くなく、炭素のみが島
結晶とモリブデン基地との界面に均一に分布す
る。 浸炭処理したものはその表面が高硬度となるの
で、その表面に形成されている炭素層を機械的研
磨あるいは化学的研磨により除去する。 本発明の方法により得られるモリブデン材料は
次のような優れた特性を有する。 (1) 高温で長時間使用しても、再結晶あるいは結
晶粒成長等の大きな組織変化化がなく、その寿
命が長い。 (2) 比較的低い温度においても十分な延性を有す
る。 (3) 任意の形状のモリブデン材料が容易に得られ
る。 実施例 Ca,Mgを総量で0.0025重量%(0.0075原子%)
含んだ焼結モリブデン多結晶を熱延伸して厚さ1
mmの板を作つた。この板を真空中(10-7torr)
で、2300℃の温度に1時間保持し、単結晶化させ
た。次に単結晶化板の表面に真空蒸着法により炭
素を約2000Åの厚さに被覆した。更にこれを真空
中で1200℃に200分、または1500℃で20分間保持
して浸炭処理を行つた。以上の処理後、表面の炭
素層を数μm研磨除去してモリブデン材料を得
た。 浸炭処理の前後での酸素、窒素量には変化はな
かつた。炭素は未処理材が0.0007重量%であつた
ものが、浸炭処理後は0.0010重量%(1200℃で
200分処理)、0.0027重量%(1500℃で20分処理)
に増加した。 得られた材料の延性―脆性遷移温度(DBTT)
を測定した。延性―脆性試験は3点曲げ試験で行
つた。 その結果は次の表1に示す通りであつた。
The present invention relates to a method for producing molybdenum materials suitable for high temperature applications. In more detail, it can withstand use at high temperatures,
The present invention also relates to a method for producing a molybdenum material that has sufficient ductility even at relatively low temperatures. Molybdenum material, which is one of the high-melting point metals, has characteristics such as excellent high-temperature strength, a small coefficient of thermal expansion, and good thermal conductivity, and is therefore suitable as a material for high-temperature use. However, as the temperature rises, structural changes such as recrystallization or crystal growth occur, resulting in significant embrittlement of the material. If we can obtain a molybdenum material that does not undergo major structural changes even at high temperatures and has sufficient ductility even at relatively low temperatures, it could be used in a wider range of applications as electrical and electronic component materials and nuclear reactor materials. Conceivable. Conventionally, as molybdenum materials, molybdenum polycrystals subjected to carburizing treatment are known. (See Patent No. 1067574) The molybdenum material has a ductile-brittle transition temperature (hereinafter referred to as DBTT) of -100 to -120°C, but it has the disadvantage of becoming brittle when used at high temperatures for a long time. Ta. As a result of research to improve this drawback, the present inventors found that the total amount of Ca and/or Mg was 0.003 to 0.12 at%.
Contain it in molybdenum polycrystal, and add 2000 to 2300
It was annealed at ℃ and made into a single crystal by secondary recrystallization.
(Japanese Patent Application No. 58-012928) Since such a single crystal is a crystal in which so-called grain boundaries do not exist, there is no structural change due to temperature rise, and it has excellent ductility. However, at relatively low temperatures,
It was found that the ductility was impaired by island crystals remaining on the single crystal surface. (DBTT is -120°C.) The island crystal referred to here refers to crystal grains with a size of 100 to 300 μm that exist in the form of islands on the surface of a single crystal. An object of the present invention is to provide a method for producing a molybdenum material of any shape that does not undergo large structural changes even at high temperatures and has sufficient ductility even at relatively low temperatures. As a result of further research to achieve the above object, the present inventors found that elements that make molybdenum single crystallized, such as Mg and Ca, alone or in a mixture, were added to molybdenum polycrystals in a certain amount, for example, 0.003 to 0.12 atomic % (total amount). ) and after molding it, 2
Next, it is made into a single crystal by recrystallization, carbon is vacuum-deposited on its surface, and then carburized by heating and annealing in a vacuum.
It has been found that a molybdenum material that can withstand use at high temperatures and has sufficient ductility even at relatively low temperatures can be obtained. The present invention was completed based on this knowledge. The gist of the present invention is to mold a molybdenum polycrystal containing an element that has the effect of single-crystallizing the molybdenum polycrystal, to form a single crystal by secondary recrystallization, and then to perform a carburizing treatment on the surface thereof. A method for producing a molybdenum material characterized by: In the present invention, the elements having the effect of single-crystallizing molybdenum polycrystals include the above-mentioned Mg and Ca.
Other examples include Al and Si. The amount added to the polycrystal is preferably about 0.003 to 0.12 atomic %. If it is less than this, it is difficult to form a single crystal, and if it is more than this, it is difficult to obtain an excellent single crystal. This is molded. For example, it is heated to 250-300°C and molded. This molding process must be performed when the material is polycrystalline, and if it is processed after being made into a single crystal, the processed portion will become polycrystalline and become brittle at high temperatures. Molded and processed
When annealed at 2000 to 2300°C for about 1 hour, it becomes a single crystal due to secondary recrystallization. Carburization can be carried out by coating the surface of the obtained single crystal with carbon, for example, by vacuum evaporation, and holding it in vacuum at 1200 to 1500° C. for a certain period of time. The carbon content of the material resulting from this carburizing process is
The content is preferably 0.0010 to 0.0030% by weight. When the amount of carbon is small, the interface between the island crystal and the molybdenum base is insufficiently strengthened, whereas when the amount of carbon is large, the interface and the molybdenum base itself tend to become brittle again. According to such carburizing treatment, molybdenum is not contaminated with harmful oxygen or nitrogen at all, and only carbon is uniformly distributed at the interface between the island crystals and the molybdenum base. Since the surface of the carburized material becomes highly hard, the carbon layer formed on the surface is removed by mechanical polishing or chemical polishing. The molybdenum material obtained by the method of the present invention has the following excellent properties. (1) Even when used at high temperatures for long periods of time, there are no major structural changes such as recrystallization or grain growth, and its lifespan is long. (2) Sufficient ductility even at relatively low temperatures. (3) Molybdenum materials of arbitrary shapes can be easily obtained. Example: Total amount of Ca and Mg is 0.0025% by weight (0.0075 atomic%)
The sintered molybdenum polycrystal containing the
I made a mm board. This plate is placed in a vacuum (10 -7 torr)
Then, it was held at a temperature of 2300°C for 1 hour to form a single crystal. Next, the surface of the single crystallized plate was coated with carbon to a thickness of about 2000 Å by vacuum evaporation. Further, this was carburized by holding it at 1200°C for 200 minutes or at 1500°C for 20 minutes in a vacuum. After the above treatment, the carbon layer on the surface was removed by polishing several μm to obtain a molybdenum material. There was no change in the amount of oxygen and nitrogen before and after carburizing. Carbon content was 0.0007% by weight in the untreated material, but after carburizing it was 0.0010% by weight (at 1200℃).
200 minutes processing), 0.0027% by weight (20 minutes processing at 1500℃)
increased to Ductile-brittle transition temperature (DBTT) of the resulting material
was measured. The ductility-brittleness test was performed using a three-point bending test. The results were as shown in Table 1 below.

【表】 この結果が示すように、本発明によるMo材料
のDBTTは従来のもののそれに比べて、60℃以
上低温側に移行し、優れた低温特性を示した。 また単結晶化したMo材料の破断応力は島結晶
の大きさに依存して、島結晶が大きくなるにつれ
て著しく低下したが、本発明によるMo材料の破
断応力は全体的に高く、また島結晶の大きさに依
存せず、ほぼ一定であつた。
[Table] As shown by the results, the DBTT of the Mo material according to the present invention moved to a lower temperature side of 60°C or more than that of the conventional material, and exhibited excellent low-temperature properties. In addition, the breaking stress of the single-crystal Mo material depended on the size of the island crystal, and decreased significantly as the island crystal became larger, but the breaking stress of the Mo material according to the present invention was high overall, and the breaking stress of the island crystal It did not depend on the size and remained almost constant.

Claims (1)

【特許請求の範囲】 1 モリブデン多結晶を単結晶化する作用を有す
る元素を含んだモリブデン多結晶を成型加工し、
これを2次再結晶により単結晶化した後、その表
面に浸炭処理を行うことを特徴とするモリブデン
材料の製造法。 2 モリブデン多結晶を単結晶化する作用を有す
る元素がマグネシウムまたはカルシウムである特
許請求の範囲第1項記載のモリブデン材料の製造
法。 3 浸炭処理が、成型加工した材料の表面に炭素
を真空蒸着し、これを真空中で加熱して焼鈍する
方法である特許請求の範囲第1項記載のモリブデ
ン材料の製造法。 4 浸炭量が0.0010〜0.0030重量%の範囲である
特許請求の範囲第1項記載のモリブデン材料の製
造法。
[Claims] 1. Molding a molybdenum polycrystal containing an element that has the effect of converting the molybdenum polycrystal into a single crystal,
A method for producing a molybdenum material, which comprises converting the material into a single crystal by secondary recrystallization, and then carburizing the surface thereof. 2. The method for producing a molybdenum material according to claim 1, wherein the element having the effect of single-crystallizing molybdenum polycrystals is magnesium or calcium. 3. The method for producing a molybdenum material according to claim 1, wherein the carburizing treatment is a method of vacuum-depositing carbon on the surface of the molded material and then heating and annealing it in a vacuum. 4. The method for producing a molybdenum material according to claim 1, wherein the amount of carburization is in the range of 0.0010 to 0.0030% by weight.
JP15723983A 1983-08-30 1983-08-30 Manufacture of molybdenum material Granted JPS6050160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15723983A JPS6050160A (en) 1983-08-30 1983-08-30 Manufacture of molybdenum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15723983A JPS6050160A (en) 1983-08-30 1983-08-30 Manufacture of molybdenum material

Publications (2)

Publication Number Publication Date
JPS6050160A JPS6050160A (en) 1985-03-19
JPS6320301B2 true JPS6320301B2 (en) 1988-04-27

Family

ID=15645286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15723983A Granted JPS6050160A (en) 1983-08-30 1983-08-30 Manufacture of molybdenum material

Country Status (1)

Country Link
JP (1) JPS6050160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9700690B2 (en) 2002-03-20 2017-07-11 Mannkind Corporation Inhalation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9700690B2 (en) 2002-03-20 2017-07-11 Mannkind Corporation Inhalation apparatus

Also Published As

Publication number Publication date
JPS6050160A (en) 1985-03-19

Similar Documents

Publication Publication Date Title
Thomas et al. The diffusion of elements implanted in films of cobalt disilicide
EP2940196B1 (en) Method for producing n-type sic single crystal
Kim et al. Grain growth control and solid‐state crystal growth by Li2O/PbO addition and dislocation introduction in the PMN–35PT system
Bentini et al. Titanium and nickel silicide formation after Q‐switched laser and multiscanning electron beam irradiation
Safa et al. Advances in the purification of niobium by solid state gettering with titanium
JPS6320301B2 (en)
JP3657036B2 (en) Silicon carbide thin film and method for manufacturing silicon carbide thin film laminated substrate
JPH0688866B2 (en) Boron nitride coated crucible and method of manufacturing the same
US3184346A (en) Grain oriented sheet metal having a vanadium nitride dispersion
US20020071803A1 (en) Method of producing silicon carbide power
JPS58161999A (en) Production of gallium arsenide single crystal having semi-insulation characteristic
Dunn et al. On the thermal etching of silicon iron
JPH0666265B2 (en) Susceptor for semiconductor vapor phase growth
Kim et al. Formation and characteristics of silicon nitride-lithium aluminum silicate ceramics: I. Sintering and microstructure
JPH0543400A (en) Production of gaas single crystal
JP2569321B2 (en) Tray for vapor phase growth and vapor phase growth method
US20020104984A1 (en) Method of producing silicon carbide: heating and lighting elements
JPS59162199A (en) Crystal growth using silicon nitride and manufacture of parts therefor
JPS6316464B2 (en)
JPH0784357B2 (en) Boron nitride coated crucible
DeVries On the Preparation of Thin Single‐Crystal Films of BaTiO3
JP3132956B2 (en) Method for producing oxide single crystal
JPH03257089A (en) Silicon carbide-coated graphite product and its production
JPS5846546B2 (en) Manufacturing method of metal evaporation container
JPH035375A (en) Production of aluminum nitride sintered compact