JPS6320196B2 - - Google Patents

Info

Publication number
JPS6320196B2
JPS6320196B2 JP3098283A JP3098283A JPS6320196B2 JP S6320196 B2 JPS6320196 B2 JP S6320196B2 JP 3098283 A JP3098283 A JP 3098283A JP 3098283 A JP3098283 A JP 3098283A JP S6320196 B2 JPS6320196 B2 JP S6320196B2
Authority
JP
Japan
Prior art keywords
manganese
water
filter medium
water purification
manganese dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3098283A
Other languages
Japanese (ja)
Other versions
JPS59156482A (en
Inventor
Noryuki Imada
Yasuo Kitamura
Toshiteru Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3098283A priority Critical patent/JPS59156482A/en
Publication of JPS59156482A publication Critical patent/JPS59156482A/en
Publication of JPS6320196B2 publication Critical patent/JPS6320196B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】 本発明は湖水、河川水などのマンガン分、鉄分
および着色を除去する浄水用濾材に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a filter medium for water purification that removes manganese, iron, and coloring from lake water, river water, etc.

近年、湖水、河川等の汚染は著しく、上水用と
してあまり適さない原水が増加してきており、そ
れに伴なつて処理装置も複雑となり、処理コスト
も相当高くなつてきている。
In recent years, lake water, rivers, etc. have become significantly polluted, and the amount of raw water that is not suitable for drinking water has been increasing.As a result, treatment equipment has become more complex and treatment costs have also increased considerably.

従来、一般に採用されている原水中のマンガン
分、鉄分およびフミン質等による着色を除去する
方法としてはオゾンや酸化剤による酸化法、活性
炭による吸着法、マンガン添着ゼオライトによる
接触濾過法および凝集剤による凝集沈澱法あるい
はこれらを組合わせた処理方法がある。
Conventionally, commonly used methods for removing coloring caused by manganese, iron, and humic substances in raw water include oxidation using ozone or oxidizing agents, adsorption using activated carbon, contact filtration using manganese-impregnated zeolite, and using flocculants. There is a coagulation-sedimentation method or a treatment method that combines these methods.

オゾンや過マンガン酸カリウムのような酸化剤
を用いる酸化法はコストが高くなり、特にオゾン
を使用する処理方法では大気汚染を防止するため
の設備が必要である。また、活性炭による吸着法
においてはマンガン分、鉄分に対して吸着能はほ
とんどなく着色を除去する能力も低い。
Oxidation methods that use oxidizing agents such as ozone or potassium permanganate are expensive, and treatment methods that use ozone in particular require equipment to prevent air pollution. Furthermore, in the adsorption method using activated carbon, there is almost no adsorption ability for manganese and iron, and the ability to remove coloring is also low.

一方、接触濾過法では、表面に二酸化マンガン
を添着させたマンガンゼオライトが主として使用
されている。これはゼオライトを2価のマンガン
イオンを含む液に混合した後、酸化剤、例えば過
マンガン酸カリウムを加えてゼオライトの表面に
二酸化マンガンを添着させることによつて製造さ
れる。しかし、この方法は過マンガン酸カリウム
のような高価な薬品を相当多量に使用するため加
工費が高く、しかも原水中にマンガン含有量が多
いと良好な除去効果が期待できない。また、二酸
化マンガンが表面に被覆されているため、二酸化
マンガンの脱落、流出などによる損失、劣化が大
きい。
On the other hand, in the contact filtration method, manganese zeolite with manganese dioxide attached to the surface is mainly used. This is produced by mixing zeolite with a liquid containing divalent manganese ions and then adding an oxidizing agent such as potassium permanganate to impregnate manganese dioxide on the surface of the zeolite. However, this method requires a considerable amount of expensive chemicals such as potassium permanganate, resulting in high processing costs, and if the raw water contains a large amount of manganese, a good removal effect cannot be expected. Furthermore, since the surface is coated with manganese dioxide, there is a large loss and deterioration due to shedding or leakage of manganese dioxide.

二酸化マンガン自体が水中のマンガン分、鉄分
および着色などの除去に効果があることは従来一
般に認められているが濾材として適当な粒度にす
るためには、電極から剥離された電解二酸化マン
ガンブロツクまたは天然の二酸化マンガンを粗砕
して適当な粒度に整粒するか、二酸化マンガン粉
末結合剤として無機質バインダー、例えばアルミ
ナセメントなどを用いて成形したものが提案され
ているが、二酸化マンガンを粗砕したものは反応
面積が小さいという欠点がある。一方、無機質バ
インダーによつて成形したものは活性な二酸化マ
ンガン表面がバインダーによつて覆われるため、
浄水効果がマンガン添着ゼオライトに比べても低
いという欠点がある。
It has been generally accepted that manganese dioxide itself is effective in removing manganese, iron, and coloring from water, but in order to obtain an appropriate particle size for filter media, it is necessary to use electrolytic manganese dioxide blocks peeled from the electrode or natural It has been proposed to coarsely crush manganese dioxide and size it to an appropriate particle size, or to mold it using an inorganic binder such as alumina cement as a binder for manganese dioxide powder. has the disadvantage of a small reaction area. On the other hand, when molded with an inorganic binder, the active manganese dioxide surface is covered with the binder, so
It has the disadvantage that its water purification effect is lower than that of manganese-impregnated zeolite.

本発明はこれらの問題を解決すべくなされたも
ので、湖水、河川水等の原水中のマンガン分、鉄
分あるいは着色を効率的かつ経済的に除去する浄
水用濾材を提供することを目的とする。
The present invention was made to solve these problems, and aims to provide a filter medium for water purification that efficiently and economically removes manganese, iron, and coloring from raw water such as lake water and river water. .

本発明者らは従来使用されている濾材の欠陥を
一つ一つ検討し、種々研究の結果、従来と異なる
方法により原水中の着色、マンガンおよび鉄の除
去能力の優れた濾材を見い出し本発明に至つたも
のである。
The present inventors examined each of the deficiencies of conventionally used filter media one by one, and as a result of various research, discovered a filter material with excellent ability to remove coloring, manganese, and iron from raw water using a method different from conventional methods. This is what led to this.

すなわち本発明の濾材は、二酸化マンガン粉末
を2価のマンガンイオンおよび/またはマグネシ
ウムイオンを含む硫酸等の酸性溶液中に浸漬させ
ることにより、結合剤を用いることなくマクロ的
にポーラスでしかも強度のある二酸化マンガン塊
状物を得た後、粗砕して適当な粒度への整粒を行
ない、次いで苛性ソーダ等の中和剤により中和す
ることにより、マンガン分、鉄分の除去のみなら
ず着色除去用としても高性能を示す浄水用濾材が
得られるのである。
In other words, the filter medium of the present invention is made macroscopically porous and strong without using a binder by immersing manganese dioxide powder in an acidic solution such as sulfuric acid containing divalent manganese ions and/or magnesium ions. After obtaining manganese dioxide lumps, they are roughly crushed and sized to an appropriate particle size, and then neutralized with a neutralizing agent such as caustic soda, which can be used not only to remove manganese and iron but also to remove coloring. A filter medium for water purification that exhibits high performance can also be obtained.

本発明において、二酸化マンガンを前述の酸性
溶液中に浸漬する時間および溶液の温度が重要な
点であつて、溶液の温度はその溶液の沸点以下で
できるだけ高い方が良く、浸漬時間は長い方が強
度的にも好ましい。また、本発明において塊状物
を適度な粒径に整粒するが、その際の粒径は特に
制限はないが、例えば20〜48メツシユ程度が好ま
しい。
In the present invention, the time during which manganese dioxide is immersed in the above-mentioned acidic solution and the temperature of the solution are important points; the temperature of the solution should be as high as possible below the boiling point of the solution, and the longer the immersion time It is also preferable in terms of strength. Further, in the present invention, the agglomerates are sized to an appropriate particle size, and the particle size is not particularly limited, but is preferably about 20 to 48 mesh.

電解二酸化マンガンは本来ミクロ的には非常に
ポーラスなものであるが、浄水用濾材としてはミ
クロ的にポーラスなものであるよりマクロ的にポ
ーラスである方が好ましく、本発明による浄水用
濾材はマクロ的にポーラスになつており、本発明
によつてこのような特質が二酸化マンガンに賦与
されたということは従来全く想像し得なかつたこ
とである。
Electrolytic manganese dioxide is originally extremely porous microscopically, but as a filter medium for water purification it is better to be macroscopically porous rather than microscopically porous. It is completely inconceivable that manganese dioxide could be endowed with such characteristics by the present invention.

なお、本発明の浄水用濾材と併用して原水に塩
素または過マンガン酸カリウムなどの酸化剤を加
えれば色度除去能力をさらに一層向上させること
ができる。
In addition, if an oxidizing agent such as chlorine or potassium permanganate is added to the raw water in combination with the water purification filter medium of the present invention, the color removal ability can be further improved.

以下、実施例および比較例によつてさらに詳細
に本発明を説明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例 1 2価のマンガンイオン20g/、硫酸100g/lを
含む硫酸酸性浴を90℃に加温し、この溶液中に二
酸化マンガン加えて溶液の温度を90℃に維持しな
がら3日間静置させることによつて強固な二酸化
マンガン塊状物をつくる。
Example 1 A sulfuric acid acidic bath containing 20 g/l of divalent manganese ions and 100 g/l of sulfuric acid was heated to 90°C, manganese dioxide was added to this solution, and the solution was left to stand for 3 days while maintaining the temperature of the solution at 90°C. By this process, strong manganese dioxide lumps are created.

この塊状物を粗砕し20〜48メツシユに整粒し
た。さらに脱酸のため、まず水洗を行ない、その
後苛性ソーダにて中和を行なつた。
This lump was coarsely crushed and sized into 20 to 48 mesh pieces. Furthermore, in order to deoxidize, it was first washed with water, and then neutralized with caustic soda.

このようにして得られた浄水用濾材の電子顕微
鏡写真を第1図に示す。第1図に示されているよ
うに本発明の浄水用濾材はマクロ的にポーラスな
ものとなつている。
An electron micrograph of the water purification filter material thus obtained is shown in FIG. As shown in FIG. 1, the water purification filter medium of the present invention is macroscopically porous.

実施例2および比較例1〜3 実施例1により得られた浄水用濾材(実施例
2)および従来より濾材として使用されている電
解二酸化マンガンをポルトランドセメントで成形
した濾材(比較例1)、電解二酸化マンガンを粗
砕、整粒した濾材(比較例2)、マンガン添着ゼ
オライト(比較例3)を使用し、色度除去の性能
比較を行なつた。
Example 2 and Comparative Examples 1 to 3 A filter medium for water purification obtained in Example 1 (Example 2), a filter medium formed by molding electrolytic manganese dioxide conventionally used as a filter medium with Portland cement (Comparative Example 1), A filter medium prepared by coarsely crushing and sizing manganese dioxide (Comparative Example 2) and a manganese-impregnated zeolite (Comparative Example 3) were used to compare the performance of removing chromaticity.

試験条件は各濾材100c.c.をカラムに充填しニト
ロフミン酸を用いて色度40度に調整した原水を
1000c.c./時間の速度で通水した。その結果を第2
図に示す。なお、この測定法は水中のマンガン
分、鉄分および着色の総括的な除去能力の判定法
として一般に認められているものである。
The test conditions were to fill a column with 100 c.c. of each filter medium and use raw water that had been adjusted to a chromaticity of 40 degrees using nitrofumic acid.
Water was passed at a rate of 1000c.c./hour. The second result is
As shown in the figure. This measurement method is generally accepted as a method for determining the overall ability to remove manganese, iron, and coloring from water.

第2図に示されるように浄水能力は本発明の浄
水用濾材を用いた実施例2が最も高く、次いでマ
ンガン吸着ゼオライトを用いた比較例3、電解二
酸化マンガンを粗砕、整粒した濾材を用いた比較
例2、電解二酸化マンガンをポルトランドセメン
トで成形した濾材を用いた比較例1の順となつて
おり、水質基準である色度5度を越えるまでの時
間は比較例の中で最も浄水能力が優れた比較例3
が約3日であるのに対し、実施例2は約6日とな
り、本発明の浄水用濾材が従来の濾材と比較して
著しく浄水能力に優れていることが判る。なお、
処理液のPH値は原水のPH値とほぼ同じであつた。
As shown in Figure 2, the water purification ability was highest in Example 2 using the water purification filter medium of the present invention, followed by Comparative Example 3 using manganese adsorbed zeolite, and filter medium using coarsely crushed and sized electrolytic manganese dioxide. Comparative Example 2, which used a filter medium made of electrolytic manganese dioxide molded with Portland cement, and Comparative Example 1, which used a filter medium made of electrolytic manganese dioxide molded with Portland cement. Comparative example 3 with excellent performance
was about 3 days, whereas in Example 2 it was about 6 days, which shows that the water purification filter medium of the present invention has significantly superior water purification ability compared to conventional filter media. In addition,
The PH value of the treated solution was almost the same as that of the raw water.

実施例3および比較例4 実施例2で使用した浄水用濾材と比較例3で使
用した濾材(マンガン添着ゼオライト)を用いて
マンガン分除去の性能比較を行なつた。原水とし
て2価のマンガンイオンを5ppm、2価の鉄イオ
ンを5ppmに調整したものを使用し、測定方法は
実施例2と同様な方法にて行なつた。
Example 3 and Comparative Example 4 The water purification filter medium used in Example 2 and the filter medium (manganese impregnated zeolite) used in Comparative Example 3 were used to compare performance in removing manganese. The raw water containing divalent manganese ions and divalent iron ions was adjusted to 5 ppm and 5 ppm, respectively, and the measurement method was the same as in Example 2.

この結果、残留マンガンが水質基準の0.3ppm
に達するまでの総処理水量で比較すればマンガン
添着ゼオライトを用いたもの(比較例4)が約20
であるのに対し、本発明による浄水用濾材を用
いたもの(実施例3)は約300となり色度のみ
ならずマンガンの除去能力についても本発明によ
る浄水用濾材の優秀性が明らかに確認された。な
お、鉄については、残留マンガンが0.3ppmに達
するまでは検出されなかつた。
As a result, the residual manganese was 0.3ppm, which is the water quality standard.
Comparing the total amount of water processed to reach the amount of water, the one using manganese-impregnated zeolite (Comparative Example 4) is about 20
On the other hand, the one using the water purification filter material of the present invention (Example 3) had a value of about 300, clearly confirming the superiority of the water purification filter material of the present invention not only in terms of chromaticity but also in terms of manganese removal ability. Ta. Regarding iron, it was not detected until residual manganese reached 0.3 ppm.

実施例 4 2価のマンガンイオン20g/、マグネシウム
イオン10g/、硫酸100g/を含む硫酸酸性溶
液を用いて実施例1と同様な方法にてつくつた浄
水用濾材(実施例4)と実施例1により得られた
浄水用濾過材(実施例2)を用いて実施例2と同
様な試験方法により色度除去の性能比較を行なつ
た。結果を第3図に示す。
Example 4 A filter medium for water purification (Example 4) and Example 1 made in the same manner as in Example 1 using a sulfuric acid acidic solution containing 20 g of divalent manganese ions, 10 g of magnesium ions, and 100 g of sulfuric acid. Using the water purification filter material (Example 2) obtained in Example 2, the performance of color removal was compared using the same test method as in Example 2. The results are shown in Figure 3.

第3図に示されるように、浄水能力としては、
実施例2よりも実施例4が優れており、水質基準
である色度5度を越えるまでの時間は、実施例2
が6.1日であるのに対し、実施例4は6.6日とな
り、2価のマンガンイオンを含む硫酸酸性溶液に
マグネシウムイオンが添加されたことにより浄水
能力が向上することが判る。
As shown in Figure 3, the water purification capacity is as follows:
Example 4 is superior to Example 2, and the time required to exceed 5 degrees of chromaticity, which is the water quality standard, is longer than that of Example 2.
was 6.1 days, whereas in Example 4 it was 6.6 days, indicating that the water purification ability was improved by adding magnesium ions to the sulfuric acid acidic solution containing divalent manganese ions.

実施例 5 マグネシウムイオン10g/、硫酸100g/を
含む硫酸酸性溶液を用いて実施例1と同様な方法
にてつくつた浄水用濾材(実施例5)と実施例1
により得られた浄水用濾材(実施例2)を用いて
実施例2と同様に試験方法により色度除去の性能
比較を行なつた。
Example 5 A filter medium for water purification (Example 5) made in the same manner as in Example 1 using an acidic sulfuric acid solution containing 10 g of magnesium ions and 100 g of sulfuric acid and Example 1
Using the filter medium for water purification (Example 2) obtained in Example 2, the performance of color removal was compared using the same test method as in Example 2.

浄水能力としては実施例2と実施例5はほぼ同
じであつた。
In terms of water purification ability, Examples 2 and 5 were almost the same.

以上説明したごとく、二酸化マンガン粉末を2
価のマンガンイオンおよび/またはマグネシウム
イオンを共存させた酸性溶液に浸漬した後、整粒
して得られる本発明の浄水用濾材は、浄水能力が
著しく高く、かつ経済的に安価であることから、
湖水、河川水等のマンガン分、鉄分および着色を
除去するための濾材として最適である。
As explained above, manganese dioxide powder is
The filter medium for water purification of the present invention, which is obtained by sizing after being immersed in an acidic solution in which valent manganese ions and/or magnesium ions coexist, has extremely high water purification ability and is economically inexpensive.
It is ideal as a filter medium for removing manganese, iron, and coloring from lake water, river water, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による二酸化マンガン濾材の表
面状態を表わした電子顕微鏡写真、第2図は実施
例2および比較例1〜3における処理水の色度と
経過日数の関係を示すグラフ、および第3図は実
施例2および実施例4における処理水の色度と経
過日数の関係を示すグラフ。
Figure 1 is an electron micrograph showing the surface condition of the manganese dioxide filter medium according to the present invention, Figure 2 is a graph showing the relationship between the chromaticity of treated water and the number of days elapsed in Example 2 and Comparative Examples 1 to 3; Figure 3 is a graph showing the relationship between the chromaticity of treated water and the number of days elapsed in Examples 2 and 4.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化マンガン粉末を2価のマンガンイオン
および/またはマグネシウムイオンを共存させた
酸性溶液中に浸漬させ、マクロ的にポーラスな塊
状物となした後、適当な粒度に整粒することを特
徴とする浄水用濾材。
1 Manganese dioxide powder is immersed in an acidic solution containing divalent manganese ions and/or magnesium ions to form macroscopically porous lumps, and then sized to an appropriate particle size. Filter media for water purification.
JP3098283A 1983-02-28 1983-02-28 Filtering element for water purification Granted JPS59156482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3098283A JPS59156482A (en) 1983-02-28 1983-02-28 Filtering element for water purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3098283A JPS59156482A (en) 1983-02-28 1983-02-28 Filtering element for water purification

Publications (2)

Publication Number Publication Date
JPS59156482A JPS59156482A (en) 1984-09-05
JPS6320196B2 true JPS6320196B2 (en) 1988-04-26

Family

ID=12318837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3098283A Granted JPS59156482A (en) 1983-02-28 1983-02-28 Filtering element for water purification

Country Status (1)

Country Link
JP (1) JPS59156482A (en)

Also Published As

Publication number Publication date
JPS59156482A (en) 1984-09-05

Similar Documents

Publication Publication Date Title
JPH0222719B2 (en)
US4430226A (en) Method and apparatus for producing ultrapure water
JP2002528253A5 (en)
US2145901A (en) Purification of water
US2390272A (en) Purification of gelatinous hydroxides
JP2013184132A (en) Regeneration method for used activated carbon and activated carbon and method for manufacturing the same
US3859210A (en) Removal of heavy metals from aqueous solutions
JPS6320196B2 (en)
CN108905963A (en) It is a kind of for removing the preparation method of the biological adsorption agent of Heavy Metals in Waters ion
JPH0840713A (en) Activated carbon, its production and water treatment using the activated carbon
CA1184853A (en) Agent and method for the treatment of production cycle and effluent water of the papermaking and related industries
US2144051A (en) Method of treating water
US3944687A (en) Method of preparing purifying agents consisting of activated siliceous porous mineral substances
JP3291994B2 (en) How to remove arsenate ions
RU2470872C2 (en) Sorbent catalyst for purifying natural and waste water and method for production thereof
CN111569818A (en) Drinking water defluorinating agent and preparation method and application thereof
JP4118495B2 (en) How to reuse mud
US2139299A (en) Altered glauconite and method of altering
CN108558066A (en) The treatment process and system of total iron and total copper in electrobrightening waste water are removed simultaneously
JPH0153564B2 (en)
GB2128971A (en) Purifying graphite
JPS5918365B2 (en) Red tide treatment agent and its manufacturing method
JPS6365602B2 (en)
JPH0122037B2 (en)
KR100213330B1 (en) Removal method of silica between pickling waste solution