JPH0153564B2 - - Google Patents

Info

Publication number
JPH0153564B2
JPH0153564B2 JP58192424A JP19242483A JPH0153564B2 JP H0153564 B2 JPH0153564 B2 JP H0153564B2 JP 58192424 A JP58192424 A JP 58192424A JP 19242483 A JP19242483 A JP 19242483A JP H0153564 B2 JPH0153564 B2 JP H0153564B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
water
manganese
type
water purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58192424A
Other languages
Japanese (ja)
Other versions
JPS6084124A (en
Inventor
Noryuki Imada
Toshiteru Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP19242483A priority Critical patent/JPS6084124A/en
Publication of JPS6084124A publication Critical patent/JPS6084124A/en
Publication of JPH0153564B2 publication Critical patent/JPH0153564B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は湖水、河川水などに含まれるマンガン
分、鉄分および着色成分などの好ましくない成分
を除去する浄水用材に関する。 <従来の技術> 近年、湖水、河川等が著しく汚染されており、
上水用の給水源として適さないものが増加してい
る。これに伴い浄化処理装置も複雑化し、処理コ
ストも増大している。 従来、源水中からマンガン分、鉄分、着色成分
を除去するために一般的に行なわれている方法と
しては、(i)オゾンや酸化剤を用いた酸化法、(ii)活
性炭による吸着法、(iii)マンガン添着ゼオライトな
どによる接触過法、(iv)凝集剤による凝集沈澱
法、あるいはこれらを組合せた処理方法がある。 ところが上記従来の除去方法にはそれぞれ次の
問題がある。まずオゾンや酸化剤を用いる酸化法
ではコストが高くなり、特にオゾンを使用する処
理方法では大気汚染の問題も生ずるのでこれを防
止するための設備も必要となる。又活性炭は他の
成分を吸着する点では良好であるがマンガン分、
鉄分を吸着する能力が殆んどなく更に着色成分の
吸着能力も低い。 次に接触過法では従来、表面に二酸化マンガ
ンを添着させたマンガンゼオライトが主に使用さ
れている。これは通常、2価のマンガンイオンを
含む液にゼオライトを浸漬した後、酸化剤例えば
過マンガン酸カリウムを加えてゼオライトの表面
に二酸化マンガンを添着させることによつて製造
される。しかしこの方法は過マンガン酸カリウム
のような高価な薬品を相当多量に使用する為加工
費が高く、しかも原水中にマンガン含有量が多い
と良好な除去効果を期待できない。又、ゼオライ
ト表面の二酸化マンガンの付着力がそれ程大きく
ないため二酸化マンガンの脱離、流出による損失
劣化が著しい。 一方、凝集沈澱法では着色成分が多くなる程汚
泥の発生量が多くなり、汚泥の処理コストも高く
なる。 <発明が解決しようとする課題> そこで、二酸化マンガンを材として使用する
ためには必要な通水速度をもたせる必要があるの
で、適当な粒度にすることが検討されている。 そして、二酸化マンガンを適当な粒度に揃える
ためには、従来の電解二酸化マンガンブロツクを
粗砕し整粒する方法(特公昭52−14544号公報、
特公昭53−32619号公報)、あるいは二酸化マンガ
ン粉末を結合剤である無機質バインダー例えばア
ルミナセメント等を用いて成形する方法が知られ
ている。 ところが電解二酸化マンガンブロツクを粗砕し
たものは有効な反応表面積が小さいという欠点が
ある。又、無機質バインダーによつて成形したも
のは活性な二酸化マンガン表面がバインダーによ
つて覆われるため浄水効果が劣るという問題があ
る。 本発明はこれらの問題を解決すべくなされたも
ので湖水、河川水、および地下水等の原水中のマ
ンガン分、鉄分、あるいは着色成分を効果的かつ
経済的に除去する浄水用材を提供することを目
的とする。 <課題を解決するための手段> 上記目的を達成すべく、本発明は、γ型二酸化
マンガン又はγ型主体の二酸化マンガン粉末の造
粒体であり、β型二酸化マンガン単独もしくはβ
型二酸化マンガンとγ型二酸化マンガンとが混在
したマクロ的にポーラスでかつ表面に針状あるい
は柱状の二酸化マンガン結晶を有する粒状二酸化
マンガンよりなることを特徴とする。 以下に本発明を実施例および実験例と共に詳細
に説明する。二酸化マンガン自体が水中のマンガ
ン分、鉄分および着色成分等の除去に効果がある
ことは従来知られているが、本発明はかかる二酸
化マンガンを独自の手段により好適に利用したも
のである。 本発明にかかる浄水用材を製造するには、ま
ず、γ型二酸化マンガン又はγ型主体の二酸化マ
ンガン粉末を用い、これを所定の酸性溶液を加え
て造粒し、加熱処理してβ型二酸化マンガンの造
粒体に成形する。即ち、γ型二酸化マンガン粉末
またはβ型などを一部含有する電解二酸化マンガ
ンブロツクを粉砕したγ型主体の二酸化マンガン
粉末と2価のマンガンイオンおよび/またはマグ
ネシウムイオンを共存させた酸性溶液とを混練
し、浄水用材として必要な粒度、例えば20〜42
メツシユに造粒を行なう。 この造粒物を加湿状態で加熱することによりマ
クロ的にポーラスでかつ表面に針状あるいは柱状
の二酸化マンガン結晶を有し、しかも強度の大き
い粒状二酸化マンガン集合体が得られる。尚ここ
でマクロ的にポーラスとはミクロ的にポーラスな
粒が凝集して水が自由に通水しうる程度の孔径を
有することを云う。 また、二酸化マンガンはα型、β型、γ型、δ
型の結晶形を有しており、γ型主体とはγ型以外
の結晶形を数%から10数%含有したものである。
電解二酸化マンガンの結晶形はγ型単独か、また
はβ型を数%含有したγ型主体のものであり、上
記粒状二酸化マンガンの製造原料として好適に用
いることができる。 上記γ型単独ないしはγ型主体の二酸化マンガ
ン粉末を加熱処理して粒状二酸化マンガンを製造
する際に該二酸化マンガン粉末が加熱処理により
固まるのはγ型からβ型への転移に伴う現象に基
づくものであると予想され、β型を用いて同様の
加熱処理を行つても固化しない。従つて原料とし
てβ型もしくはβ型主体の二酸化マンガンを使用
した場合には本発明と同様の処理工程を経ても水
中で崩壊しない造粒体は得られない。 次に二酸化マンガンをγ型からβ型へ転移させ
るためには2価のマンガンイオン、酸、温度が重
要な要因であり、本発明においては加熱処理に先
立ち、上記粒状二酸化マンガンに2価のマンガン
イオンおよび/またはマグネシウムイオンを共存
させた酸性溶液を加えて混練する。尚、マンガン
イオンの代りにマグネシウムイオンを単独で用い
るとマンガンイオンを用いた場合に比べ転移速度
が非常に遅い。また、マンガンイオンにマグネシ
ウムイオンを共存させる理由は、得られた造粒体
の見掛比重が同じ粒度であつてもマンガンイオン
単独の場合に比べ小さくなり多孔度が増すためで
ある。次にマンガンイオン等を含む酸性溶液で混
練するのは水中でも崩壊しない高強度の造粒体を
得るためである。尚、上記マンガンイオン等を含
有しない単なる硫酸酸性溶液や水で造粒し、加熱
処理しても水中で崩壊しない程度の強度を得るこ
とはできない。造粒に際し、添加する上記酸性溶
液の量は通常造粒する場合に用いられる液量でよ
い。また上記酸性溶液のマンガンイオン、マクム
グネシウムイオンおよび酸の濃度は、その一例と
してマンガンイオン0〜80g/、マグネシウム
イオン0〜50g/、硫酸5〜100g/のものを
用いるとよい。尚、各イオン濃度の高い方が早く
固まる傾向にある。 次に上記造粒体を加湿雰囲気で加熱処理する。
この加熱処理により造粒体の粉末どうしが結合
し、強度が高まる。この場合造粒物を密閉容器中
に入れ加熱を行なつても強度のある粒状二酸化マ
ンガンが得られるが、単に大気中で加熱したもの
は水分が直ぐに蒸発してしまい、β型化が進まず
水中に入れると大部分のものが崩壊する。他方、
加湿状態で加熱すれば造粒体に水分を含ませ造粒
体中の粉末どうしの結合が促進され、水中でも崩
壊しない程度の強度を有するものが得られる。因
に、本発明の造粒体は後述する実験例で示すよう
に大きな強度を有している。 以上のように造粒の際に使用する上記酸性溶液
のマンガンイオン、マグネシウムイオンおよび酸
の組成や加熱処理時間が重要な要因であり、加熱
処理時間1〜3日、加熱処理温度90℃以上、溶液
の組成マンガンイオン0〜80g/、マグネシウ
ムイオン0〜50g/、硫酸5〜100g/の範囲
で成形体の作成を行なつたところ溶液の各イオン
濃度が高くなるほど加熱処理後の粒状二酸化マン
ガンの強度は強くなり、また加熱処理時間も長く
なるほど強くなることが確認された。 さらに、このようにして得られた加熱処理後の
粒状二酸化マンガンは前述の酸性溶液に浸漬する
ことにより、粒状体中の粒子どうしの結合が進み
さらに強度の強い浄水用材が得られる。 浸漬時間は長い方が強度的には強くなるが既に
浸漬する前の造粒物がある程度強度を有している
ため1〜3日程度で良い。 酸性溶液の温度は高い方が良く、90℃以上が好
ましい。 次に造粒体で浄化した水が水道水の水質基準の
一つである水素イオン濃度の基準内となるよう該
造粒体を水洗した後、更に苛性ソーダ等の中和剤
で中和する。これらの処理によりマンガン分、鉄
分の除去のみならず着色除去用としても高性能を
示す浄水用材が得られる。尚、上記中和剤の処
理により、通水初期における浄化した水のPH値が
5.8〜8.6程度となり、水道水の水質基準内にする
ことができる。 酸性溶液に浸漬することによる強度の向上は水
道用ろ砂試験方法(JWWA A 103)中の一つ
の試験項目である摩滅率試験で測定した結果、加
湿状態で加熱しただけのものは5〜10%であるの
に対し、酸性溶液に浸漬したものは1〜3%とな
り、強度的に向上していることは明らかである。 尚、摩滅率は小さな値ほどろ砂としての強度は
強い。 γ型である電解二酸化マンガンはミクロ的には
非常にポーラスなものであるが浄水用材として
は、単にミクロ的にポーラスなものであるだけで
なく更にマクロ的にポーラスである必要がある。 本発明による浄水用材はミクロ的にポーラス
な粒が凝集してマクロ的にポーラスな集合体にな
つており、しかも二酸化マンガンの活性度を害す
るようなバインダーを使用することなく二酸化マ
ンガンの性質を利用して強固な粒状物を形成し、
しかも、表面には針状あるいは柱状の二酸化マン
ガン結晶が形成されていることから、表面での反
応面積が増大し、マクロ的にポーラスであること
と合わせて大きな浄水能力を達成している。尚、
本発明の浄水用材として併用して原水に塩素ま
たは過マンガン酸カリウムなどの酸化剤を加えれ
ば、特に着色除去能力をさらに一層向上させるこ
とができる。 <実施例> 以下実施例、比較例および実験例を示す。 実施例 1 γ型二酸化マンガン粉末に2価のマンガンイオ
ン60g/、マグネシウムイオン20g/、硫酸50
g/を含む硫酸酸性溶液を加えて混練した後造
粒を行ない、20〜42メツシユの粒状二酸化マンガ
ンとした。この造粒物を密閉容器に入れ、100℃
で2日間加熱することにより、水中に入れても崩
壊しない粒状二酸化マンガンを得た。さらに脱酸
のため、まず水洗を行ない、その後苛性ソーダに
て中和を行ないマクロ的にポーラスで表面に針状
の二酸化マンガンが成長を始めた浄水用材を得
た。 実施例 2 γ型二酸化マンガン粉末に実施例1で用いたも
のと同一組成の酸性溶液を加えて混練した後造粒
を行ない、20〜42メツシユの粒状二酸化マンガン
とした。この造粒物を密閉容器に入れ、100℃で
4日間加熱することにより、水中に入れても崩壊
しない粒状二酸化マンガンを得た。さらにさらに
実施例1と同様に水洗、中和を行ないマクロ的に
ポーラスで表面に針状の二酸化マンガンが実施例
1よりさらに成長した浄水用材を得た。 実施例 3 実施例1で得られた粒状二酸化マンガンを2価
のマンガンイオン10g/、マグネシウムイオン
5g/、硫酸10g/を含む酸性溶液に浸漬さ
せ、溶液の温度を90℃に維持させながら2日間静
置させた後、脱酸のため実施例1と同様に水洗、
中和を行なつた。このようにして得られた浄水用
材の電子顕微鏡写真を第1図a,bに示す。第
1図a,bに示されるように本発明の浄水用材
はマクロ的にポーラスなものとなつておりしかも
表面には柱状の二酸化マンガンが成長し反応表面
積をさらに増大させている。 実施例 4 実施例1で得られた粒状二酸化マンガンを2価
のマンガンイオン60g/、マグネシウムイオン
20g/、硫酸50g/を含む酸性溶液に浸漬さ
せ、溶液の温度を90℃に維持させながら3日間静
置させた後、脱酸のため実施例1と同様に水洗、
中和を行ないマクロ的にポーラスでしかも表面に
は柱状の二酸化マンガンが実施例3よりもさらに
成長した浄水用材を得た。 比較例 1〜3 従来からの材即ち、(i)γ型二酸化マンガン粉
末を、バインダーとしてポルトランドセメントを
用いて成形した材(比較例1)、(ii)γ型電解二
酸化マンガンブロツクを粗砕し整粒した単なるミ
クロ的にポーラスな材(比較例2)、(iii)マンガ
ン添着ゼオライト(比較例3)をそれぞれ公知の
方法により調整した。 実験例 1 実施例1により得られた浄水用材、実施例2
により得られた浄水用材、実施例3により得ら
れた浄水用材、実施例4により得られた浄水用
材および前記従来からの材即ち、γ型二酸化
マンガン粉末をポルトランドセメントで成形した
材(比較例1)、γ型電解二酸化マンガンブロ
ツクを粗砕、整粒した材(比較例2)、マンガ
ン添着ゼオライト(比較例3)を使用し色度除去
の性能比較を行つた。 試験条件は各材100c.c.をカラムに充填し色度
40度に調整した原水を1000c.c./Hrの速度で通水
した。 その結果を第2図に示す。 第2図に示されるように浄水能力は本発明の浄
水用材を用いた実施例1〜4が最も高く、次い
でマンガン添着ゼオライトを用いた比較例3、電
解二酸化マンガンブロツクを粗砕、整粒した材
を用いた比較例2、電解二酸化マンガン粉末をア
ルミナセメントで成形した材を用いた比較例1
の順となつており、水道水の水質基準である色度
5度を越えるまでの時間は比較例の中で最も浄水
能力が優れた比較例3が約3日であるのに対し、
実施例の中で浄水能力が比較的劣る実施例1でも
約5.5日となり本発明の浄水用材が従来の材
と比較して著しく浄水能力に優れていることが判
る。 実施例1〜4の間には浄水能力に大きな差はな
いが実施例2実施例3>実施例1実施例4の
順で浄水性能は良くなつている。 比表面積については窒素吸着によるBET法に
よる測定の結果、ミクロ的にポーラスな電解二酸
化マンガンを用いた比較例2が約40m2/gである
のに対し、本発明による実施例1が20m2/g、実
施例2が30m2/g、実施例3が27m2/g、実施例4
が20m2/gとなり、比較例2に比較し実施例1〜
4ともに半分以下であるにもかかわらず浄水性能
は著しく優れており、浄水性能にはマクロ的ポア
ー並びに実施例1〜4では表面積が大きな方が性
能的に良好であることから、材表面での表面積
の大きさが重要である。 本発明による浄水用材は表面上に針状又は柱
状の二酸化マンガン結晶をもたせることにより表
面が活性化されている。 なお、実施例1〜4共に処理液のPH値は原水の
PH値とほぼ同じであつた。 実験例 2 実施例1〜4により得られた浄水用材、比較
例1、比較例3を使用し、強度試験を行つた。 試験方法は、水道用ろ砂試験方法(JWWA A
103)中の摩滅率試験方法に準じて行なつた。 浄水用材50gを秤量し鉄筒に装入する。 これに直径9mmの鋼球5個を加え、密閉して1
分間250回の割で5分間激しく振動させる。 終了後これをふるい分け、ふるい上に残留した
材の重量(Wg)を求め、次式により摩滅率を
算出した。 摩滅率(%)=(50−W)×2 その結果を表1に示す。 表1から明らかなように加湿状態での加熱処理
によつて得られた実施例1、実施例2は比較例
1、比較例3に比べて摩滅率はやや高いが、実施
例1の成形体をさらに残性溶液に浸漬することに
より得られた実施例3、実施例4は保滅率が著し
く低下しており強度が向上していることが判る。 加熱処理2日の実施例1と、加熱処理4日の実
施例2を比較すれば加熱処理日数の長い方が強度
的に強くなつており、また硫酸酸性溶液中で処理
を行なつた実施例3、実施例4を比較すれば2価
のマンガンイオン、マグネシウムイオン、硫酸等
の濃度が高い酸性溶液に浸漬した実施例4の方が
強度的に強くなつている。
<Industrial Application Field> The present invention relates to a water purification material that removes undesirable components such as manganese, iron, and coloring components contained in lake water, river water, etc. <Conventional technology> In recent years, lake water, rivers, etc. have become extremely polluted.
The number of water sources that are unsuitable for drinking water is increasing. Along with this, purification processing equipment has also become more complex, and processing costs have also increased. Conventionally, methods commonly used to remove manganese, iron, and coloring components from source water include (i) oxidation using ozone or an oxidizing agent, (ii) adsorption using activated carbon, ( Treatment methods include iii) a contact filtration method using manganese-impregnated zeolite, (iv) a coagulation-sedimentation method using a flocculant, or a combination of these methods. However, each of the conventional removal methods described above has the following problems. First, oxidation methods that use ozone or oxidizing agents are expensive, and treatment methods that use ozone in particular cause air pollution, which requires equipment to prevent this. Activated carbon is good at adsorbing other components, but manganese and
It has almost no ability to adsorb iron and also has a low ability to adsorb coloring components. Next, in the contact filtration method, conventionally, manganese zeolite with manganese dioxide attached to the surface has been mainly used. This is usually produced by immersing zeolite in a solution containing divalent manganese ions and then adding an oxidizing agent such as potassium permanganate to impregnate manganese dioxide on the surface of the zeolite. However, this method requires a considerable amount of expensive chemicals such as potassium permanganate, resulting in high processing costs, and if the raw water contains a large amount of manganese, a good removal effect cannot be expected. Furthermore, since the adhesion force of manganese dioxide on the zeolite surface is not so strong, loss and deterioration due to desorption and outflow of manganese dioxide is significant. On the other hand, in the coagulation-sedimentation method, as the amount of colored components increases, the amount of sludge generated increases, and the cost of sludge treatment also increases. <Problems to be Solved by the Invention> Therefore, in order to use manganese dioxide as a material, it is necessary to provide a necessary water flow rate, and therefore, it is being considered to make the particle size appropriate. In order to adjust the particle size of manganese dioxide to an appropriate size, the conventional method of coarsely crushing and sizing an electrolytic manganese dioxide block (Japanese Patent Publication No. 14544/1983)
(Japanese Patent Publication No. 53-32619), or a method of molding manganese dioxide powder using an inorganic binder such as alumina cement is known. However, coarsely pulverized electrolytic manganese dioxide blocks have the disadvantage of having a small effective reaction surface area. In addition, products molded using an inorganic binder have a problem in that the water purifying effect is poor because the active manganese dioxide surface is covered with the binder. The present invention was made to solve these problems, and aims to provide a water purification material that effectively and economically removes manganese, iron, and coloring components from raw water such as lake water, river water, and groundwater. purpose. <Means for Solving the Problems> In order to achieve the above object, the present invention is a granule of γ-type manganese dioxide or manganese dioxide powder mainly composed of γ-type, which includes β-type manganese dioxide alone or β-type manganese dioxide powder.
It is characterized by being composed of granular manganese dioxide which is macroscopically porous and has acicular or columnar manganese dioxide crystals on its surface, in which type manganese dioxide and γ type manganese dioxide are mixed. The present invention will be explained in detail below along with Examples and Experimental Examples. Although it has been known that manganese dioxide itself is effective in removing manganese, iron, coloring components, etc. from water, the present invention utilizes such manganese dioxide suitably by unique means. In order to produce the water purification material according to the present invention, first, γ-type manganese dioxide or γ-type manganese dioxide powder is used, which is granulated by adding a predetermined acidic solution, and then heat-treated to produce β-type manganese dioxide. Form into granules. That is, γ-type manganese dioxide powder obtained by pulverizing an electrolytic manganese dioxide block partially containing γ-type manganese dioxide powder or β-type manganese dioxide powder is mixed with an acidic solution in which divalent manganese ions and/or magnesium ions coexist. The particle size required for water purification material, e.g. 20-42
Granulate the mesh. By heating this granulated material in a humidified state, a granular manganese dioxide aggregate that is macroscopically porous, has acicular or columnar manganese dioxide crystals on its surface, and has high strength can be obtained. Here, macroscopically porous means that microscopically porous particles aggregate and have a pore size that allows water to freely pass through. In addition, manganese dioxide is α-type, β-type, γ-type, and δ-type.
It has a crystal form of γ-type, and γ-type mainly contains crystal forms other than γ-type in a few to 10%.
The crystal form of electrolytic manganese dioxide is either solely the γ type or mainly the γ type containing several percent of the β type, and can be suitably used as a raw material for producing the above-mentioned granular manganese dioxide. When producing granular manganese dioxide by heat treating the above-mentioned γ-type manganese dioxide powder or mainly γ-type manganese dioxide powder, the reason why the manganese dioxide powder solidifies due to heat treatment is due to the phenomenon accompanying the transition from γ-type to β-type. It is expected that the β type will not solidify even if the same heat treatment is performed using the β type. Therefore, when β-type or mainly β-type manganese dioxide is used as a raw material, granules that do not disintegrate in water cannot be obtained even through the same treatment steps as in the present invention. Next, in order to transfer manganese dioxide from the γ type to the β type, divalent manganese ions, acid, and temperature are important factors. In the present invention, prior to heat treatment, the granular manganese dioxide is An acidic solution containing ions and/or magnesium ions is added and kneaded. Note that when magnesium ions are used alone instead of manganese ions, the transition rate is much slower than when manganese ions are used. Furthermore, the reason why magnesium ions are allowed to coexist with manganese ions is that the apparent specific gravity of the resulting granules is smaller than when manganese ions are used alone, and the porosity increases, even if the particle size is the same. The reason why the mixture is then kneaded with an acidic solution containing manganese ions or the like is to obtain a high-strength granule that does not disintegrate even in water. Incidentally, even if the granules are granulated using a simple sulfuric acid acid solution or water that does not contain the above-mentioned manganese ions and treated with heat, it is not possible to obtain a strength that does not disintegrate in water. During granulation, the amount of the acidic solution added may be the amount normally used for granulation. The concentrations of manganese ions, macmognesium ions, and acid in the acidic solution are, for example, 0 to 80 g/manganese ion, 0 to 50 g/magnesium ion, and 5 to 100 g/sulfuric acid. Note that the higher the concentration of each ion, the faster the solidification tends to occur. Next, the granules are heat-treated in a humidified atmosphere.
This heat treatment causes the powders of the granules to bond together, increasing the strength. In this case, strong granular manganese dioxide can be obtained even if the granules are placed in a closed container and heated, but if the granules are simply heated in the air, the moisture evaporates immediately and the β-formation does not progress. Most things disintegrate when placed in water. On the other hand,
By heating in a humidified state, the granules are impregnated with water, promoting the bonding of the powders in the granules, and providing a product having a strength that does not disintegrate even in water. Incidentally, the granules of the present invention have high strength as shown in the experimental examples described later. As mentioned above, the composition of the manganese ions, magnesium ions and acid in the acidic solution used during granulation and the heat treatment time are important factors. The composition of the solution was 0 to 80 g of manganese ion, 0 to 50 g of magnesium ion, and 5 to 100 g of sulfuric acid. It was confirmed that the strength increases, and the strength increases as the heat treatment time increases. Furthermore, by immersing the heat-treated granular manganese dioxide obtained in this way in the above-mentioned acidic solution, the particles in the granular body are bonded to each other, and a stronger water purification material can be obtained. The longer the immersion time, the stronger the strength will be, but since the granules already have some strength before being immersed, the immersion time may be about 1 to 3 days. The higher the temperature of the acidic solution, the better, and preferably 90°C or higher. Next, the granules are washed with water so that the water purified by the granules is within the hydrogen ion concentration standard, which is one of the water quality standards for tap water, and then further neutralized with a neutralizing agent such as caustic soda. Through these treatments, a water purification material that exhibits high performance not only for removing manganese and iron content but also for removing coloring can be obtained. Furthermore, due to the above neutralizing agent treatment, the PH value of the purified water at the initial stage of water flow will decrease.
It is around 5.8 to 8.6, which is within the water quality standards for tap water. The improvement in strength due to immersion in an acidic solution was measured by the abrasion rate test, which is one of the test items in the water filter sand test method (JWWA A 103), and it was found that the strength of the sand obtained by simply heating it in a humidified state was 5 to 10. %, whereas that of those immersed in an acidic solution was 1 to 3%, which clearly shows an improvement in strength. Note that the smaller the abrasion rate, the stronger the sand. γ-type electrolytic manganese dioxide is extremely porous microscopically, but as a material for water purification, it needs to be not only microscopically porous but also macroscopically porous. The water purification material according to the present invention is made up of microscopically porous grains that aggregate to form a macroscopically porous aggregate, and utilizes the properties of manganese dioxide without using a binder that would harm the activity of manganese dioxide. to form strong granules,
Furthermore, since needle-like or columnar manganese dioxide crystals are formed on the surface, the reaction area on the surface increases, and together with the fact that it is macroscopically porous, it achieves a large water purification ability. still,
If an oxidizing agent such as chlorine or potassium permanganate is added to the raw water in combination with the water purification material of the present invention, the color removal ability can be further improved. <Example> Examples, comparative examples, and experimental examples are shown below. Example 1 γ-type manganese dioxide powder with 60 g of divalent manganese ions, 20 g of magnesium ions, and 50 g of sulfuric acid
After adding and kneading a sulfuric acid acidic solution containing 20 to 42 g of sulfuric acid, granulation was performed to obtain granular manganese dioxide of 20 to 42 meshes. Place this granulated material in an airtight container and heat it to 100°C.
By heating for 2 days, granular manganese dioxide which does not disintegrate even when placed in water was obtained. Furthermore, in order to deoxidize, the material was first washed with water and then neutralized with caustic soda to obtain a material for water purification that was macroscopically porous and had acicular manganese dioxide starting to grow on its surface. Example 2 An acidic solution having the same composition as that used in Example 1 was added to γ-type manganese dioxide powder, and the mixture was kneaded and then granulated to obtain granular manganese dioxide having 20 to 42 meshes. This granulated material was placed in a sealed container and heated at 100° C. for 4 days to obtain granular manganese dioxide that does not disintegrate even when placed in water. Furthermore, the material was washed with water and neutralized in the same manner as in Example 1 to obtain a material for water purification that was macroscopically porous and had more acicular manganese dioxide grown on the surface than in Example 1. Example 3 The granular manganese dioxide obtained in Example 1 was immersed in an acidic solution containing 10 g of divalent manganese ions, 5 g of magnesium ions, and 10 g of sulfuric acid for 2 days while maintaining the temperature of the solution at 90°C. After being allowed to stand still, washing with water was carried out in the same manner as in Example 1 for deoxidation.
carried out neutralization. Electron micrographs of the water purification material thus obtained are shown in FIGS. 1a and 1b. As shown in FIGS. 1a and 1b, the water purification material of the present invention is macroscopically porous, and columnar manganese dioxide grows on the surface, further increasing the reaction surface area. Example 4 The granular manganese dioxide obtained in Example 1 was mixed with 60 g of divalent manganese ions and magnesium ions.
After immersing it in an acidic solution containing 20 g of sulfuric acid and 50 g of sulfuric acid and allowing it to stand for 3 days while maintaining the temperature of the solution at 90°C, it was washed with water in the same manner as in Example 1 for deoxidation.
Through neutralization, a material for water purification was obtained which was macroscopically porous and had more columnar manganese dioxide grown on the surface than in Example 3. Comparative Examples 1 to 3 Conventional materials, namely (i) material formed by molding γ-type manganese dioxide powder using Portland cement as a binder (Comparative Example 1), (ii) coarsely crushed γ-type electrolytic manganese dioxide block A sized, microscopically porous material (Comparative Example 2) and (iii) manganese-impregnated zeolite (Comparative Example 3) were each prepared by known methods. Experimental Example 1 Water purification material obtained in Example 1, Example 2
The water purification material obtained in Example 3, the water purification material obtained in Example 4, and the conventional material, that is, the material obtained by molding γ-type manganese dioxide powder with Portland cement (Comparative Example 1) ), a material obtained by coarsely crushing and sizing a γ-type electrolytic manganese dioxide block (Comparative Example 2), and a manganese-impregnated zeolite (Comparative Example 3) were used to compare the performance of removing chromaticity. The test conditions were to fill a column with 100 c.c. of each material and measure the chromaticity.
Raw water adjusted to 40 degrees was passed through at a rate of 1000 c.c./hr. The results are shown in FIG. As shown in Figure 2, the water purification ability was highest in Examples 1 to 4 using the water purification material of the present invention, followed by Comparative Example 3 using manganese-impregnated zeolite, and electrolytic manganese dioxide block coarsely crushed and sized. Comparative Example 2 using material, Comparative Example 1 using material formed by molding electrolytic manganese dioxide powder with alumina cement
Comparative example 3, which has the best water purification ability among the comparative examples, takes about 3 days to exceed the chromaticity of 5 degrees, which is the water quality standard for tap water.
Even in Example 1, which has relatively poor water purification ability among the Examples, the time was about 5.5 days, which shows that the water purification material of the present invention is significantly superior in water purification ability compared to conventional materials. Although there is no big difference in water purification ability between Examples 1 to 4, the water purification performance improves in the order of Example 2, Example 3>Example 1, and Example 4. Regarding the specific surface area, as a result of measurement using the BET method using nitrogen adsorption, Comparative Example 2 using microporous electrolytic manganese dioxide has a specific surface area of about 40 m 2 /g, while Example 1 according to the present invention has a specific surface area of 20 m 2 /g. g, Example 2 is 30 m 2 /g, Example 3 is 27 m 2 /g, Example 4
is 20 m 2 /g, and compared to Comparative Example 2, Examples 1 to 2
Although the water purification performance is less than half of that in both cases, the water purification performance is significantly superior, and water purification performance depends on macropores, and in Examples 1 to 4, the larger the surface area, the better the performance. The size of the surface area is important. The surface of the water purification material according to the present invention is activated by providing needle-like or columnar manganese dioxide crystals on the surface. In addition, in Examples 1 to 4, the PH value of the treatment liquid was that of the raw water.
It was almost the same as the PH value. Experimental Example 2 A strength test was conducted using the water purification materials obtained in Examples 1 to 4, Comparative Example 1, and Comparative Example 3. The test method is water filter sand test method (JWWA A
The test was carried out according to the abrasion rate test method in 103). Weigh 50g of water purification material and charge it into the iron tube. Add 5 steel balls with a diameter of 9mm to this, seal it and
Vibrate vigorously for 5 minutes at a rate of 250 times per minute. After finishing, it was sieved, the weight (Wg) of the material remaining on the sieve was determined, and the wear rate was calculated using the following formula. Wear rate (%) = (50-W) x 2 The results are shown in Table 1. As is clear from Table 1, the wear rate of Examples 1 and 2 obtained by heat treatment in a humidified state is slightly higher than that of Comparative Examples 1 and 3, but the molded product of Example 1 It can be seen that in Examples 3 and 4, which were obtained by further immersing in the residual solution, the retention rate was significantly reduced and the strength was improved. Comparing Example 1, which took 2 days of heat treatment, and Example 2, which took 4 days of heat treatment, it was found that the strength was stronger with the longer number of days of heat treatment. 3. Comparing Example 4, Example 4, which was immersed in an acidic solution with a high concentration of divalent manganese ions, magnesium ions, sulfuric acid, etc., was stronger in terms of strength.

【表】 実験例 3 本発明の浄水用材の原料である硫酸マンガン
浴における電解により得られたγ型二酸化マンガ
ン、本発明の実施例1、実施例2、実施例3、実
施例4で得られた粒状二酸化マンガンの鉄管球を
用いた場合のX線回折パターンを第3図a,b,
c,d,eにそれぞれ示した。 γ型二酸化マンガンは2θ=28゜の回折面にブロ
ードな回折パターンが表われβ型二酸化マンガン
は2θ=36゜の回折面に回折パターンが表われる特
徴がある。 このことから第3図aの原料である電解二酸化
マンガンはγ型二酸化マンガン、第3図bの実施
例1で得られた二酸化マンガン、第3図cの実施
例2で得られた二酸化マンガン、および第3図d
の実施例3で得られた二酸化マンガンはβ型とγ
型の混在した二酸化マンガン、第3図eの実施例
4で得られた二酸化マンガンはβ型二酸化マンガ
ンであることが確認された。 実験例 4 実施例3で使用した浄水用材と比較例3で使
用した材(マンガン添着ゼオライト)を用いて
マンガン分、鉄分除去の性能比較を行なつた。原
水として2価のマンガン分を5ppm、2価の鉄イ
オンを5ppmに調整したものを使用し、測定方法
は実験例1と同様な方法にて行なつた。 残留マンガンが水質基準の0.3ppmに達するま
での総処理水量で比較すれば、マンガン添着ゼオ
ライトを用いたもの(比較例3)が約20である
のに対し本発明による浄水用材を用いたもの
(実施例3)は約350となり色度のみならずマン
ガン分の除去能力についても本発明による浄水用
材の優秀性が明らかに確認された。なお鉄につ
いては残留マンガンが0.3ppmに達するまでは検
出されなかつた。実施例1、実施例2、実施例4
共に実施例3とほぼ同等の性能であつた。 <発明の効果> 以上説明した如く、マクロ的にポーラスでかつ
表面に針状あるいは柱状の二酸化マンガン結晶を
有した活性な粒状二酸化マンガンよりなる本発明
の浄水用材は浄水能力が著しく高く、かつ経済
的に安価であることから、湖水、河川水、地下水
等のマンガン分、鉄分および着色を除去するため
の材として最適である。
[Table] Experimental Example 3 γ-type manganese dioxide obtained by electrolysis in a manganese sulfate bath, which is the raw material for the water purification material of the present invention, and the γ-type manganese dioxide obtained in Example 1, Example 2, Example 3, and Example 4 of the present invention. The X-ray diffraction patterns when using a granular manganese dioxide iron tube are shown in Figure 3 a, b,
Shown in c, d, and e, respectively. γ-type manganese dioxide has a broad diffraction pattern that appears on the 2θ = 28° diffraction plane, and β-type manganese dioxide has a characteristic that a diffraction pattern appears on the 2θ = 36° diffraction plane. From this, the electrolytic manganese dioxide that is the raw material in Figure 3a is γ-type manganese dioxide, the manganese dioxide obtained in Example 1 in Figure 3b, the manganese dioxide obtained in Example 2 in Figure 3c, and Figure 3d
The manganese dioxide obtained in Example 3 of
It was confirmed that the manganese dioxide obtained in Example 4 shown in FIG. 3e was β-type manganese dioxide. Experimental Example 4 The water purification material used in Example 3 and the material used in Comparative Example 3 (manganese impregnated zeolite) were used to compare performance in removing manganese and iron. Raw water with divalent manganese content adjusted to 5 ppm and divalent iron ion content adjusted to 5 ppm was used, and the measurement method was the same as in Experimental Example 1. Comparing the total amount of water treated until the residual manganese reaches the water quality standard of 0.3 ppm, the amount of water treated using manganese-impregnated zeolite (Comparative Example 3) is about 20, whereas the amount of water treated using the water purification material according to the present invention (Comparative Example 3) is about 20. In Example 3), the value was approximately 350, clearly confirming the superiority of the water purification material of the present invention not only in terms of chromaticity but also in terms of ability to remove manganese. Regarding iron, residual manganese was not detected until it reached 0.3 ppm. Example 1, Example 2, Example 4
Both had almost the same performance as Example 3. <Effects of the Invention> As explained above, the water purification material of the present invention, which is made of active granular manganese dioxide that is macroscopically porous and has acicular or columnar manganese dioxide crystals on the surface, has extremely high water purification ability and is economical. Because it is inexpensive, it is ideal as a material for removing manganese, iron, and coloring from lake water, river water, underground water, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは本発明による二酸化マンガン
材の組織表面状態を表わした電子顕微鏡写真、第
2図は実施例1〜4および比較例1〜3における
処理水の色度と経過日数の関係を示すグラフ。第
3図a,b,c,d,eはそれぞれ本発明で使用
された二酸化マンガン、実施例1で得られた二酸
化マンガン、実施例2で得られた二酸化マンガ
ン、実施例3で得られた二酸化マンガン、実施例
4で得られた二酸化マンガンのX線回折パターン
を示すグラフ。
Figures 1a and b are electron micrographs showing the structure surface state of the manganese dioxide material according to the present invention, and Figure 2 is the relationship between the chromaticity of treated water and the number of days elapsed in Examples 1 to 4 and Comparative Examples 1 to 3. Graph showing. Figure 3 a, b, c, d, and e are the manganese dioxide used in the present invention, the manganese dioxide obtained in Example 1, the manganese dioxide obtained in Example 2, and the manganese dioxide obtained in Example 3, respectively. Manganese dioxide, a graph showing the X-ray diffraction pattern of manganese dioxide obtained in Example 4.

Claims (1)

【特許請求の範囲】[Claims] 1 β型二酸化マンガン単独もしくはβ型二酸化
マンガンとγ型二酸化マンガンとが混在したマク
ロ的にポーラスでかつ表面に針状あるいは柱状の
二酸化マンガン結晶を有する粒状二酸化マンガン
よりなることを特徴とする浄水用材。
1. A water purification material characterized by being made of granular manganese dioxide which is macroscopically porous and has acicular or columnar manganese dioxide crystals on its surface, consisting of β-type manganese dioxide alone or a mixture of β-type manganese dioxide and γ-type manganese dioxide. .
JP19242483A 1983-10-17 1983-10-17 Filter material for purifying water Granted JPS6084124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19242483A JPS6084124A (en) 1983-10-17 1983-10-17 Filter material for purifying water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19242483A JPS6084124A (en) 1983-10-17 1983-10-17 Filter material for purifying water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP26421888A Division JPH01127097A (en) 1988-10-21 1988-10-21 Preparation of water purifying filter material

Publications (2)

Publication Number Publication Date
JPS6084124A JPS6084124A (en) 1985-05-13
JPH0153564B2 true JPH0153564B2 (en) 1989-11-14

Family

ID=16291084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19242483A Granted JPS6084124A (en) 1983-10-17 1983-10-17 Filter material for purifying water

Country Status (1)

Country Link
JP (1) JPS6084124A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004049020A1 (en) * 2004-10-05 2006-04-06 Rheinkalk Akdolit Gmbh & Co. Kg Filter material for removal of manganese and iron from drinking water contains two types of graded mineral particles
WO2010109556A1 (en) * 2009-03-24 2010-09-30 株式会社アサカ理研 Water treatment method and water treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504479A (en) * 1973-05-18 1975-01-17
JPS5130385A (en) * 1974-09-06 1976-03-15 Matsushita Electric Ind Co Ltd GUREEZUBARISUTA
JPS5214544A (en) * 1975-07-24 1977-02-03 Matsushita Electric Ind Co Ltd Downhand one surface welding process
JPS5332619A (en) * 1976-09-07 1978-03-28 Matsushita Electric Ind Co Ltd Converting tube for scanning
JPS5645829A (en) * 1979-09-21 1981-04-25 Mitsui Mining & Smelting Co Ltd Manufacture of dehydrated gamma-manganese dioxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504479A (en) * 1973-05-18 1975-01-17
JPS5130385A (en) * 1974-09-06 1976-03-15 Matsushita Electric Ind Co Ltd GUREEZUBARISUTA
JPS5214544A (en) * 1975-07-24 1977-02-03 Matsushita Electric Ind Co Ltd Downhand one surface welding process
JPS5332619A (en) * 1976-09-07 1978-03-28 Matsushita Electric Ind Co Ltd Converting tube for scanning
JPS5645829A (en) * 1979-09-21 1981-04-25 Mitsui Mining & Smelting Co Ltd Manufacture of dehydrated gamma-manganese dioxide

Also Published As

Publication number Publication date
JPS6084124A (en) 1985-05-13

Similar Documents

Publication Publication Date Title
US4551254A (en) Macroporous manganese dioxide water purifier
Taffarel et al. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites
US4377483A (en) Method of removing dissolved heavy metals from aqueous waste liquids
CN108706745B (en) Method for treating high-iron-manganese ammonia nitrogen combined pollution low-temperature underground water
US2145901A (en) Purification of water
GB471277A (en) Method of and composition for the treatment of water
JPH0153564B2 (en)
JPS60153940A (en) Adsorbent of dissolved fluorine ion
JPH0337996B2 (en)
JPH0677732B2 (en) Adsorbent for water treatment and method for producing the same
JP5032755B2 (en) Soil treatment material and soil purification method using the same
JPS61192340A (en) Fluorine complex ion adsorbent
JPH0122037B2 (en)
JP3412455B2 (en) Activated alumina for arsenate ion adsorption and method for adsorbing arsenate ions from aqueous solution using the same
JPS58216780A (en) Water treatment device
JPH08267053A (en) Method of removing arsenic by electrolytic manganese dioxide adsorbent and arsenic removing adsorbent
JPS6365374B2 (en)
JPS62254839A (en) Adsorbent for metallic ion and odor
JPH0459038B2 (en)
JPS63287547A (en) Adsorbent for fluoride ion
JPS62258742A (en) Preparation of adsorbent for metal ion and offensive smell
JPH0520140B2 (en)
JPH0919680A (en) Water purifying agent and its production
JPS63194710A (en) Filter medium for purifying water
JPH02233196A (en) Material for decoloring and cleaning of water and its preparation