JPS63201010A - Production of hyperfine silicon carbide powder - Google Patents
Production of hyperfine silicon carbide powderInfo
- Publication number
- JPS63201010A JPS63201010A JP62030218A JP3021887A JPS63201010A JP S63201010 A JPS63201010 A JP S63201010A JP 62030218 A JP62030218 A JP 62030218A JP 3021887 A JP3021887 A JP 3021887A JP S63201010 A JPS63201010 A JP S63201010A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- silicon carbide
- raw material
- gaseous phase
- carbide powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- NEXSMEBSBIABKL-UHFFFAOYSA-N hexamethyldisilane Chemical compound C[Si](C)(C)[Si](C)(C)C NEXSMEBSBIABKL-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000002994 raw material Substances 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000011812 mixed powder Substances 0.000 claims description 11
- 238000000197 pyrolysis Methods 0.000 claims description 6
- 150000003961 organosilicon compounds Chemical class 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 21
- 239000000843 powder Substances 0.000 abstract description 21
- 229910010271 silicon carbide Inorganic materials 0.000 abstract description 12
- 239000012159 carrier gas Substances 0.000 abstract description 6
- 238000004663 powder metallurgy Methods 0.000 abstract description 5
- 238000005979 thermal decomposition reaction Methods 0.000 abstract description 5
- 239000002245 particle Substances 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 239000007792 gaseous phase Substances 0.000 abstract 3
- 239000000203 mixture Substances 0.000 abstract 3
- 239000007789 gas Substances 0.000 description 13
- 238000010298 pulverizing process Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- 238000000815 Acheson method Methods 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、粉末冶金用原料粉末として使用するのに適
した高純度超微粒炭化けい素粉末と炭素粉末からなる混
合粉末の製造法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for producing a mixed powder consisting of high-purity ultrafine silicon carbide powder and carbon powder suitable for use as a raw material powder for powder metallurgy. It is.
一般に、炭化けい素(以下SiCで示す)粉末は、すぐ
れた耐摩耗性、耐酸化性、高温強度、および熱伝導性を
有することから、これらの特性が要求される焼結研磨材
や焼結耐熱部材、さらに各種の焼結部材の製造に原料粉
末として用いられている。In general, silicon carbide (hereinafter referred to as SiC) powder has excellent wear resistance, oxidation resistance, high temperature strength, and thermal conductivity, and is therefore used in sintered abrasives and sintered materials that require these properties. It is used as a raw material powder in the manufacture of heat-resistant parts and various sintered parts.
まだ、 SiC粉末の製造法としては、(a)アチソン
法、(b)炭素けい化法、(C)高分子カルボシランの
熱分解法%(d)気相反応法、および(e)有機けい素
化合物の気相熱分解法などが知られている。As for the manufacturing method of SiC powder, (a) Acheson method, (b) carbon silicification method, (C) thermal decomposition method of polymeric carbosilane%, (d) gas phase reaction method, and (e) organosilicon method. Gas-phase thermal decomposition methods for compounds are known.
しかし、上記(a)方法は、高温反応を必要とするばか
シでなく、粉砕工程を必要とすることから、不純物の混
入が多く、かつ微粉化が困難であるという問題点があυ
、上記(b)方法は、微粉化が困難であると共に、工業
的大量生産に問題があり、また上記(C)方法では、製
造されるSiCが繊維状になって微粉末が得られず、上
記(d)方法は、5ICt4や(CH3)5SiCtな
どのノ・ロゲン化合物と炭化水素との反応を利用するも
のであるため、製造される粉末生にハロゲン元素が残留
し、高純度のものが得られないという問題があシ、さら
に上記(d)方法では、Si” H結合のある特殊なS
i化合物を原料として用い、かつSlとCの結合比が1
のストイキオメトリ−のSiC粉末を製造することを目
的とするものであり、シたがってこれを粉末冶金用原料
として用いる場合には、別途炭素粉末の添加が必要であ
るなどの問題点がある。However, method (a) above does not require a high-temperature reaction, but requires a pulverization process, which has the problems of contamination with many impurities and difficulty in pulverization.
The above method (b) is difficult to pulverize and has problems in industrial mass production, and the above method (C) produces SiC in the form of fibers, making it impossible to obtain a fine powder. Since the above method (d) utilizes the reaction between a halogen compound such as 5ICt4 or (CH3)5SiCt and a hydrocarbon, halogen elements remain in the raw powder produced, and high purity powder may not be produced. Furthermore, in the method (d) above, there is a problem that the special S
i compound is used as a raw material, and the bonding ratio of Sl and C is 1.
The purpose of this method is to produce SiC powder with a stoichiometry of .
そこで、本発明者等は、上記の各種従来法のもつ問題点
を解決すべく研究を行なった結果、原料として有機けい
素化合物であるヘキサメチルジシランを用い、これを8
00℃以上の温度で気相熱分解反応させると、平均粒径
が0.02〜0.1μmの超微粒にして、99.9%以
上の高純度を有するSiC粉末と、0.5〜7重量%の
割合で含有する炭素粉末とからなる混合粉末が得られ、
この混合粉末は、上記のように超微粒にして高純度の8
iC粉末と炭素粉末よりなるので、粉砕工程や炭素粉末
の添加を必要とすることなく、このままの状態で、粉末
冶金用原料として使用することができるという知見を得
たのである。Therefore, the present inventors conducted research to solve the problems of the various conventional methods described above, and as a result, using hexamethyldisilane, an organosilicon compound, as a raw material,
When subjected to a gas phase pyrolysis reaction at a temperature of 00°C or higher, SiC powder becomes ultrafine particles with an average particle size of 0.02 to 0.1 μm and has a high purity of 99.9% or higher, and 0.5 to 7 μm. A mixed powder consisting of carbon powder containing % by weight is obtained,
This mixed powder is made into ultra-fine particles with high purity as described above.
Since it is composed of iC powder and carbon powder, it was found that it can be used as a raw material for powder metallurgy without the need for a pulverization process or the addition of carbon powder.
この発明は、上記知見にもとづいてなされたものであっ
て、原料として有機けい素化合物であるヘキサメチルジ
シラン((CH3)6Si2]を用い、これを800℃
以上の温度で気相熱分解反応させることによシ高純度超
微粒SiC粉末と炭素粉末からなる混合粉末を生成せし
めることからなる超微粒SiC粉末の製造法に特徴を有
するものである。This invention was made based on the above knowledge, and uses hexamethyldisilane ((CH3)6Si2), which is an organosilicon compound, as a raw material, and heats it at 800°C.
This method is characterized by producing a mixed powder of high-purity ultrafine SiC powder and carbon powder through a gas phase pyrolysis reaction at the above temperature.
なお、この発明の方法では、気相熱分解反応温度が80
0℃未満では、高純度超微粒SiC粉末の収率が低下す
るばかシでなく、反応が遅く工業的でないという理由で
、その温度を800℃以上憧ましくは1200℃以上)
と定めた。In addition, in the method of this invention, the gas phase pyrolysis reaction temperature is 80
If the temperature is lower than 0°C, the yield of high-purity ultrafine SiC powder will decrease, but the reaction is slow and unsuitable for industrial use.
It was determined that
つぎに、この発明の方法を実施例によシ具体的に説明す
る。Next, the method of the present invention will be specifically explained using examples.
実施例 1
第1図に概略説明図で示される横型電気炉1において、
これの構成部材である内径:3OmxX長さ:600m
の寸法をもったA!203製炉心管2の中心部の温度を
加熱コイル3にてそれぞれ第1表に示される温度に加熱
保持し、この炉心管2内に、一方端からヘキサメチルジ
シラン:o、1gを含有するN2キャリアガスな同じく
第1表に示される割合で装入して前記へキサメチルジシ
ランを気相熱分解反応させ、これを第1表に示される反
応時間行ない、一方他方端から反応生成物を取シ出し、
補集器にて混合粉末を採取することによって本発明法1
〜6をそれぞれ実施した。Example 1 In a horizontal electric furnace 1 shown in a schematic explanatory diagram in FIG.
Inner diameter of this component: 30m x length: 600m
A with dimensions of! The temperature at the center of the 203 furnace core tube 2 is heated and maintained at the temperature shown in Table 1 using the heating coil 3, and N2 containing 1 g of hexamethyldisilane is poured into the furnace core tube 2 from one end. The hexamethyldisilane was charged with a carrier gas in the proportion shown in Table 1, and the hexamethyldisilane was subjected to a gas phase thermal decomposition reaction for the reaction time shown in Table 1, and the reaction product was removed from one end. out,
The present invention method 1 is carried out by collecting the mixed powder with a collector.
- 6 were carried out, respectively.
この結果得られた混合粉末の特性を、X線回折および透
過電子顕微鏡にて測定し、その測定結果を第1表に示し
た。The properties of the resulting mixed powder were measured using X-ray diffraction and a transmission electron microscope, and the measurement results are shown in Table 1.
実施例 2
第2図に一概略説明図で余される装置を用いて実施した
。Example 2 This was carried out using the apparatus shown in a schematic explanatory diagram in FIG.
すなわち、内径:60011X高さ:1000mmの円
筒状反応容器4内を10−’ torrの圧力に真空引
きした後、反応容器内を約200〜300 torrの
減圧状態に保持するようにArガス導入口5からArガ
スを導入し、この状態で高周波電源6に、周波数: 1
3.56 MHz、出カニ30KVAの条件で高周波電
力を投入して、Arプラズマを点火し、点火と同時にN
2ガス導入ロアからN2ガスを導入して、反応容器内を
1気圧に調整すると共に、高周波プラズマ8の安定をは
かシ、ついでヘキサメチルジシランを、キャリアガスと
してArとN2の混合ガスを用い、ヘキサメチルジシラ
ン: 0.79 /阻、Ar: 5 L /r#L、
N2: 3 L /mjtcの割合で高周波プラズマ8
のテール部分(推定温度約2800℃)9に導入して気
相熱分解反応させ、この反応を1O分間行ない、一方生
成物を冷却台(循環水冷)10で冷却し、補集器11で
混合粉末を回収することによシ本発明法6を実施した。That is, after evacuating the inside of the cylindrical reaction vessel 4 with an inner diameter of 60011 mm and a height of 1000 mm to a pressure of 10-' torr, an Ar gas inlet was opened to maintain the inside of the reaction vessel at a reduced pressure of about 200 to 300 torr. Ar gas is introduced from 5, and in this state, the high frequency power source 6 is supplied with a frequency of 1.
3.56 MHz, 30 KVA output, high frequency power is applied to ignite Ar plasma, and at the same time as ignition, N
2. N2 gas is introduced from the gas introduction lower to adjust the inside of the reaction vessel to 1 atmosphere, and at the same time, to stabilize the high frequency plasma 8, hexamethyldisilane is used as a carrier gas, and a mixed gas of Ar and N2 is used as a carrier gas. , hexamethyldisilane: 0.79/r, Ar: 5 L/r#L,
N2: High frequency plasma at a rate of 3 L/mjtc 8
The tail portion (estimated temperature of about 2800°C) 9 is introduced to cause a gas phase pyrolysis reaction, and this reaction is carried out for 10 minutes.Meanwhile, the product is cooled on a cooling table (circulated water cooling) 10 and mixed in a collector 11. Method 6 of the invention was carried out by collecting the powder.
この結果得られた混合粉末の特性を同様に測定し、第1
表に示した。The properties of the resulting mixed powder were measured in the same manner, and the first
Shown in the table.
第1表に示される結果から明らかなように、本発明法1
〜6によって製造された混合粉末は、いずれも99.9
%以上の高純度を有し、かつ平均粒径で0.02〜0.
171 mの超微粒のSiC粉末と、05〜7重量係の
炭素粉末からなることが明らかである。As is clear from the results shown in Table 1, the method 1 of the present invention
All of the mixed powders manufactured by 6 to 99.9
% or more, and the average particle size is 0.02-0.
It is clear that it consists of ultrafine SiC powder of 171 m and carbon powder of 0.5 to 7 weight.
また、この発明の方法においては、気相熱分解温度やキ
ャリアガス導入割合などを制御することによって、 S
iC粉末の平均粒径や収量、さらに炭素粉末の割合を自
由に調整することができるものである。In addition, in the method of the present invention, by controlling the gas phase pyrolysis temperature, carrier gas introduction ratio, etc.
It is possible to freely adjust the average particle size and yield of iC powder, as well as the proportion of carbon powder.
上述のように、この発明の方法によれば、高純度超微粒
のSiC粉末と炭素粉末からなる混合粉末を粉砕工程を
必要とすることなく製造することができ、前記高純度超
微粒SiC粉末は炭素粉末から分離した状態で単独で用
いてもよいし、粉末冶金用原料としては、むしろ上記混
合粉末の形で用いた方が望ましいなど工業上有用な効果
が得られるのである。As described above, according to the method of the present invention, a mixed powder consisting of high-purity ultra-fine SiC powder and carbon powder can be produced without the need for a pulverization step, and the high-purity ultra-fine SiC powder is It may be used alone in a state separated from carbon powder, but it is more desirable to use it in the form of the above-mentioned mixed powder as a raw material for powder metallurgy, as industrially useful effects can be obtained.
第1図および第2図はいずれもこの発明の実施装置を示
す概略説明図である。
1・・・電気炉% 2・・・炉心管、3・・・
加熱コイル、 4・・・反応容器、5・・・Arガ
ス導入口、 6・・・高周波電源、7・・・N2ガス
導入口、 8・・・高周波プラズマ、9・・・ヘキサ
メチルジシラン導入位置である高周波プラズマのテール
部分、
10・・・冷却台、11・・・補集器。Both FIG. 1 and FIG. 2 are schematic explanatory diagrams showing an apparatus for implementing the present invention. 1...Electric furnace% 2...Furnace core tube, 3...
Heating coil, 4... Reaction vessel, 5... Ar gas inlet, 6... High frequency power supply, 7... N2 gas inlet, 8... High frequency plasma, 9... Hexamethyldisilane introduction The tail portion of the high-frequency plasma, which is the position, 10...Cooling table, 11...Collector.
Claims (1)
ランを用い、これを800℃以上の温度で気相熱分解反
応させることにより高純度超微粒炭化けい素粉末と炭素
粉末からなる混合粉末を生成せしめることを特徴とする
超微粒炭化けい素粉末の製造法。Using hexamethyldisilane, an organosilicon compound, as a raw material, a mixed powder consisting of high-purity ultrafine silicon carbide powder and carbon powder is produced by subjecting it to a gas phase pyrolysis reaction at a temperature of 800°C or higher. Characteristic method for producing ultra-fine silicon carbide powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62030218A JPH085653B2 (en) | 1987-02-12 | 1987-02-12 | Method for producing ultrafine silicon carbide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62030218A JPH085653B2 (en) | 1987-02-12 | 1987-02-12 | Method for producing ultrafine silicon carbide powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63201010A true JPS63201010A (en) | 1988-08-19 |
JPH085653B2 JPH085653B2 (en) | 1996-01-24 |
Family
ID=12297580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62030218A Expired - Lifetime JPH085653B2 (en) | 1987-02-12 | 1987-02-12 | Method for producing ultrafine silicon carbide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH085653B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990003452A1 (en) * | 1988-09-26 | 1990-04-05 | Advanced Technology Materials, Inc. | Chemical vapor deposition of silicon carbide |
-
1987
- 1987-02-12 JP JP62030218A patent/JPH085653B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990003452A1 (en) * | 1988-09-26 | 1990-04-05 | Advanced Technology Materials, Inc. | Chemical vapor deposition of silicon carbide |
US4923716A (en) * | 1988-09-26 | 1990-05-08 | Hughes Aircraft Company | Chemical vapor desposition of silicon carbide |
Also Published As
Publication number | Publication date |
---|---|
JPH085653B2 (en) | 1996-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101976594B1 (en) | Silicon carbide powder, method for manufacturing the same and method for fabricating single crystal | |
JP2006240942A (en) | Method for manufacturing high purity boron nitride nanotube | |
JPS5945918A (en) | Powdered pure silicon of high density and its manufacture | |
JPS63201010A (en) | Production of hyperfine silicon carbide powder | |
JPS58120599A (en) | Production of beta-silicon carbide whisker | |
JP2003049201A (en) | Spherical powder of metal and metallic compound, and manufacturing method thereof | |
JP6371818B2 (en) | Manufacturing method of carbide raw material | |
JPS6225605B2 (en) | ||
JP3804947B2 (en) | Method for producing high α-type silicon nitride fine powder | |
JPS63147812A (en) | Production of silicon carbide powder | |
JPS616109A (en) | Manufacture of sic | |
JPS6259507A (en) | Production of ultrafine powder of ti nitride and device therefor | |
JPS6077114A (en) | Production of spherical sic powder | |
JPS6042164B2 (en) | Powder manufacturing method | |
JPS63147811A (en) | Production of fine sic powder | |
JP2000044223A (en) | Production of silicon carbide | |
JPS63103899A (en) | Production of silicon carbide whisker of high-quality and apparatus therefor | |
JPH0648709A (en) | Production of silicon nitride powder | |
JPH0499075A (en) | Manufacture of thermoelectric material | |
JPS6048446B2 (en) | Method for manufacturing silicon nitride powder | |
JP2003034511A (en) | Method of manufacturing aluminum nitride powder | |
JPS60239316A (en) | Manufacture of hyperfine sic powder | |
JPS6163510A (en) | Production of composite fine powder | |
JPH02208211A (en) | Production of fine silicon nitride powder | |
JPH0454610B2 (en) |