JPS63200899A - Process for treating organic filthy water containing phosphate ion - Google Patents

Process for treating organic filthy water containing phosphate ion

Info

Publication number
JPS63200899A
JPS63200899A JP62033411A JP3341187A JPS63200899A JP S63200899 A JPS63200899 A JP S63200899A JP 62033411 A JP62033411 A JP 62033411A JP 3341187 A JP3341187 A JP 3341187A JP S63200899 A JPS63200899 A JP S63200899A
Authority
JP
Japan
Prior art keywords
ions
stage
water
slurry
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62033411A
Other languages
Japanese (ja)
Other versions
JPH0217238B2 (en
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP62033411A priority Critical patent/JPS63200899A/en
Publication of JPS63200899A publication Critical patent/JPS63200899A/en
Publication of JPH0217238B2 publication Critical patent/JPH0217238B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To reduce concentration of PO4<3-> ion in permeated water through permeable membrane by adding Mg ions to org. filthy water contg. phosphate ions, treating then the water biologically, adding Al ions to the biological treating stage or to slurry discharged from the stage, and separating the PO4<3-> ions using membrane. CONSTITUTION:After adding Mg ions 2 to org. filthy water contg. phosphate ions, the filthy water is treated biologically in a biological treating stage 3. After adding further Al ions or Fe ions 5 to the biological treating stage or the slurry 4 discharged from the stage 3, solid in the water is separated from liquid with a membrane separation apparatus 6 into clean permeated water 7 contg. no SS and concentrated separated slurry 8. Thus, the concn. of PO4<3-> is reduced remarkably, so a removing stage of PO4<3-> by adsorption is no more necessary, or frequency for regenerating adsorbent is reduced extremely even if the adsorption stage of PO4<3-> ion is executed additionally. Accordingly, disposal of regenerated waste liquid is facilitated extremely because crystallization or centrifugal separation, etc. Which has been required conventionally, is unnecessary.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、し尿系汚水、下水、各種廃水等のリン酸イオ
ン(PO4ff−)を含有する有機性汚水の処理方法に
関し、特に生物処理工程と膜分離工程を備えた処理方法
の改良に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for treating organic wastewater containing phosphate ions (PO4ff-) such as human waste water, sewage, and various wastewaters, and particularly to a biological treatment process. The present invention relates to an improvement in a treatment method including a membrane separation step.

〔従来の技術〕[Conventional technology]

従来より、有機性汚水の処理には活性汚泥法等の生物処
理法が最も広く採用されており、活性汚泥と処理水とを
分離するためには沈殿池が採用されていた。
Conventionally, biological treatment methods such as activated sludge methods have been most widely used to treat organic sewage, and settling tanks have been used to separate activated sludge and treated water.

しかし最近では、沈殿池を設置することなく、活性汚泥
を直接限外が過(UP)II!等で固液分離するという
方法が中水道、し尿処理の分野で実用化されるに至り、
そのなかでも、し尿のような高濃度のPO,’−を含有
する有機性汚水の処理として、汚水を生物処理したのち
膜分離し、その膜透過水を活性炭吸着処理後に水和酸化
ジルコニウム(Zr(h・n11g0)によってPO2
−を吸着除去するというプロセスが提案されていた(昭
和61年2月全国都市tlt掃会議研究発表会要旨集参
照)。
However, recently, activated sludge can be directly processed using UP II! without installing a settling tank. The solid-liquid separation method has been put into practical use in the field of gray water and human waste treatment.
Among these, in order to treat organic wastewater containing high concentrations of PO,'-, such as human waste, wastewater is subjected to biological treatment and then membrane separation, and the permeated water is treated with activated carbon adsorption treatment and treated with hydrated zirconium oxide (Zr). PO2 by (h・n11g0)
A process was proposed in which - was adsorbed and removed (refer to the collection of abstracts from the February 1988 National Cities TLT Cleaning Conference Research Presentation).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような従来プロセスでは次の諸問題
が未解決であり、理想的プロセスには程遠いと言わざる
を得ない。
However, in such a conventional process, the following problems remain unresolved, and it must be said that it is far from an ideal process.

■ UP膜などの膜分離ではr’o、’−はほとんど透
過してしまうので、Mi3通水に対してPO4”−吸着
剤(ZrOz −nHlo)を用いた吸着除去工程を設
けなければならないが、吸着除去すべきPO4’−が高
濃度(し尿処理の場合はUF膜透過水中のPOa′−濃
度は500〜600■/lにも達する)であると、PQ
a’−吸着剤はすみやかに飽和吸着量に達してしまう。
■ In membrane separation such as UP membrane, most of r'o and '- pass through, so an adsorption removal process using PO4''-adsorbent (ZrOz -nHlo) must be provided for Mi3 water flow. , when the concentration of PO4'- to be adsorbed and removed is high (in the case of human waste treatment, the concentration of POa'- in the water permeated through the UF membrane reaches as high as 500 to 600 ■/l), PQ
The a'-adsorbent quickly reaches a saturated adsorption amount.

この結果、頻繁な再生操作を必要とし、維持管理が面倒
でかつ運転コストが高額になっていた。
As a result, frequent regeneration operations are required, maintenance is troublesome, and operating costs are high.

■ しかも、Zr0t・nHtに吸着されたPO43−
を離脱させて再生するために、Na0HtI液と接触さ
せているが、この結果Na2PO4を多量に含んだ再生
廃液が多量に発生する。
■ Moreover, PO43− adsorbed on Zr0t・nHt
In order to remove and regenerate the Na0HtI solution, it is brought into contact with the Na0HtI solution, but as a result, a large amount of regeneration waste liquid containing a large amount of Na2PO4 is generated.

この再生廃液を処理するために、再生廃液からNa3P
O4の結晶を晶析させて遠心分離機等で分離して系外に
排出しているが、これらの操作は煩雑であり、回収した
Na3PO4をどうするかという問題点もあった。
In order to treat this recycled waste liquid, Na3P is extracted from the recycled waste liquid.
Although O4 crystals are crystallized, separated using a centrifuge, etc., and discharged from the system, these operations are complicated, and there is also the problem of what to do with the recovered Na3PO4.

本発明は、このような従来プロセスの問題点を根本的に
解決することを課題としており、具体的には、 <4) PO4”−の吸着除去工程を不要にするか、又
はpo、”吸着除去工程の再生頻度を著しく少なくする
The purpose of the present invention is to fundamentally solve the problems of such conventional processes. Significantly reduces the regeneration frequency of the removal process.

(o) Po、3−吸着剤の再生廃液の処分を不要にす
る。
(o) Eliminates the need to dispose of Po,3-adsorbent regeneration waste liquid.

ことを解決課題としている。This is the problem to be solved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記課題を解決するための手段として、リン
酸イオンを含有する有機性汚水にマグネシウムイオンを
添加したのちに生物処理し、該生物処理工程内あるいは
該生物処理工程から流出するスラリにアルミニウムイオ
ン又は鉄イオンを添加して膜分離することを特徴とする
リン酸イオンを含有する有機性汚水の処理方法を提供す
るものである。
As a means for solving the above-mentioned problems, the present invention provides biological treatment after adding magnesium ions to organic wastewater containing phosphate ions, and treating the slurry in or out of the biological treatment process with magnesium ions. The present invention provides a method for treating organic wastewater containing phosphate ions, which is characterized by adding aluminum ions or iron ions and performing membrane separation.

〔作 用〕[For production]

以下に本発明の作用を、一実施態様を示す図面を参照し
ながら、リン酸イオンを含有する有機性汚水の典型例で
あるし尿を例にとりあげて説明す図示しないスクリーン
等で除渣されたし尿lにマグネシウムイオンCM、”)
 2、例えばH,R−を解離する化合物(Mg(OH)
t、 MgO,MgCl1. Mg5O*など)を添加
したのち、生物処理工程3へ導く。
The effects of the present invention will be explained below with reference to drawings showing one embodiment of the invention, taking human waste, which is a typical example of organic sewage containing phosphate ions, as an example. Magnesium ion CM in night soil,”)
2, for example, a compound that dissociates H, R- (Mg(OH)
t, MgO, MgCl1. After adding Mg5O*, etc.), the mixture is led to biological treatment step 3.

Mgz′″2の添加量はPO43−に対してモル比で1
以上が良< 、Mg”を添加することによって、し尿中
のP04′−の大部分はHgtoと反応し、Mg”+ 
Po、3−+ Nl、”→NHJgPO4↓なる沈殿反
応を起こし、リン酸マグネシウムアンモニウム(Na3
PO4)沈殿物という同相に転換される。そして、この
NH4MgPOn沈殿を含むし尿lは生物処理工程3に
おいて、BOD成分、COD成分などが除去されるが、
なおし尿中には窒素分が残留しているので、生物処理工
程3としては生物学的硝化脱窒素工程とするのが好まし
い。
The amount of Mgz′″2 added is 1 in molar ratio to PO43-.
The above is good. By adding Mg", most of the P04'- in human urine reacts with Hgto, and Mg"+
Po,3−+Nl,”→NHJgPO4↓ occurs, and magnesium ammonium phosphate (Na3
PO4) is converted into the same phase as a precipitate. Then, in the biological treatment step 3, BOD components, COD components, etc. are removed from the human waste l containing this NH4MgPOn precipitate.
Since nitrogen content remains in the human waste, the third biological treatment step is preferably a biological nitrification and denitrification step.

この生物学的硝化脱窒素工程においてBOD成分、CO
D成分、窒素分等が除去されるが、本発明者は実験の過
程で次のような非常に興味深い現象を見いだした。
In this biological nitrification and denitrification process, BOD components, CO
The D component, nitrogen content, etc. are removed, but the inventor discovered the following very interesting phenomenon during the course of the experiment.

すなわち、本発明者は、し尿中のMHz−Nは生物学的
硝化脱窒素工程内に高濃度に存在する硝化閑によってN
O,−N又はN0s−Hに酸化される結果、工程内での
Nt14゜濃度は数■/i程度と非常に低レベルになり
、NHaMgPOi沈殿が次の化学平衡関係、NHJg
POa j→NH*” ” Mg” + PO43−の
反応によって大部分が再溶解してしまうのではないかと
予想していたのであるが、実験の結果は予想に反し、N
HnMgPO4沈殿は生物学的硝化脱窒素工程において
長時間滞留していても、一部が溶解してくるだけで完全
に溶解することはないことが認められた。このことは、
生物学的硝化脱窒素工程から流出する活性汚泥スラリ4
のなかに多量のNIIJgPO4の微細結晶が含まれて
いたことから確認された。
That is, the present inventors believe that MHz-N in human waste is due to nitrification that exists in high concentrations during the biological nitrification and denitrification process.
As a result of being oxidized to O, -N or N0s-H, the Nt14° concentration in the process becomes a very low level of several ■/i, and NHaMgPOi precipitates form the following chemical equilibrium relationship, NHJg
We expected that most of it would be redissolved by the reaction of POa j → NH*""Mg" + PO43-, but the experimental results were contrary to our expectations;
It was observed that even if the HnMgPO4 precipitate was retained for a long time in the biological nitrification and denitrification process, only a portion of the precipitate was dissolved and the HnMgPO4 precipitate was not completely dissolved. This means that
Activated sludge slurry flowing out from biological nitrification and denitrification process 4
This was confirmed because a large amount of NIIJgPO4 microcrystals were contained in the sample.

なお、yj g l −2の添加ポイントは、生物学的
硝化脱窒素工程内の脱窒素槽部にしてもよい。
Note that the addition point of yj g l -2 may be a denitrification tank part in the biological nitrification and denitrification process.

次に、生物処理工程3から流出する活性汚泥スラリ4に
対し、硫酸アルミニウム、ポリ塩化アルミニウムなどに
より、アルミニウムイオン(^I”)又は塩化第2鉄、
ポリ硫酸鉄などにより鉄イオン(Fe34)  5を添
加することによって、活性汚泥スラリ4中の法例に含ま
れる204′−をリン酸アルミニウム(AIPO4)又
はリン酸第2t&(FePOa)の沈殿に転換し、活性
汚泥フロックと共に精密濾過(MF)膜、限外が遇(O
F)膜などを装着した膜分離装M6によって固液分離し
、SSゼロの極めて清澄な膜透過水7と濃縮分離スラリ
8とに分離する。
Next, the activated sludge slurry 4 flowing out from the biological treatment process 3 is treated with aluminum sulfate, polyaluminum chloride, etc. to remove aluminum ions (^I'') or ferric chloride,
By adding iron ions (Fe34) 5 using polyferric sulfate, etc., 204'- contained in the method in activated sludge slurry 4 is converted into precipitation of aluminum phosphate (AIPO4) or phosphoric acid 2t&(FePOa). , activated sludge flocs together with microfiltration (MF) membranes, ultrafiltration (O
F) Solid-liquid separation is performed by a membrane separator M6 equipped with a membrane or the like to separate extremely clear membrane permeated water 7 with zero SS and concentrated separated slurry 8.

この濃縮分離スラリ8の大部分は返送スラリ9として生
物処理工程3にリサイクルされ、残りの部分は余剰スラ
リIOとして汚泥処理工程(図示せず)に送られる。
Most of this concentrated and separated slurry 8 is recycled to the biological treatment process 3 as return slurry 9, and the remaining part is sent to the sludge treatment process (not shown) as surplus slurry IO.

余剰スラリlO中には、NHJgr’%沈殿とAlPO
4沈殿又はFePOn沈殿が含まれており、本発明はこ
のように汚水中に含まれているPOe−を2種類のリン
酸含有沈殿として余剰スラリ10と共に系外に排出する
という技術思想に大きな特徴をもっている。従来、有機
性汚水中のPo、3−を前記本発明のような処理によっ
てNHaMgPOn沈殿、AIPO*沈殴又はFePO
4沈殿、および生物細胞内にとりこまれたPとして除去
するという技術は存在しない。
In the excess slurry lO, NHJgr'% precipitate and AlPO
4 precipitate or FePOn precipitate, and the present invention is characterized by the technical concept of discharging POe- contained in wastewater as two types of phosphoric acid-containing precipitates to the outside of the system together with excess slurry 10. have. Conventionally, Po, 3- in organic sewage was treated as NHaMgPOn precipitation, AIPO* sedimentation or FePO by the treatment according to the present invention.
There is no technology that removes P as 4-precipitate or as P incorporated into biological cells.

一方、膜i3過水7は、PO43−として10w/J以
下になっているので、そのまま放流7′することもでき
るが、所望に応じてリン酸吸着除去工程11に導き、膜
透過水7中の残留POe−を吸着除去したのち放流水1
2としてもよい、使用するリン酸吸着除去剤としては、
公知の水酸化鉄、骨炭、活性アルミナ、水和酸化ジルコ
ニウム、水和酸化チタンなどから適宜選択することがで
きる。
On the other hand, since the membrane i3 permeated water 7 has a PO43- value of 10 w/J or less, it can be discharged as is 7', but if desired, it can be led to the phosphoric acid adsorption and removal step 11 and the membrane permeated water 7 After adsorbing and removing the residual POe-, the effluent water 1
The phosphoric acid adsorption remover used may be 2.
It can be appropriately selected from known iron hydroxide, bone char, activated alumina, hydrated zirconium oxide, hydrated titanium oxide, and the like.

po、”−を吸着したリン酸吸着除去剤を再生するには
、Na0IL Mg(011) tなどのアルカリ剤1
3を接触させることによって、PO,トを容易に脱離さ
せることが可能である。この結果、排出されるpo、’
−を高濃度に含むアルカリ性の再生廃液14を処分する
には、再生廃液14を少量ずつし尿l中にリサイクルし
、再生廃液14中のPO,”’をM g t −2やA
I”又はpe2+5によってNH<MgP(:hおよび
AIPO,又はPePOaという固相に転換させること
によって容易に可能である。そのために、従来プロセス
のように再生廃液14に対する晶析、遠心分離などの操
作が不要になる。
To regenerate the phosphoric acid adsorption remover that has adsorbed po,"-, use an alkaline agent such as Na0ILMg(011)t1
By bringing 3 into contact with each other, it is possible to easily remove PO and t. As a result, the emitted po,'
In order to dispose of the alkaline recycled waste liquid 14 containing a high concentration of
This is easily possible by converting NH<MgP(:h and AIPO, or PePOa) into a solid phase using I'' or pe2+5.For this purpose, operations such as crystallization and centrifugation on the regenerated waste liquid 14 as in the conventional process. becomes unnecessary.

〔実施例〕〔Example〕

図示例の本発明のフローに基づいて次のように実験を行
った。
Experiments were conducted as follows based on the illustrated flow of the present invention.

表−1の水質を示す除渣し尿に水酸化マグネシウムを1
000■/ 1 as Mg”添加して攪拌したのち、
硝化液循環型生物学的硝化脱窒素工程(第2脱窒素槽、
硝化槽、第2脱窒素槽、再曝気槽から成るもの)に流入
させ、活性汚泥MLS314000■/1、滞留日数1
0日間に設定した。
Magnesium hydroxide is added to the filtered human urine showing the water quality shown in Table-1.
000■/1 as Mg" and stirred,
Nitrification liquid circulation type biological nitrification and denitrification process (second denitrification tank,
(consisting of a nitrification tank, a second denitrification tank, and a reaeration tank), activated sludge MLS 314000 / 1, residence time 1
It was set to 0 days.

表−1除渣し尿水質 生物学的硝化脱窒素工程中の最終段に位置する再曝気槽
から流出した活性汚泥スラリ中の法例に含まれる溶解性
poa3−tm度を分析したところ、30〜45■/1
であり、流入除渣し尿中のPO4’−濃度960*/l
に対して大幅に低下しており、し尿中のPO−一の大部
分がNIl、MgPO,沈殿として、また活性汚泥内に
もとりこまれて除去された。
Table 1: Sludge removal and urine water quality Analysis of the solubility of poa3-tm contained in the activated sludge slurry discharged from the re-aeration tank located at the final stage of the biological nitrification and denitrification process revealed that it was 30-45 ■/1
, and the PO4'-concentration in the inflow-removed human urine is 960*/l
The PO-1 in the human waste was largely removed as NIl, MgPO, and precipitates, and was also incorporated into the activated sludge.

次に、前述の再曝気槽から流出した活性汚泥スラリに対
し、硫酸アルミニウムを800−1000■/l添加し
、ρ■5.8〜6.1の条件で凝集処理したのち、分画
分子110万のチューブラ型UF膜〔日東電工■製〕で
固液分離したところ、このUF膜透過水の水質は表−2
に示す通りであり、放流可能な極めて清澄な処理水が得
られた。
Next, 800-1000 μ/l of aluminum sulfate was added to the activated sludge slurry flowing out from the above-mentioned reaeration tank, and after flocculation treatment under the conditions of ρμ 5.8-6.1, When solid-liquid separation was performed using a ten-man tubular type UF membrane (manufactured by Nitto Denko), the water quality of this UF membrane permeated water was shown in Table 2.
As shown in Figure 2, extremely clear treated water that can be discharged was obtained.

以下余白 表−2UF膜i3通水の水質 〔発明の効果〕 以上述べたように本発明によれば、次のような極めて重
要な効果を得ることができるものである。
Below is a margin table - 2 UF membrane i3 water quality [Effects of the invention] As described above, according to the present invention, the following extremely important effects can be obtained.

■ 膜分離で得られる膜透過水中のPO1′−濃度を従
来プロセスより著しく低減できるので、その後のPO4
3−吸着除去工程を不要にすることができるか、もしく
はPO4’−吸着工程を設ける場合でも、吸着剤の再生
頻度を非常に少なくすることができ、再生廃液の処分も
従来必要としていた晶析操作や遠心分離操作等が不要に
なり、極めて容易になる。
■ The PO1'- concentration in the membrane-permeated water obtained through membrane separation can be significantly reduced compared to conventional processes, so the subsequent PO4
3- It is possible to eliminate the need for the adsorption removal step, or even if a PO4'-adsorption step is provided, the frequency of regeneration of the adsorbent can be extremely reduced, and the disposal of regenerated waste liquid can also be done by crystallization, which was previously required. This eliminates the need for operations such as centrifugation and centrifugation, making it extremely easy.

■ Hgt*の添加によるNHsMgPO*の結晶性沈
殿生成反応とA13゛又はFe1の添加によるAlPO
4又はFePOn沈殿生成反応の両反応を新規な態様で
利用するようにした結果、AI”又はFe”の所要添加
量を少なくすることができるため、1η泥処理の際に厄
介なバルキーな水酸化アルミニウムスラッジ又は水酸化
鉄スラッジの発生層を低減することができる。
■ Crystalline precipitation reaction of NHsMgPO* by addition of Hgt* and AlPO by addition of A13゛ or Fe1
As a result of utilizing both the 4 and FePOn precipitation reactions in a new manner, the required addition amount of AI" or Fe" can be reduced, thereby eliminating bulky hydroxylation that is troublesome during 1η mud treatment. The generation layer of aluminum sludge or iron hydroxide sludge can be reduced.

■ 排出される余剰スラリ中に緻密な結晶性のNI14
MgPOn沈殿が共存するので、濃縮脱水性がよ(、汚
泥処理を合理化することができる。
■ Dense crystalline NI14 is present in the discharged surplus slurry.
Since MgPOn precipitates coexist, concentration and dewatering properties are improved (and sludge treatment can be streamlined).

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施態様を示すフローシートである。 1・・・し尿、2・・・マグネシウムイオン、3・・・
生物処理工程、4・・・活性汚泥スラリ、5・・・アル
ミニウムイオン又は鉄イオン、6・・・膜分離装置、7
・・・II¥透過水、7′・・・放流、8・・・濃縮分
離スラリ、9・・・返送スラリ、10・・・余剰スラリ
、11・・・リン酸吸着除去工程、12・・・放流水、
13・・・アルカリ剤、14・・・再生廃液。
The drawing is a flow sheet showing one embodiment of the invention. 1... Human waste, 2... Magnesium ion, 3...
Biological treatment process, 4... activated sludge slurry, 5... aluminum ions or iron ions, 6... membrane separation device, 7
...II¥permeated water, 7'...discharge, 8...concentrated separation slurry, 9...return slurry, 10...surplus slurry, 11...phosphoric acid adsorption removal process, 12...・Discharged water,
13... Alkaline agent, 14... Recycled waste liquid.

Claims (2)

【特許請求の範囲】[Claims] (1)リン酸イオンを含有する有機性汚水にマグネシウ
ムイオンを添加したのちに生物処理し、該生物処理工程
内あるいは該生物処理工程から流出するスラリにアルミ
ニウムイオン又は鉄イオンを添加して膜分離することを
特徴とするリン酸イオンを含有する有機性汚水の処理方
法。
(1) Magnesium ions are added to organic wastewater containing phosphate ions, followed by biological treatment, and aluminum or iron ions are added to the slurry flowing out from or within the biological treatment process for membrane separation. A method for treating organic wastewater containing phosphate ions.
(2)前記生物処理が生物学的硝化脱窒素処理である特
許請求の範囲第1項記載のリン酸イオンを含有する有機
性汚水の処理方法。
(2) The method for treating organic wastewater containing phosphate ions according to claim 1, wherein the biological treatment is biological nitrification and denitrification treatment.
JP62033411A 1987-02-18 1987-02-18 Process for treating organic filthy water containing phosphate ion Granted JPS63200899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62033411A JPS63200899A (en) 1987-02-18 1987-02-18 Process for treating organic filthy water containing phosphate ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62033411A JPS63200899A (en) 1987-02-18 1987-02-18 Process for treating organic filthy water containing phosphate ion

Publications (2)

Publication Number Publication Date
JPS63200899A true JPS63200899A (en) 1988-08-19
JPH0217238B2 JPH0217238B2 (en) 1990-04-19

Family

ID=12385847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62033411A Granted JPS63200899A (en) 1987-02-18 1987-02-18 Process for treating organic filthy water containing phosphate ion

Country Status (1)

Country Link
JP (1) JPS63200899A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275197A (en) * 1990-03-23 1991-12-05 Ebara Infilco Co Ltd Treatment of night soil type sewage
JPH044098A (en) * 1990-04-18 1992-01-08 Ebara Infilco Co Ltd Treatment of night soil-based sewage
GB2591282A (en) * 2020-01-24 2021-07-28 Hydrolize Ltd Water remediation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275197A (en) * 1990-03-23 1991-12-05 Ebara Infilco Co Ltd Treatment of night soil type sewage
JPH044098A (en) * 1990-04-18 1992-01-08 Ebara Infilco Co Ltd Treatment of night soil-based sewage
GB2591282A (en) * 2020-01-24 2021-07-28 Hydrolize Ltd Water remediation system
GB2591282B (en) * 2020-01-24 2024-05-29 Hydrolize Ltd Water remediation system

Also Published As

Publication number Publication date
JPH0217238B2 (en) 1990-04-19

Similar Documents

Publication Publication Date Title
JPH0325239B2 (en)
JPH0217237B2 (en)
JPH0366036B2 (en)
JPS63200899A (en) Process for treating organic filthy water containing phosphate ion
JPS59189987A (en) Circulative use of waste water used for grinding silicon wafer
JPS63175687A (en) Treatment method for organic contaminated water containing phosphoric acid
JPH03270800A (en) Treatment of organic sewage
JP3672262B2 (en) Method for treating boron-containing water
JP2002316192A (en) Method and apparatus for treating organic foul water
JP2003340450A (en) Method and system for treating heavy metal-containing waste water
JPS6320600B2 (en)
CN114426361A (en) Hardness and fluorine removal equipment and method for high-salinity wastewater
JPH03151100A (en) Treatment of organic sewage
JPH0511520B2 (en)
JPH0433518B2 (en)
JPH0310399B2 (en)
JPH02293094A (en) Method for removing phosphorus in sewage
JPS6354998A (en) Treatment of organic sewage containing phosphorus
JPH02172598A (en) Treatment of organic sewage
JP4335354B2 (en) Wastewater treatment equipment
JPH0310398B2 (en)
JPH0141119B2 (en)
JPH0419920B2 (en)
JPH0567359B2 (en)
JPS62289299A (en) Treatment of phosphorus-containing waste liquid