JPH0419920B2 - - Google Patents

Info

Publication number
JPH0419920B2
JPH0419920B2 JP6274786A JP6274786A JPH0419920B2 JP H0419920 B2 JPH0419920 B2 JP H0419920B2 JP 6274786 A JP6274786 A JP 6274786A JP 6274786 A JP6274786 A JP 6274786A JP H0419920 B2 JPH0419920 B2 JP H0419920B2
Authority
JP
Japan
Prior art keywords
human waste
membrane
sludge
solid
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6274786A
Other languages
Japanese (ja)
Other versions
JPS62221494A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP61062747A priority Critical patent/JPS62221494A/en
Publication of JPS62221494A publication Critical patent/JPS62221494A/en
Publication of JPH0419920B2 publication Critical patent/JPH0419920B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、し尿を独特なプロセスにより合理的
に処理し、常に安定して良好な処理を得るプロセ
スシステムを提供するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a process system that can rationally treat human waste using a unique process and always obtain stable and good treatment.

[従来の技術] し尿を処理するのに現在最も代表的なプロセス
は、無希釈生物学的脱窒素→凝集沈澱→活性炭処
理プロセスである。(これを従来法の1と呼ぶ) しかし、このプロセスは凝集沈澱汚泥が発生す
るという欠点がある。
[Prior Art] The most typical process for treating human waste at present is the process of undiluted biological denitrification→coagulation sedimentation→activated carbon treatment process. (This is referred to as conventional method 1) However, this process has the drawback of generating coagulated and settled sludge.

一方、ごく最近、無希釈生物学的脱窒素処理→
UF膜分離→活性炭→ジルコニウム系吸着剤によ
るリンの吸着というプロセスが提案されている。
(これを従来法の2と呼ぶ) しかしこのプロセスは凝集沈澱工程が不要であ
る反面、PH調整、再中和、吸着剤の再生操作など
繁雑な工程を必要とするリン吸着除去工程を、
UF膜工程の後に配備しなければならないという
難点を持つている。
On the other hand, very recently, undiluted biological denitrification treatment→
A process has been proposed in which UF membrane separation → activated carbon → phosphorus adsorption using a zirconium-based adsorbent.
(This is called conventional method 2.) However, while this process does not require the coagulation-sedimentation step, it does not require the phosphorus adsorption removal step, which requires complicated steps such as pH adjustment, re-neutralization, and adsorbent regeneration operations.
It has the disadvantage that it must be installed after the UF membrane process.

このようなリン吸着除去工程を組み込まなけれ
ばならない原因は、UF膜ではリンがまつたく分
離されずに、そのまま透過してしまうためであ
り、やむを得ずこのような面倒な工程を採用せざ
るを得なかつたのである。
The reason why such a phosphorus adsorption and removal process has to be incorporated is that the UF membrane does not completely separate phosphorus and passes through it as is. It was.

[発明が解決しようとする問題点] 本発明は、従来法の1および2の持つ問題点を
解決することを課題としており、具体的には、 凝集沈澱工程を省略して、なおかつ充分なリ
ン除去率を得ること。
[Problems to be Solved by the Invention] The present invention aims to solve the problems of conventional methods 1 and 2. Specifically, the present invention aims to solve the problems of conventional methods 1 and 2. Obtaining a removal rate.

UF膜分離工程の後に、従来法の2のような
リン吸着工程を設けることを不要にすること。
To make it unnecessary to provide a phosphorus adsorption step as in conventional method 2 after the UF membrane separation step.

を解決課題としている。is the problem to be solved.

[問題点を解決するための手段] し尿に有機性汚泥とマグネシウム化合物および
高分子凝集剤を添加したのち、固液分離し、該分
離液を嫌気性もしくは好気性生物処理し、さらに
UF膜で固液分離してし尿を処理する。
[Means for solving the problem] After adding organic sludge, a magnesium compound, and a polymer flocculant to human waste, solid-liquid separation is performed, and the separated liquid is subjected to anaerobic or aerobic biological treatment, and then
Treat human waste by separating solid and liquid using a UF membrane.

以下図面を参照しながら本発明をさらに詳細に
説明する。第1図は本発明の一実施例のフローシ
ートを示す。
The present invention will be explained in more detail below with reference to the drawings. FIG. 1 shows a flow sheet of one embodiment of the present invention.

し尿1に生物処理工程2から排出される余剰活
性汚泥3およびMg(OH)2、MgOなどのマグネシ
ウム化合物4を添加し混和槽で撹拌すると、し尿
1中に含まれているNH4 +、PO4 3-イオンとMg2+
イオンとが速やかに化学反応し(沈澱生成反応)、
NH4MgPO4の沈澱(微粒子であり固液分離が難
かしい)が生成する。次いで高分子凝集剤5(カ
チオンポリマーが好適で、特にカチオンとアニオ
ンポリマーの併用が最適である)を添加し、撹拌
(流路撹拌で充分である)すると、し尿中のSS、
コロイド状成分とNH4MgPO4の微粒子が、余剰
活性汚泥3と非常に効果的に共凝集することが認
められた。
When surplus activated sludge 3 discharged from biological treatment process 2 and magnesium compounds 4 such as Mg(OH) 2 and MgO are added to human waste 1 and stirred in a mixing tank, NH 4 + and PO contained in human waste 1 are added. 4 3- ion and Mg 2+
A rapid chemical reaction occurs with the ions (precipitate formation reaction),
A precipitate of NH 4 MgPO 4 (fine particles and difficult to separate from solid to liquid) is formed. Next, a polymer flocculant 5 (a cationic polymer is preferred, and a combination of cationic and anionic polymers is particularly optimal) is added and stirred (flow path stirring is sufficient), thereby dissolving the SS in human waste,
It was observed that colloidal components and fine particles of NH 4 MgPO 4 co-agglomerated with excess activated sludge 3 very effectively.

この凝集フロツクは大粒径(5〜6mm)であ
り、沈澱によらずとも回転もしくは傾斜スクリー
ン6によつて容易に固液分離できる。ここで重要
な事は有機性汚泥3を添加せずに、Mg化合物4
と高分子凝集剤5だけを添加しても良好な結果が
生起せず、NH4MgPO4の微粒子はスクリーン6
によつて捕捉できないことが認められ、有機性汚
泥3の共存が極めて重要な役割を果していること
が確認されたことである。
This agglomerated floc has a large particle size (5 to 6 mm) and can be easily separated into solid and liquid by rotating or using an inclined screen 6 without precipitation. The important thing here is that without adding organic sludge 3, Mg compound 4
Adding only the polymer flocculant 5 and the polymer flocculant 5 did not produce good results, and the fine particles of NH 4 MgPO 4 were added to the screen 6.
It was confirmed that the coexistence of organic sludge 3 plays an extremely important role.

なお、有機性汚泥3とMg化合物4の添加順序
はどちらが先でもまた同時でもよい、また高分子
凝集剤は有機性汚泥、Mg化合物と同時でもよい
が、後で添加するのが好ましい。
The organic sludge 3 and the Mg compound 4 may be added in whichever order or at the same time.Although the polymer flocculant may be added at the same time as the organic sludge and the Mg compound, it is preferable to add it later.

しかして、スクリーン分離汚泥7は3〜4%
(固形物濃度)に濃縮されており、スクリユープ
レス脱水機8によつて高度に脱水でき、脱水ケー
キ9の水分は50〜60%という著しく低水分にな
る。このように低水分のケーキ9が得られる原因
は、し尿中のトイレツトペーパーなどの繊維分と
NH4MgPO4の緻密な結晶物が効果的な脱水助剤
として機能するためである。
However, the screen separated sludge 7 is 3 to 4%
(solid matter concentration), and can be highly dehydrated by the screw press dehydrator 8, and the moisture content of the dehydrated cake 9 is extremely low at 50 to 60%. The reason why cake 9 with such low moisture content is obtained is due to the fiber content of toilet paper etc. in human urine.
This is because the dense crystals of NH 4 MgPO 4 function as an effective dehydration aid.

一方スクリーン分離水10と脱水分離水11
(し尿1のSSとリン酸の90%程度と、BODの50
%程度が除去されている)は、生物処理工程2
(好気性生物処理又は嫌気性消化)に流入し、
BOD、COD、窒素成分が除去される。(なお嫌気
性消化法の場合は窒素成分は除去されない) 生物処理工程2に好気性法(生物学的硝化脱窒
素法も含まれる)を採用すればリンも生物学的に
除去できる。
On the other hand, screen separated water 10 and dehydrated separated water 11
(About 90% of SS and phosphoric acid in human urine 1, and 50% of BOD
% has been removed) is biological treatment step 2
(aerobic biological treatment or anaerobic digestion);
BOD, COD, and nitrogen components are removed. (Nitrogen components are not removed in the case of anaerobic digestion.) If an aerobic method (including biological nitrification and denitrification method) is adopted in biological treatment step 2, phosphorus can also be removed biologically.

次いで生物処理工程2から流出する微生物スラ
リー15を直接UF膜分離工程(Ultra
Filtration)12で固液分離する。UF膜の分画
分子量は20000〜40000が適切である。
Next, the microbial slurry 15 flowing out from the biological treatment process 2 is directly passed through the UF membrane separation process (Ultra
Solid-liquid separation is performed at step 12 (Filtration) 12. The appropriate molecular weight cutoff for the UF membrane is 20,000 to 40,000.

UF膜透過水13はリン、BOD、COD、N成分
が高度に除去されており、色度とCODの非常に
高い除去を目的とする場合を除いて、そのまま放
流可能な水質となつている。従つて前述の従来法
の2のプロセスのように面倒なリン吸着除去工程
は一切不要である。
Phosphorus, BOD, COD, and N components have been highly removed from the UF membrane permeated water 13, and the water quality is such that it can be discharged as is, except when the purpose is to remove very high chromaticity and COD. Therefore, there is no need for the troublesome phosphorus adsorption/removal process as in process 2 of the conventional method described above.

この理由は本発明がUF膜および生物処理工程
の前段において、し尿中のリンをNH4MgPO4
沈澱生成反応によつて効果的に除去できるからで
ある。
The reason for this is that the present invention can effectively remove phosphorus from human waste through the UF membrane and the precipitate formation reaction of NH 4 MgPO 4 in the first stage of the biological treatment process.

さらに、生物処理工程に好気性生物処理(生物
脱リン法も含まれる)を採用すれば、リンが生物
学的にも除去できるので、NH4MgPO4沈澱生成
反応と生物学的脱リン作用の両者によつて高度に
リンが除去されUF膜透過水中のリン酸濃度は1
〜3mg/程度となるからである。
Furthermore, if aerobic biological treatment (including biological dephosphorization) is adopted in the biological treatment process, phosphorus can be removed biologically, so the NH 4 MgPO 4 precipitate formation reaction and biological dephosphorization can be combined. Phosphorus is removed to a high degree by both, and the phosphoric acid concentration in the water permeated through the UF membrane is 1.
This is because the amount is about 3 mg/.

なお、生物処理工程2に嫌気性消化法を採用す
る場合の最適法を検討した結果、上向流ブランケ
ツト法(UASB法)および嫌気性消化菌の固定
化増殖微生物法が本発明においては最適であるこ
とが認められた。
In addition, as a result of examining the optimal method when adopting an anaerobic digestion method in biological treatment step 2, it was found that the upward flow blanket method (UASB method) and the immobilized growth microorganism method of anaerobic digestion bacteria are optimal in the present invention. One thing was recognized.

即ち、この両者の嫌気性消化法は極めて高速の
メタン発酵が可能であるという顕著な特徴をもつ
ているが、その反面SS性、コロイド性の有機物
を含む液のメタン発酵にはスカム形成トラブルが
おきるほか、原理的にも不適当であるという重大
欠点がある。しかし本発明では、あらかじめSS
性、コロイド性有機物を独特の凝集方法によつ
て、ほぼ完全に除去することができるので、
USAB法、固定化増殖微生物法の欠点が解決さ
れ長所のみが発揮されるのである。
In other words, both of these anaerobic digestion methods have the remarkable feature of being capable of extremely high-speed methane fermentation, but on the other hand, methane fermentation of liquids containing SS and colloidal organic matter has problems with scum formation. In addition to this, there is a major drawback in that it is inappropriate in principle. However, in the present invention, the SS
It is possible to almost completely remove colloidal organic matter using a unique flocculation method.
The disadvantages of the USAB method and the immobilized growing microorganism method are resolved and only the advantages are brought out.

さらにまた、脱水ケーキ9中には、
NH4MgPO4結晶と有機物が多量に含まれ、かつ
低水分であるため、そのまま極めて肥効成分に富
む肥料として利用できるという特徴がある。
Furthermore, in the dehydrated cake 9,
It contains a large amount of NH 4 MgPO 4 crystals and organic matter, and has a low moisture content, so it can be used as is as a fertilizer with extremely high fertilizing properties.

[実施例] 神奈川県乙市し尿処理場に搬入される、し尿
(BOD10000〜14000mg/、SS13000〜16000
mg/、PO4900〜1200mg/)にMg(OH)2
1000mg/添加し、さらに活性汚泥処理工程から
の余剰活性汚泥(固形物濃度1.5%)を、し尿1
Klに対して1Kgds添加して30分間混和したのち、
DAM系のカチオンポリマを該混合液のSSあたり
1.5〜2.5%(重量%)添加して、1分間撹拌した
結果大粒径のフロツクが形成され、目開き1mmの
60°傾斜ウエツジワイヤスクリーンで速やかに固
液分離された。
[Example] Human waste (BOD 10,000-14,000 mg/, SS 13,000-16,000) is delivered to the human waste treatment plant in Otsu City, Kanagawa Prefecture.
mg/, PO 4 900-1200 mg/) to Mg(OH) 2
1000mg/added, and furthermore, excess activated sludge (solids concentration 1.5%) from the activated sludge treatment process was added to human waste 1
After adding 1 Kgds to Kl and mixing for 30 minutes,
DAM-based cationic polymer per SS of the mixture
As a result of adding 1.5 to 2.5% (wt%) and stirring for 1 minute, large particle size flocs were formed and
Solid-liquid separation was quickly performed using a 60° inclined wedge wire screen.

スクリーン濃縮汚泥の固形物濃度は、3.5%〜
4.0%であり、スクリーン分離水のSSは400〜600
mg/、溶解性PO4は80〜110mg/であつた。
The solid concentration of screen thickened sludge is 3.5%~
4.0%, SS of screen separated water is 400~600
mg/, and the soluble PO4 was 80-110 mg/.

スクリーン濃縮汚泥の固形物濃度は、3.5%〜
4.0%であり、このままスクリユープレス脱水機
(スチーム加温なし)で脱水可能であり、脱水ケ
ーキの水分は52〜55%となつた。
The solid concentration of screen thickened sludge is 3.5%~
The moisture content of the dehydrated cake was 4.0%, and it could be dehydrated as it was using a screw press dehydrator (without steam heating), and the moisture content of the dehydrated cake was 52 to 55%.

スクリーン分離液とスクリユープレス脱水機分
離水との混合液(溶解性BOD2700〜3300mg/)
を生物学的脱リン型活性汚泥法(好気部の前段に
嫌気部をもつもの)で処理したのち、
MLSS18000mg/の活性汚泥スラリーを直接UF
膜(分画分子量40000、フラツクス1000/m2
hr)で分離したところ、透過水の水質は、BOD5
〜8mg/、SSゼロ、PO40.1〜3mg/と極め
て良好で、UF膜の後段にリン吸着工程を設ける
必要は全く認められなかつた。
Mixed liquid of screen separated liquid and screw press dehydrator separated water (soluble BOD 2700-3300 mg/)
After being treated with a biological dephosphorization type activated sludge method (with an anaerobic section before the aerobic section),
MLSS18000mg/activated sludge slurry is directly UF
Membrane (molecular weight cut off 40000, flux 1000/ m2
hr), the quality of the permeated water was BOD5.
-8 mg/, SS zero, PO 4 0.1-3 mg/, which was extremely good, and there was no need to provide a phosphorus adsorption step after the UF membrane.

[発明の効果] 本発明の独特なプロセスによつて、し尿を処理
することにより、従来法のような凝集沈澱工程を
要せずして充分なリン除去率が得られかつ、UF
膜分離工程のあとに、特にリン吸着工程を設ける
ことを要しない合理的なし尿処理を行なうことが
できる。
[Effects of the Invention] By treating human waste using the unique process of the present invention, a sufficient phosphorus removal rate can be obtained without requiring the coagulation and sedimentation step of the conventional method, and UF
A rational human waste treatment that does not require a phosphorus adsorption step after the membrane separation step can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の工程の流れを示す
フローシートである。 1……し尿、2……生物処理工程、3……余剰
活性汚泥、4……マグネシウム化合物、5……高
分子凝集剤、6……スクリーン、7……スクリー
ン分離汚泥、8……スクリユープレス脱水機、9
……脱水ケーキ、10……スクリーン分離水、1
1……脱水分離水、12……UF膜分離工程、1
3……UF膜透過水、15……微生物スラリー。
FIG. 1 is a flow sheet showing the process flow of an embodiment of the present invention. 1... Human waste, 2... Biological treatment process, 3... Excess activated sludge, 4... Magnesium compound, 5... Polymer flocculant, 6... Screen, 7... Screen separated sludge, 8... Screw Press dehydrator, 9
... Dehydrated cake, 10 ... Screen separated water, 1
1... Dehydrated separated water, 12... UF membrane separation process, 1
3... UF membrane permeated water, 15... Microorganism slurry.

Claims (1)

【特許請求の範囲】[Claims] 1 し尿に有機性汚泥とマグネシウム化合物およ
び高分子凝集剤を添加したのち、固液分離し、該
分離液を嫌気性もしくは好気性生物処理し、さら
にUF膜で固液分離することを特徴とするし尿処
理方法。
1. After adding organic sludge, a magnesium compound, and a polymer flocculant to human waste, solid-liquid separation is performed, the separated liquid is subjected to anaerobic or aerobic biological treatment, and further solid-liquid separation is performed using a UF membrane. Human waste disposal method.
JP61062747A 1986-03-20 1986-03-20 Method for treating excretion Granted JPS62221494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61062747A JPS62221494A (en) 1986-03-20 1986-03-20 Method for treating excretion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61062747A JPS62221494A (en) 1986-03-20 1986-03-20 Method for treating excretion

Publications (2)

Publication Number Publication Date
JPS62221494A JPS62221494A (en) 1987-09-29
JPH0419920B2 true JPH0419920B2 (en) 1992-03-31

Family

ID=13209299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61062747A Granted JPS62221494A (en) 1986-03-20 1986-03-20 Method for treating excretion

Country Status (1)

Country Link
JP (1) JPS62221494A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667520B2 (en) * 1986-07-21 1994-08-31 栗田工業株式会社 Human waste system treatment equipment
JPH01293190A (en) * 1988-05-19 1989-11-27 Tokyo Mizu Shiyori Kanri Kk Scum removing device for biological treatment tank
US7198717B2 (en) * 2004-08-26 2007-04-03 Graham John Gibson Juby Anoxic biological reduction system
US8017014B2 (en) * 2005-06-01 2011-09-13 Nalco Company Method for improving flux in a membrane bioreactor

Also Published As

Publication number Publication date
JPS62221494A (en) 1987-09-29

Similar Documents

Publication Publication Date Title
JPS6369598A (en) Treatment of organic sewage containing phosphorus
JPH0419920B2 (en)
JPH04131197A (en) Disposal of night soil type sewage and apparatus therefor
JPH0124558B2 (en)
JPH0667520B2 (en) Human waste system treatment equipment
JPH0366036B2 (en)
JPH0535039B2 (en)
JPS6320600B2 (en)
JPH04131199A (en) Concurrent disposal of night soil and septic tank sludge
JP3181521B2 (en) Water treatment method and water treatment device
JP2655284B2 (en) Treatment method of human wastewater
JPH0632833B2 (en) Organic wastewater treatment method
JPS637900A (en) Treatment of sewage of excretion system
KR910004127B1 (en) Concentrated organic waste water treating method
JPH0790237B2 (en) Human waste treatment method
SU1386582A1 (en) Method of purifying waste waters of animal origin of suspended particles with production of organomineral fertilizer
JPH0218918B2 (en)
JPH0431760B2 (en)
JPH0141118B2 (en)
JPH0217239B2 (en)
JPH0567359B2 (en)
JPH0310396B2 (en)
JPH0310398B2 (en)
JPH0535038B2 (en)
JPH0471699A (en) Method for purifying water