JPH0141118B2 - - Google Patents

Info

Publication number
JPH0141118B2
JPH0141118B2 JP61200542A JP20054286A JPH0141118B2 JP H0141118 B2 JPH0141118 B2 JP H0141118B2 JP 61200542 A JP61200542 A JP 61200542A JP 20054286 A JP20054286 A JP 20054286A JP H0141118 B2 JPH0141118 B2 JP H0141118B2
Authority
JP
Japan
Prior art keywords
membrane
phosphorus
liquid
loose
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61200542A
Other languages
Japanese (ja)
Other versions
JPS6354998A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP61200542A priority Critical patent/JPS6354998A/en
Publication of JPS6354998A publication Critical patent/JPS6354998A/en
Publication of JPH0141118B2 publication Critical patent/JPH0141118B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はリンを含有する有機性汚水、例えばし
尿、下水、廃水等を新規かつ、簡潔なプロセスに
より合理的に処理し、常に安定して良好な高度処
理水を得るプロセスシステムを提供するものであ
る。 [従来の技術] リンを含有する有機性汚水としてし尿を例にと
れば、現在最も代表的なプロセスは、無希釈生物
学的窒素→凝集沈澱→活性炭吸着、というもので
ある。 しかしこのプロセスは難脱水性の凝集沈澱汚泥
が多量に発生するという欠点がある。 一方、ごく最近、無希釈生物学的脱窒素→UF
膜分離→活性炭吸着→ジルコニウム系吸着剤によ
るリン除去というプロセスが提案された。 しかし、このプロセスは凝集沈澱工程が不要で
ある反面、繁雑な工程(PH調整、処理水の再中
和、吸着剤の再生、晶析操作が必要)を伴なうリ
ン吸着工程が必要になるという欠点をもつてい
る。 このようなリン吸着工程を必要とする原因は、
UF膜は無機イオンを分離する機能をもつていな
いためPO4 3-イオンはUF膜を100%素通りしてし
まうためであり、やむを得ずこのような面倒な工
程を採用せざるを得なかつたのである。 また、このプロセスによつても、CODの低い
処理水を得るには活性炭吸着工程を省略すること
は不可能であつた。 [発明が解決しようとする問題点] 本発明は前記の従来プロセスの問題点を根本的
に解決することを課題としており、具体的には 凝集沈澱工程を省略して、なおかつ充分なリ
ン除去率を得ること。 UF膜分離工程のあとにリン吸着工程を設け
ることを不要にする。 プロセス構成を一層簡潔化する。 活性炭吸着工程を不要にする。 ことを解決課題としている。 [問題点を解決するための手段] リンを含有する有機性汚水に有機性汚泥とマグ
ネシウム化合物および高分子凝集剤を添加したの
ち固液分離し、該分離液を生物学的硝化脱窒素処
理し、さらに該工程から流出する活性汚泥スラリ
ーをNaCl排除率80%以下のRO膜で固液分離する
ことによつて処理する。 以下に図面を参照しながら本発明をさらに詳細
に説明する。 第1図は発明の一実施例のフローシートであ
る。し尿1に生物学的硝化脱窒素処理工程2(以
下生物処理工程と略称する)から排出される余剰
活性汚泥3およびMg(OH)2もしくはMgO4を添
加し撹拌するとし尿1中に含まれるNH4 +
PO4 3-イオンとMg2+イオンが速やかに化学反応
し(沈澱生成反応)NH4MgPO4の微粒状沈澱が
生成し、し尿中のPO4 3-イオンの90%程度が除去
される。 次いで高分子凝集剤(カチオンポリマーが適す
る)5を添加して大粒径の凝集フロツクを形成さ
せたのち、スクリーン6(傾斜ウエツジワイヤス
クリーンまたはドラムスクリーンが好適)によつ
て固液分離する。 スクリーン6によつて分離されたNH4MgPO4
含有有機汚泥7は、たとえばスクリユープレス脱
水機8によつて脱水され、水分60%程度の脱水ケ
ーキ9となる。 一方リンとSSが除去されたスクリーン分離液
10と脱水分離水11は希釈水が添加されること
なく、生物処理工程2に流入し、BODと窒素が
生物学的に除去される。このときスクリーン分離
液中に少量残留しているリン酸もBOD:P≒
100:1の比率で活性汚泥にとりこまれて除去さ
れる。 生物処理工程2の活性汚泥MLSS濃度は15000
〜20000mg/に設定される。従来、し尿を無希
釈で曝気処理すると激しい発泡に悩まされていた
が、本発明ではあらかじめ、発泡原因物質である
SS、コロイドを凝集除去するという方法をとる
ので激しい発泡は起きず、消泡機、消泡剤は不要
である。 しかして、生物処理工程2から流出する活性汚
泥スラリー15は直接NaCl排除率の低い、いわ
ゆるルーズRO膜(NaCl排除率が80%以下のRO
膜)分離工程12に流入し、SS、溶解性COD、
色度、リン、ビールスなどがルーズRO膜によつ
て高度に捕捉分離され、無色透明の清澄な膜透過
液13と高SSの膜分離スラリー14となる。 従来プロセスの生物処理→UF膜分離→と
いう方法では、PO4 3-はUF膜によつて全く捕捉
されず、かつ、CODと色度の除去率が凝集沈澱
法より劣るという大きな問題点があつたが、本発
明では、生物処理工程の前段でし尿中のリンを大
部分除去し、さらに残留するリンを生物処理工程
で除去し、さらにリンのポリツシング的除去にル
ーズRO膜を採用するという新規なプロセス構成
にしたので従来プロセスにおけるリン吸着工程
(UF膜分離工程→活性炭に後続して設置されてい
る)が不要になる。 しかも、ルーズRO膜はNa+、Cl-のような荷電
数の小さな無機イオンは通過することが出来る
が、UF膜と異なりCOD成分、色度成分のような
高分子物質はほぼ完全に捕捉することができるの
で、従来プロセスにおけるUF膜分離工程に後続
して設けられている活性炭吸着工程も不要にな
る。 しかして、ルーズRO膜分離スラリー14は生
物処理工程にリサイクルされ、余剰活性汚泥スラ
リー3は、前述したようにし尿1に添加混合され
て、し尿の前処理効果を向上させるために有効利
用される。 本発明プロセスのアウトプツトは膜透過水13
と脱水ケーキ9の2者だけであり、膜透過水13
にはリン、色度がほとんど含まれない。従つて、
脱水ケーキ9には必然的にリンとフミン酸類似の
色度成分が高濃度に含有されることになり、肥料
および土壌改良剤として効果の大きい有機性肥料
として利用できる。 これは従来プロセスのUF膜分離法では期待出
来ない効果である。 なお本発明においては、次のような省エネルギ
ー的効果があらわれる。 すなわち、ルーズRO膜ではNaClを100%透過
させずに一部のNaClを捕捉する。この捕捉され
たNaClが生物処理工程2にリサイクルされるの
で生物処理工程でのNaClを主体とする塩類濃度
が増加する。この結果、生物処理工程に供給され
ているエアレーシヨン用空気泡の径が微細にな
り、酸素吸収効率が向上し、エアレーシヨン空気
供給量が節減できる。(気泡径は塩類濃度が高い
程、微細になることが知られている) [実施例] 第1図に示す処理フローによつて、し尿処理量
1m3/dayの規模で本発明の実証試験を行なつ
た。 生物学的硝化脱窒素処理工程には硝化液循環型
(無希釈)を採用し、MLSS15000mg/、し尿滞
留数日9日とした。 まず、搬入し尿に、余剰活性汚泥スラリー
(SS20000mg/)の全量とMg(OH)21000mg/
を添加し、5分間撹拌したのち、カチオン性高分
子凝集剤を400〜500mg/添加し2分間撹拌し凝
集フロツクを形成させた。 次いで、目開き1mmの60゜傾斜ウエツジワイヤ
スクリーンで固液分離したところ、NH4MgPO4
含有濃縮汚泥(固形物濃度4%)とスクリーン分
離水(SS500〜600mg/、溶解性PO470〜120
mg/)が得られた。 スクリーン濃縮汚泥はスクリユープレス脱水機
(スチーム加温なし)で脱水し、水分58%という
低水分の脱水ケーキを得た。 次にウエツジワイヤスクリーン分離液とスクリ
ユープレス脱水機分離水との混合液を無希釈で生
物学的硝化窒素処理(第2脱窒素槽にはメタノー
ルを添加した)したのち、MLSS15000mg/の
活性汚泥スラリーをN社製チユーブラ型ルーズ
RO膜(NaCl排除率40%、チユーブ径15mm)によ
つて直接膜分離した。 膜透過水は無色透明で表−1に示すような水質
であつた。 なお、ルーズRO膜チユーブモジユール内液流
速は3〜3.5m/sと設定し、膜の洗浄はスポン
ジボールによる機械的洗浄とNaOClによる化学
洗浄を併用したところ、長期間、安定したフラツ
クスを維持することができた。 ルーズRO膜によつて分離された活性汚泥スラ
リーは第1脱窒素槽にリサイクルし、余剰活性汚
泥相当量(6.0Kgd.s/day)をし尿に混合して、
前記のMg(OH)2添加槽に供給した。
[Industrial Application Field] The present invention rationally treats phosphorus-containing organic wastewater, such as human waste, sewage, wastewater, etc., using a new and simple process, and always obtains stable and high-quality highly treated water. It provides a process system. [Prior Art] Taking human waste as an example of organic sewage containing phosphorus, the most typical process at present is undiluted biological nitrogen → coagulation sedimentation → activated carbon adsorption. However, this process has the drawback of generating a large amount of coagulated and settled sludge that is difficult to dewater. On the other hand, very recently, undiluted biological denitrification → UF
A process of membrane separation → activated carbon adsorption → phosphorus removal using a zirconium-based adsorbent was proposed. However, while this process does not require a coagulation-sedimentation step, it does require a phosphorus adsorption step, which involves complicated steps (PH adjustment, re-neutralization of treated water, adsorbent regeneration, and crystallization operations). It has the disadvantage of The reason why such a phosphorus adsorption process is required is
Because the UF membrane does not have the ability to separate inorganic ions, 100% of the PO 4 3- ions pass through the UF membrane, so we had no choice but to adopt such a troublesome process. . Furthermore, even with this process, it was impossible to omit the activated carbon adsorption step in order to obtain treated water with low COD. [Problems to be Solved by the Invention] The present invention aims to fundamentally solve the problems of the conventional process described above. Specifically, it is possible to omit the coagulation-sedimentation step and still achieve a sufficient phosphorus removal rate. to obtain. It becomes unnecessary to provide a phosphorus adsorption step after the UF membrane separation step. Further simplify the process configuration. Eliminates the need for activated carbon adsorption process. This is the problem to be solved. [Means for solving the problem] Organic sludge, a magnesium compound, and a polymer flocculant are added to organic wastewater containing phosphorus, followed by solid-liquid separation, and the separated liquid is subjected to biological nitrification and denitrification treatment. Furthermore, the activated sludge slurry flowing out from the process is treated by solid-liquid separation using an RO membrane with a NaCl removal rate of 80% or less. The present invention will be explained in more detail below with reference to the drawings. FIG. 1 is a flow sheet of one embodiment of the invention. When surplus activated sludge 3 and Mg(OH) 2 or MgO4 discharged from biological nitrification and denitrification treatment process 2 (hereinafter referred to as biological treatment process) are added to human waste 1 and stirred, NH 4 contained in human waste 1 is removed. + ,
PO 4 3- ions and Mg 2+ ions undergo a rapid chemical reaction (precipitate formation reaction) to form fine granular precipitates of NH 4 MgPO 4 , and approximately 90% of the PO 4 3- ions in human waste are removed. Next, a polymer flocculant (suitably a cationic polymer) 5 is added to form a large-sized floc, followed by solid-liquid separation using a screen 6 (preferably an inclined wedge wire screen or a drum screen). NH 4 MgPO 4 separated by screen 6
The contained organic sludge 7 is dehydrated by, for example, a screw press dehydrator 8, and becomes a dehydrated cake 9 having a water content of about 60%. On the other hand, the screen separated liquid 10 and dehydrated separated water 11 from which phosphorus and SS have been removed flow into the biological treatment step 2 without adding dilution water, and BOD and nitrogen are removed biologically. At this time, a small amount of phosphoric acid remaining in the screen separation liquid is also BOD: P≒
It is removed by being incorporated into activated sludge at a ratio of 100:1. Activated sludge MLSS concentration in biological treatment process 2 is 15000
~20000mg/set. Conventionally, when human waste was aerated without being diluted, it suffered from severe foaming, but in the present invention, the foaming substances are
Since SS and colloids are coagulated and removed, severe foaming does not occur, and antifoaming machines and antifoaming agents are not required. Therefore, the activated sludge slurry 15 flowing out from the biological treatment process 2 is directly filtered through a so-called loose RO membrane with a low NaCl removal rate (RO membrane with a NaCl removal rate of 80% or less).
membrane) flows into separation step 12, SS, soluble COD,
Chromaticity, phosphorus, viruses, etc. are highly captured and separated by the loose RO membrane, resulting in a colorless and transparent membrane permeate liquid 13 and a high SS membrane separation slurry 14. The conventional process of biological treatment → UF membrane separation → has major problems in that PO 4 3- is not captured at all by the UF membrane, and the removal rate of COD and chromaticity is inferior to the coagulation-sedimentation method. However, in the present invention, most of the phosphorus in human waste is removed in the first stage of the biological treatment process, the remaining phosphorus is further removed in the biological treatment process, and a loose RO membrane is used for the polishing removal of phosphorus. This process configuration eliminates the need for the phosphorus adsorption step (which follows the UF membrane separation step and activated carbon) in the conventional process. Moreover, loose RO membranes can pass inorganic ions with small charge numbers such as Na + and Cl - , but unlike UF membranes, they almost completely capture polymeric substances such as COD components and chromaticity components. This eliminates the need for the activated carbon adsorption step that follows the UF membrane separation step in conventional processes. Therefore, the loose RO membrane separation slurry 14 is recycled to the biological treatment process, and the surplus activated sludge slurry 3 is added to and mixed with the human waste 1 as described above, and is effectively used to improve the pretreatment effect of the human waste. . The output of the process of the present invention is membrane permeated water 13
and dehydrated cake 9, and membrane permeated water 13
contains almost no phosphorus or chromaticity. Therefore,
The dehydrated cake 9 inevitably contains a high concentration of chromatic components similar to phosphorus and humic acid, and can be used as an organic fertilizer that is highly effective as a fertilizer and soil conditioner. This is an effect that cannot be expected with the conventional UF membrane separation method. In addition, in the present invention, the following energy-saving effects appear. In other words, a loose RO membrane does not allow 100% of NaCl to pass through, but captures some NaCl. Since this captured NaCl is recycled to the biological treatment step 2, the concentration of salts mainly consisting of NaCl in the biological treatment step increases. As a result, the diameter of the aeration air bubbles supplied to the biological treatment process becomes fine, the oxygen absorption efficiency improves, and the amount of aeration air supplied can be reduced. (It is known that the bubble diameter becomes finer as the salt concentration is higher.) [Example] A demonstration test of the present invention was carried out on a scale of human waste treatment of 1 m 3 /day using the processing flow shown in Figure 1. I did this. For the biological nitrification and denitrification treatment process, a nitrifying solution circulation type (no dilution) was adopted, and the MLSS was 15,000 mg/day, and the human waste was retained for several days and 9 days. First, the total amount of excess activated sludge slurry (SS20000mg/) and Mg(OH) 2 1000mg/
After stirring for 5 minutes, 400 to 500 mg of a cationic polymer flocculant was added and stirring for 2 minutes to form a flocculated floc. Next, solid-liquid separation was performed using a 60° inclined wedge wire screen with an opening of 1 mm, resulting in NH 4 MgPO 4
Contains thickened sludge (solids concentration 4%) and screen separated water (SS500-600mg/, soluble PO 4 70-120
mg/) was obtained. The screen thickened sludge was dehydrated using a screw press dehydrator (without steam heating) to obtain a dehydrated cake with a low moisture content of 58%. Next, the mixed liquid of the wedge wire screen separated liquid and the screw press dehydrator separated water was subjected to biological nitrification nitrogen treatment without dilution (methanol was added to the second denitrification tank), and the MLSS activity of 15000mg/ Sludge slurry is made by N company Tubular type loose
Direct membrane separation was performed using an RO membrane (NaCl rejection rate 40%, tube diameter 15 mm). The water that permeated through the membrane was clear and colorless, and had the quality shown in Table 1. The flow rate of the liquid inside the loose RO membrane tube module was set at 3 to 3.5 m/s, and the membrane was cleaned using a combination of mechanical cleaning with a sponge ball and chemical cleaning with NaOCl, and a stable flux was maintained for a long period of time. We were able to. The activated sludge slurry separated by the loose RO membrane is recycled to the first denitrification tank, and the equivalent amount of surplus activated sludge (6.0Kgd.s/day) is mixed with human waste.
It was supplied to the Mg(OH) 2 addition tank described above.

【表】【table】

【表】 [発明の効果] 本発明はリンを含有する有機性汚水中のPO4
SSを独特な方法で、あらかじめ除去したのち生
物学的硝化脱窒素→ルーズRO膜分離というプロ
セスでさらに処理するという新規な方法を導入し
た結果、次のような重要な効果があらわれる。 膜分離工程に後続して、活性炭吸着工程およ
びリン酸吸着工程を設ける必要がなくなり、プ
ロセスが著しく簡略化され維持管理も容易にな
る。 当然建設費も削減される。 生物処理工程において塩類濃度が増加する結
果エアレーシヨンにおける酸素の吸収効率が向
上し、省エネルギー効果がある。 脱水ケーキ中のリン濃度が従来プロセスより
増加し、肥料としての価値が高まる。 RO膜分離工程において、モジユールの閉そ
くの原因となるSSが生物処理工程の前段の凝
集分離工程で高度に除去されるのでRO膜モジ
ユールの閉そくの心配がなく、トラブルフリー
となる。
[Table] [Effects of the invention] The present invention can reduce PO 4 in organic wastewater containing phosphorus.
As a result of introducing a new method in which SS is first removed using a unique method and then further processed through a process of biological nitrification and denitrification → loose RO membrane separation, the following important effects appear. There is no need to provide an activated carbon adsorption step and a phosphoric acid adsorption step subsequent to the membrane separation step, which greatly simplifies the process and facilitates maintenance. Naturally, construction costs will also be reduced. As a result of the increase in salt concentration in the biological treatment process, the oxygen absorption efficiency in aeration improves, resulting in an energy saving effect. The phosphorus concentration in the dehydrated cake increases compared to conventional processes, increasing its value as a fertilizer. In the RO membrane separation process, SS, which causes blockage of the module, is highly removed in the coagulation separation process before the biological treatment process, so there is no worry about blockage of the RO membrane module, making it trouble-free.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のフローシートを示
す。 1……し尿、2……生物学的硝化脱窒素処理工
程、3……余剰活性汚泥、4……マグネシウム化
合物(Mg(OH)2もしくはMgO)、5……高分子
凝集剤、6……スクリーン、7……スクリーン分
離有機汚泥、8……スクリユープレス脱水機、9
……脱水ケーキ、10……スクリーン分離液、1
1……脱水分離水、12……ルーズRO膜分離工
程、13……膜液透過、14……膜分離スラリ
ー、15……活性汚泥スラリー。
FIG. 1 shows a flow sheet of one embodiment of the present invention. 1... Human waste, 2... Biological nitrification and denitrification treatment process, 3... Excess activated sludge, 4... Magnesium compound (Mg(OH) 2 or MgO), 5... Polymer flocculant, 6... Screen, 7... Screen separated organic sludge, 8... Screw press dehydrator, 9
...Dehydrated cake, 10...Screen separation liquid, 1
1... Dehydrated separated water, 12... Loose RO membrane separation step, 13... Membrane liquid permeation, 14... Membrane separation slurry, 15... Activated sludge slurry.

Claims (1)

【特許請求の範囲】[Claims] 1 リンを含有する有機性汚水に有機性汚泥とマ
グネシウム化合物および高分子凝集剤を添加した
のち固液分離し、該分離液を生物学的硝化脱窒素
処理し、さらに該工程から流出する活性汚泥スラ
リーをNaCl排除率80%以下のいわゆるルーズRO
膜で固液分離することを特徴とするリンを含有す
る有機性汚水の処理方法。
1 Organic sludge, a magnesium compound, and a polymer flocculant are added to organic sewage containing phosphorus, followed by solid-liquid separation, and the separated liquid is subjected to biological nitrification and denitrification treatment, and activated sludge flows out from the process. So-called loose RO with a NaCl removal rate of 80% or less for slurry
A method for treating organic wastewater containing phosphorus, characterized by solid-liquid separation using a membrane.
JP61200542A 1986-08-27 1986-08-27 Treatment of organic sewage containing phosphorus Granted JPS6354998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200542A JPS6354998A (en) 1986-08-27 1986-08-27 Treatment of organic sewage containing phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200542A JPS6354998A (en) 1986-08-27 1986-08-27 Treatment of organic sewage containing phosphorus

Publications (2)

Publication Number Publication Date
JPS6354998A JPS6354998A (en) 1988-03-09
JPH0141118B2 true JPH0141118B2 (en) 1989-09-04

Family

ID=16426037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200542A Granted JPS6354998A (en) 1986-08-27 1986-08-27 Treatment of organic sewage containing phosphorus

Country Status (1)

Country Link
JP (1) JPS6354998A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470931A3 (en) * 1990-08-08 1992-05-13 Ciba-Geigy Ag Soil and waste water treatment
JP2000051868A (en) * 1998-08-12 2000-02-22 Sumitomo Heavy Ind Ltd Waste water treatment apparatus
JP3974929B1 (en) 2006-06-07 2007-09-12 シャープ株式会社 Waste water treatment method and waste water treatment equipment
JP3974928B1 (en) * 2006-06-07 2007-09-12 シャープ株式会社 Waste water treatment method and waste water treatment equipment

Also Published As

Publication number Publication date
JPS6354998A (en) 1988-03-09

Similar Documents

Publication Publication Date Title
JPH0325239B2 (en)
JP3368938B2 (en) Wastewater treatment method and apparatus
JPH0141118B2 (en)
JPH0366036B2 (en)
JPH0124558B2 (en)
JPH0639396A (en) Method for treating waste water
JPS6320600B2 (en)
JPS637900A (en) Treatment of sewage of excretion system
JPH03151100A (en) Treatment of organic sewage
JPH02172598A (en) Treatment of organic sewage
JPH0310399B2 (en)
JPH0632833B2 (en) Organic wastewater treatment method
JPH0419920B2 (en)
JPH0230320B2 (en)
JPH0141119B2 (en)
JPH0567359B2 (en)
JPS63221893A (en) Treatment of organic sewage
GB2103504A (en) Flocculation filtration of waste water
JPH0790237B2 (en) Human waste treatment method
RU2158327C1 (en) Method of treatment of excessive circulating water of cardboard production for its reuse
JPH0535038B2 (en)
JPH02139099A (en) Treatment of organic sewage
JPS6094200A (en) Treatment before dehydration of organic sludge
JPH0471699A (en) Method for purifying water
JPH0217238B2 (en)