JPS63200508A - Method for adjusting gas pressure of gas-insulated electromagnetic induction apparatus - Google Patents

Method for adjusting gas pressure of gas-insulated electromagnetic induction apparatus

Info

Publication number
JPS63200508A
JPS63200508A JP3243987A JP3243987A JPS63200508A JP S63200508 A JPS63200508 A JP S63200508A JP 3243987 A JP3243987 A JP 3243987A JP 3243987 A JP3243987 A JP 3243987A JP S63200508 A JPS63200508 A JP S63200508A
Authority
JP
Japan
Prior art keywords
gas
pressure
operating temperature
gas pressure
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3243987A
Other languages
Japanese (ja)
Inventor
Tetsuo Hakata
博多 哲郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3243987A priority Critical patent/JPS63200508A/en
Publication of JPS63200508A publication Critical patent/JPS63200508A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize a gas pressure adjustment apparatus and a gas store tank by causing the gas pressure adjustment apparatus to operate its function so that a mixed gas pressure in a storage vessel can be constant in a range of minimum working temperature and the specified working temperature. CONSTITUTION:A coil 1 and a core 2 are housed in a storage vessel 3 and a gas store tank 10 where a mixed gas 4 mixed by insulating gas and cooling medium are kept in store is installed at the storage vessel 3. A gas pressure adjustment device that is composed of a pressure control part 11, a pressure detector 12, a compressor 13, a control valve 14 as well as a piping 15 is mounting between the gas store tank 10 and the storage vessel 3. A mixed gas in the storage vessel 3 operates the gas pressure adjustment device so that a mixed gas pressure can be constant in a range of a minimum working temperature and the specified working temperature. And its device does not operate in the range of the specified working temperature and the maximum working temperature and then a pressure of the storage vessel 3 is allowed to depend on variations of the temperature. In this way, a reduction of an insulating gas feeding between the storage vessel 3 and the store tank 10 makes the gas pressure adjustment device as well as the gas store tank 10 more compact.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、非凝縮性を有する絶縁ガスと凝縮性を有す
る冷媒とを混合した混合ガスが充填されている容槽内の
圧力を調整するガス絶縁電磁誘導機器のガス圧力調整方
法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention adjusts the pressure in a tank filled with a mixed gas of a non-condensable insulating gas and a condensable refrigerant. The present invention relates to a gas pressure adjustment method for gas-insulated electromagnetic induction equipment.

〔従来の技術〕[Conventional technology]

第2図は特開昭59−186312号公報に示された従
来のガス絶縁変圧器を示す概略構成図であり、図におい
て(唱)は巻線、(2)は鉄心、(6)は巻線(1)お
よび鉄心(2)を収納する容槽、(4)は巻線(1)お
よび鉄心(2)を絶縁、冷却する、非凝縮性絶縁ガスと
、凝縮性および絶縁性を有する冷媒の冷媒ガスとの混合
ガス、(5)は冷媒が液相である冷媒液である。
Figure 2 is a schematic configuration diagram showing a conventional gas insulated transformer disclosed in Japanese Patent Application Laid-Open No. 59-186312. A container (4) contains a non-condensable insulating gas and a refrigerant having condensing and insulating properties to insulate and cool the winding (1) and core (2). (5) is a refrigerant liquid in which the refrigerant is in a liquid phase.

(6A)は容槽(3)に付設され巻m (1)および鉄
心(2)から発生する熱を冷却するための冷媒液冷却器
、(7) 、 (8A)、(8B)、(9)はそれぞれ
冷媒液(5)を巻線(1)。
(6A) is a refrigerant liquid cooler attached to the container (3) for cooling the heat generated from the winding m (1) and the iron core (2), (7), (8A), (8B), (9 ) are windings (1) with refrigerant liquid (5) respectively.

鉄心(2)K散布するためのポンプ、配管および散布器
(10)は容槽(3)に付設されているガス貯槽。
The pump, piping, and sprayer (10) for dispersing K in the iron core (2) are a gas storage tank attached to the container (3).

(11)は圧力制御部、(12)は容槽(3)内のガス
圧力を検出する圧力検出器%(”)は容積(3)からガ
ス貯槽(10)にあるいはガス貯槽(10)から容積(
6)に、両方向に混合ガス(4)を圧送することが可能
な圧縮機、(14)は制御弁、(15)は容積(3)と
ガス貯槽(10)を連通ずる配管、(16)はガス貯槽
(10)内のガス圧力を測定する圧力検出器、(17)
は制御弁、(18)は容積(3)に排気するガス貯槽(
10)内の混合ガス(4)中の冷媒ガスから凝縮した冷
媒液が規定値(ガス貯槽(10)内の図示しない液面計
で検知する)を超えた場合に上記冷媒液(5)を容積(
3)に戻すため容積(3)とガス貯槽(4)の底部とを
連通ずるバイパス配管、(19)は混合ガス(4)の温
度を検出する温度検出器である。そして、圧力制御部(
11)、圧力検出器(12)、圧縮機(13)制御弁(
14)および配管(15)によりガス圧力調整装置が構
成されている。
(11) is the pressure control unit, (12) is the pressure detector that detects the gas pressure in the container (3).% ('') is from the volume (3) to the gas storage tank (10) or from the gas storage tank (10). volume(
6) is a compressor capable of pumping the mixed gas (4) in both directions, (14) is a control valve, (15) is a pipe that communicates the volume (3) with the gas storage tank (10), and (16) is a pressure detector (17) that measures the gas pressure in the gas storage tank (10);
is a control valve, (18) is a gas storage tank (
When the refrigerant liquid condensed from the refrigerant gas in the mixed gas (4) in 10) exceeds a specified value (detected by a liquid level gauge (not shown) in the gas storage tank (10)), the refrigerant liquid (5) is volume(
A bypass pipe (19) communicates the volume (3) with the bottom of the gas storage tank (4) in order to return the mixture gas to the mixed gas (4). Then, the pressure control section (
11), pressure detector (12), compressor (13) control valve (
14) and piping (15) constitute a gas pressure regulating device.

上記のように構成された従来のガス絶縁変圧器において
は、第3図に示すようにガス絶縁変圧器の負荷や周囲温
度の変化に応じて変化する容積(3)内の温度が最低使
用温度叫 と必要な絶縁耐力に応じて定めた所定使用温
度θ5 との間では、容積(3)とガス貯槽(10)と
の間で混合ガス(4)の給排を行って容積(6)内の圧
力をP、とP2との間に調整している。一方、所定使用
温度θ5 と最低使用温度θ との間では、ガス圧力調
整を行わず圧力が混合ガス(4)の圧力・温度特性にし
たがって同図のカーブ(b、−a、)(温度θ5で圧力
がP、のとき)とカーブ(b、−a2)(温度θ5 で
圧力がP2  のとき)とで囲まれた領域(第3図の斜
線部分)を変化するにまかせている。
In the conventional gas insulated transformer configured as described above, as shown in Figure 3, the temperature within the volume (3), which changes depending on the load of the gas insulated transformer and changes in ambient temperature, is the minimum operating temperature. Between the temperature and the predetermined operating temperature θ5 determined according to the required dielectric strength, the mixed gas (4) is supplied and discharged between the volume (3) and the gas storage tank (10) to maintain the temperature within the volume (6). The pressure of is adjusted between P and P2. On the other hand, between the predetermined operating temperature θ5 and the minimum operating temperature θ, the pressure is adjusted according to the pressure/temperature characteristics of the mixed gas (4) with the curves (b, -a,) (temperature θ5) shown in the figure. The area surrounded by the curve (b, -a2) (when the temperature is θ5 and the pressure is P2) (the shaded area in FIG. 3) is allowed to change.

そして、温度の高い領域すなわち所定使用温度θ5 と
最高使用温度θ。どの間では絶縁ガスの一部が冷媒ガス
とともにガス貯槽(10)に排気されるが、冷媒液(5
)の蒸気圧が高いため冷媒ガスの分圧が大きくなり、こ
の冷媒ガスが高い絶縁耐力をもつから絶縁ガスをガス貯
槽(10)に排気した分を十分に補う。また、温度の低
い(θ5−θa)の領域では、所定使用温度θ5 にお
いて容積(3)内の圧力をP、とP2との間の値をとれ
ばもともとガスの絶縁耐力はガス圧力よりもガス分子の
数(密度)で決まる性質があるから、それ以下の温度に
お〜1では容積(3)内の圧力は下ってもガス分子密度
は変らず、ガス絶縁変圧器は十分な絶縁耐力が保証され
る。
Then, there is a high temperature region, that is, a predetermined operating temperature θ5 and a maximum operating temperature θ. Part of the insulating gas is exhausted into the gas storage tank (10) together with the refrigerant gas, but the refrigerant liquid (5)
) has a high vapor pressure, the partial pressure of the refrigerant gas becomes large, and since this refrigerant gas has a high dielectric strength, it sufficiently compensates for the amount of insulating gas exhausted into the gas storage tank (10). In addition, in the region of low temperature (θ5 - θa), if the pressure in the volume (3) at the predetermined operating temperature θ5 is taken as a value between P and P2, the dielectric strength of the gas is originally lower than the gas pressure. Since the property is determined by the number of molecules (density), at temperatures below 1, the density of gas molecules does not change even if the pressure in the volume (3) decreases, and gas insulated transformers do not have sufficient dielectric strength. Guaranteed.

このようにして容積(3)内の圧力調整を行なうことに
よって、ガス最高圧力にP、以下の低−1値に抑えられ
、かつ全使用温度範囲(θ8−θ。)間を容積(3)と
ガス貯槽(10)との間での混合ガス(4)の給排によ
り圧力調整するよりも給排する混合ガス(4)の量が少
な(、したがってガス貯槽(10)の容積を小さくする
ことができる。
By adjusting the pressure in the volume (3) in this way, the maximum gas pressure can be suppressed to a low -1 value below P, and the entire operating temperature range (θ8 - θ.) can be maintained within the volume (3). Compared to adjusting the pressure by supplying and discharging the mixed gas (4) between the gas tank (10) and the gas storage tank (10), the amount of the mixed gas (4) to be supplied and discharged is smaller (thus, the volume of the gas storage tank (10) is reduced). be able to.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記のような従来のガス絶縁変圧器においては
、その容量が増加して(るとその発熱量が太き(なり冷
却のために使用する冷媒液(5)の量が増加する。この
冷媒液(5)はSF、ガスを溶解し、しかも低温時はど
多(溶解するという性質カーある、したがって、大容量
では冷媒量が多(・ので、低温時容積(3)中の絶縁ガ
スが冷媒液(5)中に溶解される量が増え混合ガス(4
)中の絶縁ガスの分子密度の減少が無視できな(なり、
第3図中の所定使用温度05以下の温度範囲の特に最低
使用温度θa K近い低温部でガス絶縁変圧器の絶縁耐
力が確保できず、結局全使用温度範囲(θ。−〇a)で
容積(3)内のガス圧力調整を行うことが必要となり、
容積(3]とガス貯槽(10)との間での絶縁ガスの給
排量が増えて、ガス圧力調整装置およびガス貯槽(10
)が大形化するという問題点があった。
By the way, in the conventional gas insulated transformer as described above, as its capacity increases (and its calorific value increases), the amount of refrigerant liquid (5) used for cooling increases. Liquid (5) dissolves SF, gas, and has the property of dissolving a large amount (dissolved) at low temperatures. Therefore, in a large capacity, the amount of refrigerant is large (・, so the insulating gas in volume (3) at low temperature The amount dissolved in the refrigerant liquid (5) increases and the mixed gas (4
) The decrease in the molecular density of the insulating gas in ) cannot be ignored.
In the temperature range below the predetermined operating temperature 05 in Figure 3, the dielectric strength of the gas insulated transformer cannot be ensured, especially in the low-temperature part near the lowest operating temperature θa K, and as a result, the volume is reduced over the entire operating temperature range (θ.-〇a). (3) It is necessary to adjust the gas pressure in
The amount of insulating gas supplied and discharged between the volume (3) and the gas storage tank (10) increases, and the gas pressure regulator and gas storage tank (10)
) had the problem of increasing in size.

この発明は、かかる問題点を解決するためになされたも
ので、容積とガス貯槽との間での絶縁ガスの給排量が減
り、したがってガス圧力調整装置およびガス貯槽の小形
化が可能なガス絶縁電磁誘導機器のガス圧力調整方法を
得ることを目的とする。
This invention was made to solve this problem, and the amount of insulating gas supplied and discharged between the volume and the gas storage tank is reduced, so that the gas pressure regulator and the gas storage tank can be made smaller. The purpose is to obtain a gas pressure adjustment method for insulated electromagnetic induction equipment.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るガス絶縁電磁誘導機器のガス圧力調整方
法は、容積内の混合ガスの圧力がその最低使用温度と所
定使用温度との間で一定の範囲内におさまるようにガス
圧力調整装置を作動させるものである。
The gas pressure adjustment method for gas-insulated electromagnetic induction equipment according to the present invention operates the gas pressure adjustment device so that the pressure of the mixed gas in the volume falls within a certain range between its minimum operating temperature and a predetermined operating temperature. It is something that makes you

〔作 用〕[For production]

この発明においては、ガス圧力調整装置を作動させて、
容槽とガス貯槽との間で混合ガスの給排を行ない、容槽
内の混合ガスの圧力がその最低使用温度と所定使用温度
との間で所定の範囲内に調整する。一方、混合ガスの所
定使用温度と最高使用温度との間ではガス圧力調整装置
は作動せず、容槽とガス貯槽との間での混合ガスの給排
は行なわれない。
In this invention, the gas pressure regulating device is operated,
The mixed gas is supplied and discharged between the container tank and the gas storage tank, and the pressure of the mixed gas in the container tank is adjusted within a predetermined range between its minimum operating temperature and a predetermined operating temperature. On the other hand, between the predetermined operating temperature and the maximum operating temperature of the mixed gas, the gas pressure regulating device does not operate, and the mixed gas is not supplied or discharged between the container tank and the gas storage tank.

〔実施例〕〔Example〕

以下、この発明の一実施例を説明する。ガス絶縁変圧器
の構成は従来のそれと全く同一であり、その説明は省略
する。
An embodiment of this invention will be described below. The structure of the gas insulated transformer is exactly the same as that of the conventional one, and its explanation will be omitted.

まず、ガス絶縁変圧器が停止中であったり負荷が軽くま
た周囲温度も低い場合には、容槽(3)内の絶縁ガスの
うち冷媒(5)中に溶解するものの割合が多(、容槽(
3)内の混合ガス(4)の圧力が低(なり絶縁耐力が下
がる。これを防ぐため、制御弁(14)を開き圧縮機(
13)を運転してガス貯槽(10)内の混合ガス(4)
を容槽(3)内に補給し、容槽(3)内の圧力を最低第
1図のP2  以上の値に保つ。
First, when the gas insulated transformer is stopped, the load is light, and the ambient temperature is low, a large proportion of the insulating gas in the container (3) dissolves in the refrigerant (5). Tank (
3) The pressure of the mixed gas (4) in the compressor (
13) to remove the mixed gas (4) in the gas storage tank (10).
is replenished into the tank (3), and the pressure inside the tank (3) is maintained at least at a value equal to or higher than P2 in Figure 1.

ガス絶縁変圧器を運転したり負荷が重(なると、巻線(
1)、鉄心(2)内の発熱のため容槽(6)内では温度
が上昇し、混合ガス(4)の膨張、冷媒液(5)の蒸気
圧の増加により圧力が上昇する。この値が第1図のP、
に達したところでこんどは圧縮機(13)を逆方向に運
転して混合ガス(4)を容槽(3)からガス貯槽(10
)に排気する。
When a gas insulated transformer is operated or under heavy load, the windings (
1) The temperature rises in the vessel (6) due to heat generation within the iron core (2), and the pressure rises due to expansion of the mixed gas (4) and increase in vapor pressure of the refrigerant liquid (5). This value is P in Figure 1,
When the gas reaches the gas storage tank (10), the compressor (13) is operated in the opposite direction to transfer the mixed gas (4) from the container (3) to the gas storage tank (10).
).

以上のようにして、最低使用温度θ8 から所定使用温
度θ5 との間では容槽(6)内の圧力をP、とP、と
の間の値に保つ。このときの容槽(5)とガス貯槽(1
0)との間で給排する混合ガス(4)のうち絶縁ガスの
応動量は、容槽(5)内か最低使用温度θ8で圧力P、
のとき容槽(3)内にある絶縁ガスの量と、同じ(所定
使用温度θ5 で圧力P2  のとき容槽(3)内にあ
る絶縁ガスの量との差となる。
As described above, the pressure in the container tank (6) is maintained at a value between P and P between the minimum operating temperature θ8 and the predetermined operating temperature θ5. At this time, the container tank (5) and the gas storage tank (1
The amount of response of the insulating gas among the mixed gas (4) supplied and discharged between the tank (5) and the minimum operating temperature θ8 is the pressure P,
This is the difference between the amount of insulating gas in the container (3) when , and the amount of insulating gas in the container (3) at the same predetermined operating temperature θ5 and pressure P2.

所定使用温度θ5 と最高使用温度との間では制御弁(
14)、(17)は閉止して容槽(6)内は温度の変化
に応じ、圧力が第1図のカーブ(bI−01)(所定使
用温度θ5 で圧力がP、のとき)とカーブ(b2C2
)(所定使用温度θ5 で圧力がP2  のとき)との
間の範囲(同図中斜線内)を変化するにまかせればよい
The control valve (
14) and (17) are closed, and the pressure inside the tank (6) changes according to the temperature change, following the curve (bI-01) in Figure 1 (when the pressure is P at the predetermined operating temperature θ5). (b2C2
) (when the pressure is P2 at the predetermined operating temperature θ5) (inside the hatched area in the figure).

′また、ガス貯槽(10)内に排気した混合ガス(4)
のうちの冷媒ガスはそれが凝縮液化したあとその葉が一
定量に達したとき制御弁(17)が開いてガス貯槽(1
0)内の圧力で容槽(5)内へ返送される。
'Also, the mixed gas (4) exhausted into the gas storage tank (10)
After the refrigerant gas condenses and liquefies, when a certain amount of refrigerant gas is reached, the control valve (17) opens and the gas storage tank (1
0) is returned to the container tank (5).

上記のようにして容槽(3)内のガス圧力調整範囲を最
低使用温度θ8 においても少(ともP2  以上の圧
力が確保されるので、絶縁耐力は十分である。eまた、
最高使用温度θ。における圧力はPA  となり、圧力
P、より大きくなるので、容槽(3)のガス圧設計は強
化する必要がある。しかし、全使用温度範囲(θ8−θ
。)間をガス圧力調整するよりも絶縁ガスの応動量(高
温時ガス貯槽(10)に貯え低温時に容槽(3)に戻す
量)が減り、ガス貯槽(10)の大きさを小さくするこ
とができる。このガス貯槽(10)は混合ガス(4)を
圧縮貯蔵するので、その使用圧力が高く、これを小形化
したことによる利益の方が容槽(6)をPl  より若
干高い圧力PA  まで使用できるようにするための不
利益よりも大きくなる。
As described above, the gas pressure adjustment range in the container tank (3) is maintained at a pressure equal to or higher than P2 even at the lowest operating temperature θ8, so the dielectric strength is sufficient.
Maximum operating temperature θ. Since the pressure at is PA, which is greater than the pressure P, it is necessary to strengthen the gas pressure design of the tank (3). However, the entire operating temperature range (θ8−θ
. ), the response amount of the insulating gas (the amount stored in the gas storage tank (10) at high temperatures and returned to the container (3) at low temperatures) is reduced, and the size of the gas storage tank (10) can be reduced. Can be done. Since this gas storage tank (10) compresses and stores the mixed gas (4), its working pressure is high, and the advantage of making it smaller is that the tank (6) can be used up to a pressure PA slightly higher than Pl. The disadvantage is greater than that.

なお、上記実施例ではこの発明をガス絶縁変圧器を用い
て述べたが、ガス絶縁リアクトル等その他の電磁誘導機
器にも利用できることは言うまでもない。
In the above embodiments, the present invention has been described using a gas insulated transformer, but it goes without saying that it can also be applied to other electromagnetic induction devices such as a gas insulated reactor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明のガス絶縁電磁誘導機器
によれば、容槽内の混合ガスの圧力がその最低使用温度
と所定使用温度との間で一定の範囲内圧収まるように圧
縮機、圧力制御部等を備えたガス圧力調整装置を作動さ
せ、その所定使用温度と最高使用温度との間ではガス圧
力調整装置は作動せず、容槽内の圧力は温度変化にまか
せるようにしたので、容槽とガス貯槽との間での絶縁ガ
スの給排量が減り、ガス圧力調整装置およびガス貯槽の
小形化が可能になり、ガス圧力調整装置およびガス貯槽
の製作コストが低減される。また、ガス絶縁電磁誘導機
器の据付面積1ユ縮小される。
As explained above, according to the gas insulated electromagnetic induction device of the present invention, the compressor and the pressure The gas pressure regulator, which is equipped with a control unit, etc., is activated, but between the predetermined operating temperature and the maximum operating temperature, the gas pressure regulator does not operate, and the pressure inside the container is left to change in temperature. The amount of insulating gas supplied and discharged between the container and the gas storage tank is reduced, the gas pressure adjustment device and the gas storage tank can be downsized, and the manufacturing costs of the gas pressure adjustment device and the gas storage tank are reduced. Additionally, the installation area for gas-insulated electromagnetic induction equipment is reduced by 1 unit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す容槽内の混合ガスの
温度と圧力との関係を示す関係図、第2図はこの発明お
よび従来のガス絶縁変圧器の概略構成図、第6図は容槽
内の従来の混合ガスの温度と圧力との関係を示す関係図
である。 口)・・巻線、(2)・・鉄心、(3)e・容槽、(4
)・・混合ガス、(10)・・ガス貯槽。 なお、各図中、同一符号は同−又は相当部分を示す。 昂1図 pf)3図 温度
FIG. 1 is a relationship diagram showing the relationship between the temperature and pressure of a mixed gas in a container showing an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of the present invention and a conventional gas insulated transformer, and FIG. The figure is a relationship diagram showing the relationship between the temperature and pressure of a conventional mixed gas in a container. mouth)...Winding, (2)...Iron core, (3)e/Container, (4
)...Mixed gas, (10)...Gas storage tank. In each figure, the same reference numerals indicate the same or corresponding parts. Figure 1 PF) Figure 3 Temperature

Claims (2)

【特許請求の範囲】[Claims] (1)巻線、鉄心が収納されている容槽と、この容槽に
付設され非凝縮性を有する絶縁ガスと凝縮性を有する冷
媒とを混合した混合ガスを貯留するガス貯槽と、このガ
ス貯槽と前記容槽との間に設けられ容槽内に前記絶縁ガ
スと前記冷媒とを充填するガス圧力調整装置とを備えて
いるガス絶縁電磁誘導機器において、前記容槽内の前記
混合ガスがその最低使用温度と所定使用温度との間で圧
力が一定の範囲内におさまるように前記ガス圧力調整装
置を作動させ、その所定使用温度と最高使用温度との間
ではガス圧力調整装置は作動せず容槽内の圧力は温度変
化にまかせることを特徴とするガス絶縁電磁誘導機器の
ガス圧力調整方法。
(1) A container in which the windings and iron core are stored, a gas storage tank attached to this container that stores a mixed gas of a non-condensing insulating gas and a condensing refrigerant, and this gas In the gas insulated electromagnetic induction device, the gas insulated electromagnetic induction device includes a gas pressure regulating device that is provided between a storage tank and the container tank and fills the container tank with the insulating gas and the refrigerant. The gas pressure regulator is operated so that the pressure falls within a certain range between the minimum operating temperature and a predetermined operating temperature, and the gas pressure regulator is not operated between the predetermined operating temperature and the maximum operating temperature. A gas pressure adjustment method for gas insulated electromagnetic induction equipment, characterized in that the pressure inside the gas tank is left to temperature changes.
(2)絶縁ガスとしてSF_6ガスを用い、冷媒として
フルオロカーボンC_8F_1_6Oを用いた特許請求
の範囲第1項記載のガス絶縁電磁誘導機器のガス圧力調
整方法。
(2) A method for adjusting gas pressure in a gas-insulated electromagnetic induction device according to claim 1, wherein SF_6 gas is used as the insulating gas and fluorocarbon C_8F_1_6O is used as the refrigerant.
JP3243987A 1987-02-17 1987-02-17 Method for adjusting gas pressure of gas-insulated electromagnetic induction apparatus Pending JPS63200508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3243987A JPS63200508A (en) 1987-02-17 1987-02-17 Method for adjusting gas pressure of gas-insulated electromagnetic induction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3243987A JPS63200508A (en) 1987-02-17 1987-02-17 Method for adjusting gas pressure of gas-insulated electromagnetic induction apparatus

Publications (1)

Publication Number Publication Date
JPS63200508A true JPS63200508A (en) 1988-08-18

Family

ID=12358990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3243987A Pending JPS63200508A (en) 1987-02-17 1987-02-17 Method for adjusting gas pressure of gas-insulated electromagnetic induction apparatus

Country Status (1)

Country Link
JP (1) JPS63200508A (en)

Similar Documents

Publication Publication Date Title
US3371298A (en) Cooling system for electrical apparatus
US5245836A (en) Method and device for high side pressure regulation in transcritical vapor compression cycle
US4581477A (en) Gas-insulated electrical apparatus
US6732536B1 (en) Method for providing cooling to superconducting cable
US20180315530A1 (en) Method and apparatus for cooling a superconducting device immersed in liquid nitrogen
WO2019181972A1 (en) Cooling device, control method, and storage medium
JPS607396B2 (en) superconducting device
US4149134A (en) Vaporization-cooled electrical apparatus
JPS63200508A (en) Method for adjusting gas pressure of gas-insulated electromagnetic induction apparatus
JPH0220126B2 (en)
JP5540642B2 (en) Cooling device for superconducting equipment
KR20220130924A (en) Cooling control device for superconducting fault current limiter
JPS61111513A (en) Induction electric apparatus using evaporation cooling
JPH0349376Y2 (en)
JPS6359256B2 (en)
JPS5823724B2 (en) Evaporative cooling electric induction device
JPS59186312A (en) Gas insulated electromagnetic induction machine
JPS63160216A (en) Gas-filled transformer
JPS5811747B2 (en) Boiling cooling device
JPH0516166B2 (en)
EP0091629A1 (en) Absorption type heat pump device
JPH01166513A (en) Stationary induction apparatus
WO1996028833A1 (en) Stationary induction electric appliance
JPH08145494A (en) Absorption type heat pump
JPS61149768A (en) Cryogenic refrigerator