JPS59186312A - Gas insulated electromagnetic induction machine - Google Patents

Gas insulated electromagnetic induction machine

Info

Publication number
JPS59186312A
JPS59186312A JP58060593A JP6059383A JPS59186312A JP S59186312 A JPS59186312 A JP S59186312A JP 58060593 A JP58060593 A JP 58060593A JP 6059383 A JP6059383 A JP 6059383A JP S59186312 A JPS59186312 A JP S59186312A
Authority
JP
Japan
Prior art keywords
gas
pressure
temperature
container
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58060593A
Other languages
Japanese (ja)
Inventor
Katamasa Haruki
春木 容正
Yoshio Yoshida
良男 吉田
Satoichi Kabayama
椛山 諭一
Tetsuo Hakata
博多 哲郎
Takahiro Matsumoto
隆博 松本
Tsugio Watanabe
渡邊 次男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP58060593A priority Critical patent/JPS59186312A/en
Priority to US06/596,844 priority patent/US4581477A/en
Priority to DE8484103788T priority patent/DE3469821D1/en
Priority to EP84103788A priority patent/EP0121267B1/en
Publication of JPS59186312A publication Critical patent/JPS59186312A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/18Liquid cooling by evaporating liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

PURPOSE:To reduce the volume of a gas storage, the capacity of a compressor and the like by a method wherein the pressure control is performed only in the region where the temperature of mixed gas is higher than the specified value. CONSTITUTION:The temperature of mixed gas 4 in a container 3 is detected by a temperature detector 19 and the gas pressure is not controlled until the temperature reaches the specified value. When the temperature of the mixed gas is not lower than the specified value, pressures in the container 3 and a gas storage 10 are detected by pressure detectors 12, 16 respectively and a pressure controller 11 controls a compressor 13, control valves 14, 17 and the like so as to keep the gas pressure in the container 3 within a specified region. When the temperature of the mixed gas 4 is below the specified value, the pressure is not controlled. By controlling like this, the quantity of responsive gas movement between the container and the gas storage is reduced. Therefore, the volume of the gas storage, the capacity of the compressor and the like can be reduced.

Description

【発明の詳細な説明】 この発明はたとえばガス絶縁変圧器のようなガス絶縁電
磁誘導機器の容器内の圧力を制御する圧力制御装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure control device for controlling the pressure within a container of a gas insulated electromagnetic induction device such as a gas insulated transformer.

以下の説明はガス絶縁変圧器を例に行なうものとする5
、 ガス絶縁変圧器としては、従来、絶縁、冷却の両方を単
一の非凝縮性ガスで行う方式や、これにさらに凝縮性を
有する常温では液体の冷媒を加え、これを巻線および鉄
心に散布またはm下させて、その蒸発潜熱あるいは液顕
熱で冷却を行う方式などがある。
The following explanation will be given using a gas insulated transformer as an example5.
Conventionally, gas insulated transformers use a single non-condensable gas for both insulation and cooling, or add a refrigerant that is condensable and liquid at room temperature, and apply this to the windings and core. There are methods of cooling by spraying or lowering the temperature by using the latent heat of vaporization or sensible heat of the liquid.

このようなガス絶縁変圧器の絶縁耐力は、内部に封入す
る絶縁ガスあるいは気化した冷媒ガスの圧力と密接な関
係を有している。機器便用時のガス圧を渇くとれば絶縁
耐力が渦くなり、絶縁寸法が縮小できて、機器本体を小
形に作ることができるが、この高い圧力に耐えるた゛め
の様器容槽の肉厚1重量等が大きくなる。一方圧力が低
すぎると、容器の肉厚1重量等は小さくなるが、絶縁耐
力が低くなり絶縁寸法が増大することによすは器本体が
大形化する。したがって適当な圧力範囲で使用する必要
がある。
The dielectric strength of such a gas insulated transformer has a close relationship with the pressure of the insulating gas or vaporized refrigerant gas sealed inside. If the gas pressure during equipment use is reduced, the dielectric strength becomes turbulent, the insulation dimensions can be reduced, and the equipment body can be made smaller, but in order to withstand this high pressure, the wall thickness of the container container must be increased. 1 weight etc. increases. On the other hand, if the pressure is too low, the wall thickness and weight of the container will decrease, but the dielectric strength will decrease and the insulation dimensions will increase, resulting in an increase in the size of the container body. Therefore, it is necessary to use it within an appropriate pressure range.

従来は、41′&器の最高使用温度における絶縁ガスの
圧力あるいはこれと蒸発した冷媒ガスとの混合ガスの圧
力が規定の上限値以下になるように、あらかじめ絶縁ガ
スを封入し、使用中は圧力調整を行わない方式や、本体
客種のほかにガス貯槽を備え、j団温高圧時絶縁ガスあ
るいは混合ガスの一部な貯槽に排出して容器内を一定圧
力以下に制御する方式などがあった。この発明は、後者
の圧力を制御する方式に属するものである。
Conventionally, insulating gas was filled in advance so that the pressure of the insulating gas or the pressure of the mixed gas with evaporated refrigerant gas at the maximum operating temperature of the 41'+ container was below the specified upper limit, and during use, There are methods that do not adjust the pressure, and methods that are equipped with a gas storage tank in addition to the main unit, and when the temperature and pressure are high, the insulating gas or mixed gas is discharged into the storage tank to control the pressure inside the container below a certain level. there were. This invention belongs to the latter method of controlling pressure.

第1図は従来の圧力制御式ガス絶縁変圧器の概略構成を
示す。図において、(1)は巻線、(2)は鉄心、(3
)は上記巻線および鉄心を収納する容器、(4)は巻線
(1)、鉄心(2)の絶縁、冷却を行う非凝縮性絶縁ガ
ス(4a)と、凝縮性および絶縁性を有する冷媒の蒸発
ガス(4b) (以下冷媒ガスと称する)との混合ガス
、(5)は液相にある上記冷媒(以下冷媒液と称する)
 、(6)は巻W(I+鉄心(2)等から発生する熱を
冷却するための冷却器、(7)、 (8)、 (9)は
冷媒液(5)を、巻線(1)、鉄心(2)に散布するた
めのポンプ、ijL管および散布器、叫はガス貯槽、0
υは圧力制御装置、(2)は容器(3)内のガス圧力を
検出する圧力検出器、←4は容、fV (3)からガス
貯槽01へ、あるいはガス貯槽(l〔)から容器(3)
へ、両方向に混合ガス(4)を圧送することが可能な圧
縮機、04は制御弁、αOは容器(3)とガス貯槽OO
)を連通ずる配管、0Qはガス貯槽内のガス圧力を測定
する圧力検出器、α力は制御弁、0樽は容器(3)とガ
ス貯槽(4)の底部とを連3mするバイパス配管である
FIG. 1 shows a schematic configuration of a conventional pressure-controlled gas insulated transformer. In the figure, (1) is the winding, (2) is the iron core, and (3
) is a container for storing the windings and core, (4) is a non-condensable insulating gas (4a) that insulates and cools the windings (1) and core (2), and a refrigerant having condensing and insulating properties. evaporated gas (4b) (hereinafter referred to as refrigerant gas) is a mixed gas, (5) is the above refrigerant in the liquid phase (hereinafter referred to as refrigerant liquid)
, (6) is a cooler for cooling the heat generated from winding W (I + iron core (2), etc.), (7), (8), (9) is a cooler for cooling the refrigerant liquid (5), winding (1) , pump for spraying on the iron core (2), ijL pipe and sprayer, gas storage tank, 0
υ is a pressure control device, (2) is a pressure detector that detects the gas pressure in the container (3), ←4 is the volume, fV (3) to the gas storage tank 01, or from the gas storage tank (l[) to the container ( 3)
, a compressor capable of pumping mixed gas (4) in both directions, 04 is a control valve, αO is a container (3) and a gas storage tank OO
), 0Q is a pressure detector that measures the gas pressure in the gas storage tank, α force is a control valve, and 0 barrel is a 3m bypass pipe that connects the container (3) and the bottom of the gas storage tank (4). be.

従来のガス絶縁変圧器は上記のように構成され、たとえ
ば変圧器の運転停止状態あるいは無負荷または軽負荷運
転時においては、容器(3)内の、巻線(1)、鉄心(
2)、混合ガス(4)、冷媒液(5)等の温度は低く、
したがって冷媒ガス(4b)の蒸気圧も低いので、巻線
の絶縁は主として絶縁ガス(4a)の絶縁耐力で保たれ
ている。
A conventional gas insulated transformer is constructed as described above. For example, when the transformer is stopped or operated with no load or light load, the winding (1) and the iron core (
2), the temperature of the mixed gas (4), refrigerant liquid (5), etc. is low;
Therefore, since the vapor pressure of the refrigerant gas (4b) is also low, the insulation of the winding is maintained mainly by the dielectric strength of the insulating gas (4a).

変圧8Kを起動したり、負荷が重くなると巻線(1)お
よび鉄心(2)から発生する熱によって、混合ガス(4
)および冷媒液(5)の温度が高くなり、絶縁ガス(4
a)および冷媒ガス(4b)の分圧にしたがって混合ガ
ス(4)の全圧が上昇する。このとき、容器(3)内の
圧力が規定上限値以上に上昇するのを防止して容器(3
)を保護するため、圧力検出器(6)内で容器(3)内
の圧力を、また圧力検出器αQでガス貯槽αQ内の圧力
を検知し、容器(3)内の圧力が貯槽α・内の圧力より
高い場合には圧力制御装置αυによって制御弁aηを開
くことによって余分の混合ガス(4)をガス貯槽00)
へ放出し、容器(3)内のガス圧力を規定上限値以下に
保つ。またガス貯槽00内にすでに混合ガス(4)があ
る程度移送され、容器(3)内の圧力が、ガス貯槽頭内
の圧力以下の場合には、制御装置01)により制御弁α
力を閉じ制御弁(+41を開くとともに圧縮機(ハ)を
起動し、混合ガス(4)を容器(3)よりガス貯槽OQ
へ圧送することによって容器(3)内の圧力を規定上限
値以下に保つ。
When the 8K transformer is started or the load becomes heavy, the heat generated from the winding (1) and iron core (2) causes the mixed gas (4
) and refrigerant liquid (5) become high, and the temperature of the insulating gas (4
The total pressure of the mixed gas (4) increases according to the partial pressures of a) and the refrigerant gas (4b). At this time, the pressure inside the container (3) is prevented from rising above the specified upper limit.
), a pressure detector (6) detects the pressure inside the container (3), and a pressure sensor αQ detects the pressure inside the gas storage tank αQ, so that the pressure inside the container (3) If the pressure is higher than that in the gas storage tank 00), the excess mixed gas (4) is transferred to the gas storage tank 00) by opening the control valve aη using the pressure control device αυ.
and maintain the gas pressure in the container (3) below the specified upper limit. Further, if a certain amount of the mixed gas (4) has already been transferred into the gas storage tank 00 and the pressure inside the container (3) is lower than the pressure inside the gas storage tank head, the control device 01) controls the control valve α.
Close the power, open the control valve (+41) and start the compressor (c), and transfer the mixed gas (4) from the container (3) to the gas storage tank OQ.
The pressure inside the container (3) is kept below the specified upper limit by supplying pressure to the container (3).

一方、変圧器の負荷が低下し、巻線(1)および鉄心(
2)から発生する熱量が減少すると、混合ガス(4)お
よび冷媒液(5)の温度が低下し、ガス圧力も低下する
。このときガス圧低下による巻線(1)の絶縁耐力低下
を防止するため、圧力検出器(6)およびαQによって
容器(3)およびガス貯槽0Q内のガス圧を検知し、ガ
ス貯槽頭内の圧力が容器(3)内の圧力より高い場合に
は、圧力制御装置αυにより、制御弁aηを開き、必要
な混合ガス(4)をガス貯槽θ0より容器(3)へ流入
させ、容器(3)内の圧力を規定下限値以上に保つとと
もに、ガス貯槽0Q内で凝縮した冷媒液(5)を容器(
3)へ戻す。
On the other hand, the load on the transformer decreases, winding (1) and iron core (
When the amount of heat generated from 2) decreases, the temperature of the mixed gas (4) and refrigerant liquid (5) decreases, and the gas pressure also decreases. At this time, in order to prevent a decrease in the dielectric strength of the winding (1) due to a decrease in gas pressure, the pressure detector (6) and αQ detect the gas pressure in the container (3) and gas storage tank 0Q, and the gas pressure in the gas storage tank head is detected. When the pressure is higher than the pressure inside the container (3), the pressure control device αυ opens the control valve aη to allow the necessary mixed gas (4) to flow from the gas storage tank θ0 into the container (3). ) to maintain the pressure in the container (
Return to 3).

また、この操作の途中においてガス貯槽(10内の混合
ガス(4)の減少により、その圧力が客種(3)内の圧
力以下になった場合には、圧力制御装置0υにより制御
弁Qηを閉じ、制御弁αΦを開くとともに、圧縮4’A
 (Itを逆方向に運転し、必要な混合ガス(4)をさ
らにガス貯槽叫より客種(3)へ圧送することによって
、客種(3)内のガス圧力を規定下限値以上に保つよう
になっている。
In addition, if the mixed gas (4) in the gas storage tank (10) decreases during this operation and its pressure becomes lower than the pressure in the customer type (3), the pressure control device 0υ will close the control valve Qη. close, open the control valve αΦ, and compress 4'A
(By operating it in the opposite direction and further pressure-feeding the necessary mixed gas (4) from the gas storage tank to the customer type (3), the gas pressure in the customer type (3) is maintained at or above the specified lower limit value. It has become.

しかるに上記のような従来の装置においては、客種(3
)内の混合ガス0勺の温度と無関係にその圧力を一定範
囲に制御する方式であるため、変圧器の最低使用温度か
ら最高使用温度までの全範囲の圧力を調整するためには
、客種(3)とガス貯槽(10の間の応動ガス量が大き
く、貯槽OQが大形化するとともに圧縮機(2)も大容
量のものを必要とするという欠点があった。
However, in the conventional device as mentioned above, the customer type (3
), the pressure of the mixed gas is controlled within a certain range regardless of the temperature of the mixed gas in the transformer. (3) and the gas storage tank (10) is large, the storage tank OQ becomes large, and the compressor (2) also requires a large-capacity one.

この発明は、上記のような従来のものの欠点を解消する
ために成されたもので、ガス貯槽おJびガス圧縮機等を
小形化することが可能なガス絶縁電磁誘導機器を得るこ
とを目的とするものである。
This invention was made in order to eliminate the drawbacks of the conventional devices as described above, and the purpose is to obtain a gas insulated electromagnetic induction device that can downsize gas storage tanks, gas compressors, etc. That is.

第2図はこの発明の一実施例を適用したガス絶縁変圧器
を示す概略図であり、(1)〜(5) 、 (7) 、
 (9)〜(ト)等はすべて従来と同一または類似のも
のである。
FIG. 2 is a schematic diagram showing a gas insulated transformer to which an embodiment of the present invention is applied, (1) to (5), (7),
(9) to (g), etc. are all the same as or similar to the conventional ones.

(6A)は冷媒液冷却器で、循環ポンプ(7)、配管(
8A)、  (8B)と連通され、下部の液を冷却した
のち散布器(9)に供給し、巻線(1)、鉄心(2)に
散布して冷却を行う。0俤は、混合ガス(4)の温度を
検出する温度検出器である。
(6A) is a refrigerant liquid cooler, which includes a circulation pump (7) and piping (
8A) and (8B), and after cooling the liquid in the lower part, it is supplied to the sprayer (9), where it is sprayed onto the winding (1) and the iron core (2) for cooling. 0tou is a temperature detector that detects the temperature of the mixed gas (4).

上記のように構成されたガス絶縁変圧器の運転停止状態
あるいは無負荷または軽負荷運転時においては、従来装
置と同様容槽内の温度が低く冷媒ガス(4b)の蒸気圧
も低いので、巻線(1)の絶縁は主として絶縁ガス(4
a)の絶縁耐力により保たれる。
When the gas insulated transformer configured as described above is in a stopped state or in no-load or light-load operation, the temperature inside the container is low and the vapor pressure of the refrigerant gas (4b) is low, as in conventional equipment, so the winding The insulation of the wire (1) is mainly insulating gas (4
It is maintained by the dielectric strength of a).

変圧器を起動したり負荷が重くなると、巻線(1)およ
び鉄心(2)から発生する熱によって混合ガス(4)お
よび冷媒液(5)の温度が耳くなり、絶縁ガス(4a)
および冷媒ガス(4b)の分圧したがって混合ガス(4
)の全圧が上昇する。
When the transformer is started or the load becomes heavy, the temperature of the mixed gas (4) and refrigerant liquid (5) increases due to the heat generated from the winding (1) and iron core (2), and the insulating gas (4a)
and the partial pressure of the refrigerant gas (4b) and therefore the mixed gas (4b)
) total pressure increases.

このとき上記実施例においては、温度検出器01により
客種(3)内の混合ガス(4〕の温度を検出し、この温
度が規定の値となるまでは、客種(3)内のガス圧を制
御しない。后いかえれば、客種(3)内を封じ切りの状
態とするような制御を行う。ただし、このとき、混合ガ
ス(4)の膨張および冷媒液(5)の気化によるガス圧
が、上記規定の温度において、規定の下限値以上でかつ
上限値以下におさまるよう、あらかじめ絶縁ガス(4a
)を封入しておくことを前提とする。そして上記混合ガ
ス(4)の温度が上記規定の値以上のときは、従来装置
と全く同様に、圧力検出器(6)および(IQで客種(
3)およびガス貯槽(10)の圧力を検知し、客種(3
)内のガス圧が規定の範囲内におさまるよう、圧力制御
装置0υにより、圧縮機θ葎および制御弁0勺または0
η等を運転または操作して混合ガス(4)を客種(3)
からガス貯槽OL′)に移送する。
At this time, in the above embodiment, the temperature of the mixed gas (4) in the customer type (3) is detected by the temperature detector 01, and the temperature of the mixed gas (4) in the customer type (3) is detected until this temperature reaches a specified value. The pressure is not controlled.In other words, the pressure is controlled to keep the interior of the customer type (3) in a sealed state.However, at this time, due to the expansion of the mixed gas (4) and the vaporization of the refrigerant liquid (5), Insulating gas (4a
) is assumed to be included. When the temperature of the mixed gas (4) is higher than the specified value, the pressure detector (6) and (IQ) indicate the customer type (
3) and the pressure of the gas storage tank (10), and the customer type (3) is detected.
), the pressure control device 0υ controls the compressor θ and control valve 0 or 0
Operate or operate η etc. to supply mixed gas (4) to customer type (3)
from there to the gas storage tank OL').

一方、変圧器の負荷が低下すると、巻線D)および鉄心
(2)からの発生熱の減少により混合ガス(4)および
冷媒液(5)の温度が低下する。このとき、ガス圧力低
下による巻線の絶縁耐力の低下を防止するため、従来装
置と全く同様に、圧力検出i (I(2)およびa(j
で客種(3)およびガス貯槽(Rυの圧力を検知し、’
84<9 (3)内のガス圧が規定の範囲内におさまる
よう圧力制御装置0])により、圧縮機α榎および制御
弁0<またはaη等を運転または操作して混合ガス(4
)および冷媒液(5)をガス貯槽αqから客種(3)へ
戻す。そして、温度検出器0!!(こより検出される混
合ガス(4)の温度が前記規定の値より高いところでは
上記の制御を行うが、上記混合ガス(4)の温度がこの
規定の値まで下降したところでこの制御操作を打切り、
これより低い温度においては制御弁θ4おJ:びQ7J
を閉じて客種(3ンを封じ切りの状態にする。
On the other hand, when the load on the transformer decreases, the temperature of the mixed gas (4) and refrigerant liquid (5) decreases due to the decrease in heat generated from the winding D) and the iron core (2). At this time, in order to prevent the dielectric strength of the winding from decreasing due to a decrease in gas pressure, pressure detection i (I (2) and a (j
Detect the customer type (3) and the pressure of the gas storage tank (Rυ),
84 < 9 (3) The pressure control device 0]) operates or operates the compressor α and the control valve 0
) and refrigerant liquid (5) are returned to customer type (3) from gas storage tank αq. And temperature sensor 0! ! (Thus, the above control is performed when the detected temperature of the mixed gas (4) is higher than the specified value, but this control operation is discontinued when the temperature of the mixed gas (4) falls to this specified value. ,
At temperatures lower than this, control valves θ4 and Q7J
Close it and make the customer type (3) unblocked.

上記のように、この発明は、圧力制御を混合ガス(4)
の温度が規定の値より高い範囲でのみ行なうようにした
ことを特徴とする。このとき、圧力制御を行う範囲と行
わない範囲の境界温度としては、その温度における冷媒
ガス(4b)の蒸気圧が、絶縁ガス(4a)の圧力に対
して無視し街る値でかつなるべく高い温度を選定する。
As mentioned above, this invention provides pressure control for mixed gas (4)
It is characterized in that the process is performed only in a range where the temperature of is higher than a specified value. At this time, the boundary temperature between the range where pressure control is performed and the range where pressure control is not performed is such that the vapor pressure of the refrigerant gas (4b) at that temperature is a value that is ignored with respect to the pressure of the insulating gas (4a) and is as high as possible. Select temperature.

このようにすると、たとえばsF6ガスのような非凝縮
性の電気的負性ガスの絶縁耐力は単位体積当りの分子数
で決り、その温度や圧力の影詣は、副次的なものである
ことが知られているから、上記の封じ切りのあとで容積
(3)内のガス圧あるいは;益友が低下しても、結縁ガ
ス(4a)の分子数は封じ切りの時点と斐らず、絶縁1
:「4力も封じ切り時点の値が保たれる。したがって、
結局、上記のような制御を行なう変圧器は、無負荷また
は軽負荷時あるいは、運転停止仮に再び起動する場合も
十分な絶縁耐力を保持することになる。
In this way, the dielectric strength of a non-condensable electrically negative gas such as sF6 gas is determined by the number of molecules per unit volume, and the effects of temperature and pressure are secondary. is known, so even if the gas pressure in the volume (3) decreases after the above-mentioned sealing off, the number of molecules of the bonding gas (4a) does not change from the time of sealing off, and the insulation is maintained. 1
: "The value of the 4 powers will be maintained at the time of sealing. Therefore,
As a result, a transformer that performs the above control maintains sufficient dielectric strength even when there is no load or a light load, or even when the transformer is stopped and restarted.

また、圧力制御を行う温度範囲においては、混合ガス(
4)を容積(:3)からガス貯槽0リヘ移送するため、
容積(3)内の絶縁ガス(4a)の分子数が上記圧力制
御の下限温度の時点よりも減少するが、冷媒液(5ンの
蒸気圧の上昇により冷媒ガス(4b)の分子数は増加す
る。
In addition, in the temperature range where pressure control is performed, the mixed gas (
4) from the volume (:3) to the gas storage tank 0,
Although the number of molecules of the insulating gas (4a) in the volume (3) decreases from the time of the lower limit temperature of the pressure control, the number of molecules of the refrigerant gas (4b) increases due to the rise in vapor pressure of the refrigerant liquid (5). do.

したがって、たとえば絶縁ガスとしてSF6ガスを用い
、冷媒としてたとえばフルオロカーボンC8F、60を
使用すれは、C8F+60の気相の絶縁耐力は同圧のS
F6ガスより十分高い(通常は2倍前後ある)ので、容
i酋(3)から貯槽(10)へ混合ガス(4)を移送し
てもH’A ?Ll? il’g力は下ることはなくむ
しろ上昇する。
Therefore, if SF6 gas is used as the insulating gas and fluorocarbon C8F,60 is used as the refrigerant, the dielectric strength of the gas phase of C8F+60 is
Since it is sufficiently higher than F6 gas (usually about twice as high), even if the mixed gas (4) is transferred from the tank (3) to the storage tank (10), H'A? Ll? il'g power does not go down, but rather goes up.

さらに、上記フルオロカーボン08F160の蒸気圧は
、たとえば20°Cにおいては0.05に鉤absであ
り、通常1 kt)/cA abs以上で封入されるS
F6ガスのガス圧に対してはゾ無視し得る値であり、こ
の発明のガス圧制御の下限温度を適度に高いところへ設
定できる適当な冷媒である。
Furthermore, the vapor pressure of the fluorocarbon 08F160 is, for example, 0.05 abs at 20°C, and the S
It has a negligible value with respect to the gas pressure of F6 gas, and is an appropriate refrigerant that can set the lower limit temperature of the gas pressure control of the present invention to a moderately high value.

以上説明した本発明による圧力制御方式を従来装置と比
較して第3図に示す。同図の横軸は、容積(3)内の混
合ガス(4)の温度を示し、Oaは使用最低温度、Ob
は本発明のガス圧制御下限温度、OCは使用最低温度で
ある。同図(a)の縦軸は容積(3)内のガス圧を示す
。従来装置においては、圧力は使用温度範囲全域におい
て、規定上限圧力P1.下限圧力P2の範囲内に制御さ
れる。−力木発明の装置においては、温度範囲OawO
b内においては圧力制御を行わないから、ガス圧は曲線
al blを上限とし、a2b2を下限とする範囲内で
変化する。また温度範囲Ob”−OC内においては、従
来装置と全く同じく、圧力はP、、P2の範囲内に制御
される。なお曲線P1gは冷媒液(5)の蒸気圧を示す
The pressure control method according to the present invention described above is shown in FIG. 3 in comparison with a conventional device. The horizontal axis of the figure shows the temperature of the mixed gas (4) in the volume (3), Oa is the minimum operating temperature, Ob
is the gas pressure control lower limit temperature of the present invention, and OC is the lowest operating temperature. The vertical axis in FIG. 3(a) indicates the gas pressure within the volume (3). In the conventional device, the pressure is within the specified upper limit pressure P1. The pressure is controlled within the range of the lower limit pressure P2. - In the device of Rikiki's invention, the temperature range OawO
Since pressure control is not performed within b, the gas pressure changes within a range with the curve al bl as the upper limit and a2b2 as the lower limit. Further, within the temperature range Ob"-OC, the pressure is controlled within the range of P, , P2, just like the conventional device. Note that the curve P1g indicates the vapor pressure of the refrigerant liquid (5).

本発明では、Oa〜Ob間で圧力調整を行なわないから
、この分のガス量が不要となる。たとえば、0a=−2
0°C(″辺気学会規格JRC204変圧器屋外用の最
低使用温度)、ob=ao°Cとすると、従来装置にお
いては温度Oaの点では、Obにおいて封入されている
ガス量に対し、 と、さらに20%増しの絶縁ガス(4a)を容積(3)
内に封入する必要がある。
In the present invention, since pressure adjustment is not performed between Oa and Ob, this amount of gas is not necessary. For example, 0a=-2
0°C (minimum operating temperature for outdoor JRC204 transformers according to the Japan Air Society standard) and ob = ao°C, in terms of temperature Oa, in the conventional device, for the amount of gas sealed in Ob, and , add 20% more insulating gas (4a) to the volume (3)
It needs to be enclosed inside.

したがって、本発明の装置においては、これが不要であ
るから容積(3)、ガス貯槽曲間の応動ガ云量も少なく
なり、貯槽Qlの容積も小さく且つ圧縮機03も小容量
でよくなるなど種々の利点が生じる。
Therefore, in the device of the present invention, since this is not necessary, the volume (3) and the amount of response movement between the gas storage tank turns are reduced, the volume of the storage tank Ql is small, and the capacity of the compressor 03 is also small. Benefits accrue.

一方絶縁耐力特性は第3図(b)に示す。まず従来装置
E4においてはOa〜Obの範囲で余分のガスを封入す
るから、絶縁耐力は曲線a3+dc のように点dを最
小値とする■特性を示す。これに対し、本発明の装置に
おいてははS a4 T d cのようにより平坦な特
性を示し、従来装置で言わば過剰となっていた部分を合
理的に改善した形となっている。
On the other hand, the dielectric strength characteristics are shown in FIG. 3(b). First, in the conventional device E4, since an extra gas is filled in the range of Oa to Ob, the dielectric strength exhibits a characteristic (2) with the minimum value at point d as shown by the curve a3+dc. In contrast, the device of the present invention exhibits flatter characteristics such as S a4 T d c, and is a form in which the excessive portions of the conventional device are rationally improved.

さらに、混合ガス(4)の温度下降時、圧力制御打切り
温度Obでのガス圧を必ず上限圧力Pl(bt点)に持
ち上げた後で圧力制御操作を打切るように制御装置αυ
を設定すれば、その後の圧力は曲線alrbl上を変化
するから、冷媒液(5)の蒸気圧がobで残っているわ
ずかな値P3(bs点)からさらに低下することによる
絶縁低下分を補償して、曲線a2+bB上を変化すると
きよりも高い絶縁耐力を確保することができる。
Furthermore, when the temperature of the mixed gas (4) decreases, the control device αυ is configured such that the pressure control operation is terminated after the gas pressure at the pressure control termination temperature Ob is raised to the upper limit pressure Pl (point bt).
If set, the subsequent pressure will change on the curve alrbl, so it will compensate for the reduction in insulation due to the vapor pressure of the refrigerant liquid (5) further decreasing from the small value P3 (BS point) remaining in ob. Thus, a higher dielectric strength can be ensured than when changing on the curve a2+bB.

以上の実施例はガス絶縁変圧器について述べたが、たと
えばガス絶縁リアクトルなど他の′礪磁誘導機器にも適
用できることはいうまでもない。又、温度検出を混合ガ
ス(4)に対して行なった場合について述べたが、冷媒
液(5)の温度を検出することによっても同様の制御操
作を行なうことができる。
Although the above embodiments have been described with respect to gas insulated transformers, it goes without saying that the present invention can also be applied to other magnetic induction devices such as gas insulated reactors. Further, although the case has been described in which the temperature is detected for the mixed gas (4), the same control operation can also be performed by detecting the temperature of the refrigerant liquid (5).

この発明は以上説明した通り、容積内の混合ガスの温度
および圧力を検出して、規定の値以上の温度においての
み圧力制御を行うことにより、絶縁耐力を合理的な値に
保ちつつ使用ガス量を少なくし、ガス貯槽の容積、圧縮
機の容量等を小形化できるという効呆がある。
As explained above, this invention detects the temperature and pressure of the mixed gas in the volume and controls the pressure only at temperatures above a specified value, thereby maintaining the amount of gas used while maintaining the dielectric strength at a reasonable value. This has the advantage of reducing the volume of the gas storage tank, the capacity of the compressor, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第11因は従来のガス絶縁変圧器の概略図、第2図はこ
の発明の一実施例であるガス絶縁変圧器の概略図、第3
図は、従来装置およびこの発明のガス圧および絶縁耐力
の温度特性説明図である。図において、(1)は巻線、
(2月よ鉄心、(3)は客種、(4)は?産金ガス、(
5)は冷媒液、(10はガス貯槽、(l])は制御装置
、@、OQはガス圧力検出器、o3は圧縮機、α荀。 0ηは制御弁、(1場はガス温度検出器である。 なお、各図中、同一符号は同一または相当部分を示すも
のとする。 代理人    大  岩  増  雄 第2図 第3図 (θ) (l!l、IO,夕bcyC 第1頁の続き ■出 願 人 三菱電機株式会社 東京都千代田区丸の内2丁目2 番3号
The eleventh factor is a schematic diagram of a conventional gas insulated transformer, FIG. 2 is a schematic diagram of a gas insulated transformer that is an embodiment of the present invention, and the third
The figure is an explanatory diagram of temperature characteristics of gas pressure and dielectric strength of a conventional device and the present invention. In the figure, (1) is a winding wire,
(February, iron core, (3) is customer type, (4) is gold gas production, (
5) is the refrigerant liquid, (10 is the gas storage tank, (l) is the control device, @, OQ is the gas pressure detector, o3 is the compressor, α.0η is the control valve, (1 is the gas temperature detector In each figure, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa Figure 2 Figure 3 (θ) (l!l, IO, bcyC, page 1) Continue ■Applicant Mitsubishi Electric Corporation 2-2-3 Marunouchi, Chiyoda-ku, Tokyo

Claims (3)

【特許請求の範囲】[Claims] (1)  非凝縮性を有する絶縁ガスと凝縮性を有する
冷媒とを充填した容器内に、巻線および鉄心を主体とす
る電磁誘導機器本体を収納して絶縁および冷却を行うも
のにおいて、上記容器内の圧力を検出する圧力検出p1
3と、上記絶縁ガスおよび蒸発により気相となった上記
冷媒ガスの混合ガスの温度を検出する温度検出器と、上
記6槽がij:J温、高圧時に上記混合ガスを収納する
ため、上記容′41舎との間を配管、制御弁および圧縮
機などを介して連通させたガス貯槽と、上記制御弁、圧
縮機などを操作または運転して、上記6槽の圧力を規定
の圧力範囲に調整する制御装置とを備えるとともに、上
記容器内の混合ガス温度が規定温度以上かつ最高使用温
度以下の範囲でのみ圧カニSrn )名を行うよう上記
制御装置を設定したことを特徴とするガス絶縁τに磁誘
導機器。
(1) In a device that insulates and cools an electromagnetic induction device mainly consisting of windings and an iron core by storing it in a container filled with a non-condensable insulating gas and a condensable refrigerant, the above-mentioned container Pressure detection p1 that detects the pressure inside
3, a temperature detector for detecting the temperature of the mixed gas of the insulating gas and the refrigerant gas that has become a gas phase due to evaporation; The gas storage tank is connected to the gas storage tank via piping, control valves, compressors, etc., and the pressure in the six tanks is controlled within the specified pressure range by operating or operating the control valves, compressors, etc. and a control device for adjusting the temperature, and the control device is set to perform the pressure crab only when the temperature of the mixed gas in the container is above a specified temperature and below a maximum operating temperature. Magnetic induction equipment with insulation τ.
(2)混合ガスの温度が下降中、圧力調整動作範111
1の下限温度において、圧力制御装置の動作幅の上限値
に圧力を調整したのち上記圧力調整動作を停止するよう
上記制御装置を設定したことを特徴とする特許請求の範
囲第1項記載のガス絶縁電磁誘導機器。
(2) Pressure adjustment operating range 111 while the temperature of the mixed gas is decreasing
1. The gas according to claim 1, wherein the control device is set to stop the pressure adjustment operation after adjusting the pressure to the upper limit of the operating range of the pressure control device at the lower limit temperature of 1. Insulated electromagnetic induction equipment.
(3)絶縁ガスとしてSF6ガスを用い、冷媒としてフ
ルオロカーボンC3F1r、0を用いたことを特徴とす
る特許請求の範囲第1項または第2項記載のガス絶縁電
磁誘導机器。
(3) The gas-insulated electromagnetic induction device according to claim 1 or 2, characterized in that SF6 gas is used as the insulating gas and fluorocarbon C3F1r,0 is used as the refrigerant.
JP58060593A 1983-04-05 1983-04-05 Gas insulated electromagnetic induction machine Pending JPS59186312A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58060593A JPS59186312A (en) 1983-04-05 1983-04-05 Gas insulated electromagnetic induction machine
US06/596,844 US4581477A (en) 1983-04-05 1984-04-04 Gas-insulated electrical apparatus
DE8484103788T DE3469821D1 (en) 1983-04-05 1984-04-05 Gas-insulated electrical apparatus
EP84103788A EP0121267B1 (en) 1983-04-05 1984-04-05 Gas-insulated electrical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58060593A JPS59186312A (en) 1983-04-05 1983-04-05 Gas insulated electromagnetic induction machine

Publications (1)

Publication Number Publication Date
JPS59186312A true JPS59186312A (en) 1984-10-23

Family

ID=13146684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58060593A Pending JPS59186312A (en) 1983-04-05 1983-04-05 Gas insulated electromagnetic induction machine

Country Status (1)

Country Link
JP (1) JPS59186312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044309A (en) * 2019-09-09 2021-03-18 東芝インフラシステムズ株式会社 Dry air control device and dry air control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882319A (en) * 1972-02-08 1973-11-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882319A (en) * 1972-02-08 1973-11-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044309A (en) * 2019-09-09 2021-03-18 東芝インフラシステムズ株式会社 Dry air control device and dry air control method

Similar Documents

Publication Publication Date Title
CN103390485B (en) A kind of strong cold transformer of liquid nitrogen and refrigerating method thereof
US10629356B2 (en) Transformer with temperature-dependent cooling function
US11035598B2 (en) Method and apparatus for cryogenic cooling of HTS devices immersed in liquid cryogen
US4456899A (en) Device and method for utilization of heat due to losses in transformers or choke coils which are internally cooled by a liquid
US4581477A (en) Gas-insulated electrical apparatus
JPS59186312A (en) Gas insulated electromagnetic induction machine
CN114038659A (en) Oil-immersed transformer oil liquid circulation heat dissipation system, method and device
JPH0220126B2 (en)
CN109494055A (en) Intelligent vacuum arc extinguishing three-dimensional winding iron core capacity and pressure regulating transformer
CN203377060U (en) Liquid nitrogen severe-cold transformer
JPS63200508A (en) Method for adjusting gas pressure of gas-insulated electromagnetic induction apparatus
JP5217308B2 (en) Superconducting part cooling device and its operation method
JPS6032333B2 (en) Cooling equipment for electrical equipment
JPS5823724B2 (en) Evaporative cooling electric induction device
JPS61174707A (en) Gas insulation transformer
JPS58202512A (en) Gas-insulated electrical apparatus
WO1996028833A1 (en) Stationary induction electric appliance
JPS61111513A (en) Induction electric apparatus using evaporation cooling
CN87101947A (en) The improvement of sensing apparatus
JPH05166638A (en) Gas-insulated stationary induction apparatus
JPH0712006B2 (en) Foil winding transformer
JPS61179511A (en) Foil-wound transformer
JPS5874023A (en) Transformer
JPS6359256B2 (en)
JPH03120706A (en) Transformer