JPS6320026B2 - - Google Patents

Info

Publication number
JPS6320026B2
JPS6320026B2 JP57228918A JP22891882A JPS6320026B2 JP S6320026 B2 JPS6320026 B2 JP S6320026B2 JP 57228918 A JP57228918 A JP 57228918A JP 22891882 A JP22891882 A JP 22891882A JP S6320026 B2 JPS6320026 B2 JP S6320026B2
Authority
JP
Japan
Prior art keywords
film
type
tin
layer
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57228918A
Other languages
Japanese (ja)
Other versions
JPS59119875A (en
Inventor
Yoshihiro Hamakawa
Hisao Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOOYA KK
Original Assignee
HOOYA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOOYA KK filed Critical HOOYA KK
Priority to JP57228918A priority Critical patent/JPS59119875A/en
Publication of JPS59119875A publication Critical patent/JPS59119875A/en
Publication of JPS6320026B2 publication Critical patent/JPS6320026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水素化アモルフアスシリコン(以下
「a−Si:H」という。)又は水素化アモルフアス
シリコンカーバイト(以下「a−SiC:H」とい
う。)を用いた太陽電池に関する。 従来、この太陽電池の代表例としては、第1図
に示すようにガラス等の透光性絶縁基板1上に、
真空蒸着法、スパツタ法又はCVD法等により酸
化インジウム等の透明導電膜2と、グロー放電分
解法によりp型a−Si:H層3、i型a−Si:H
層4及びn型a−Si:H層5からなるアモルフア
スシリコン半導体層(以下「a−Si半導体層」と
いう。)6と、真空蒸着法等によりアルミニウム
等の金属電極7とを積層している。 そして、光8は、透光性絶縁基板1の側から入
射し、主としてi型a−Si:H層4内で吸収され
て透明導電膜2と金属電極7との間で起電力を発
生させる。 このような太陽電池の変換効率と、a−Si半導
体層6の作成条件については多くの研究がなされ
ているが、透明導電膜2とa−Si:H層3との界
面については未だ解明されておらず、現状では変
換効率を向上させるにも限界を来たしており、ま
たそのバラツキが大きい欠点があつた。 本発明の目的は、上記した欠点を除去し、変換
効率を向上させ、かつそのバラツキの少ない太陽
電池を提供することである。 このような目的を達成させるために、本発明
は、透光性絶縁基板上に、酸化インジウムを主成
分とした膜と、p型、i型及びn型の各層がa−
Si:Hであり又はp型及びn型のうち少なくとも
一方の層がa−SiC:Hであつてi型の層がa−
Si:Hであるa−Si半導体層とを順次具備した太
陽電池において、前記酸化インジウムを主成分と
した膜と前記a−Si:H又は前記a−SiC:Hと
の間に、スズを主成分とした金属材料を用いて成
膜された、スズを主成分とし酸素を含有しない膜
又はSnOx(ただし、0<x<1である。)で表わ
されるスズの低級酸化物を主成分とした膜を介在
していることを特徴とする太陽電池である。 ここで、「透光性絶縁基板」とは、ガラス、フ
イルムなどの透光性絶縁材料からなる基板であ
る。「酸化インジウムを主成分とした膜」として
は、酸化インジウム膜の他に、酸化インジウムに
酸化スズ、酸化タングステン、酸化モリブデンな
どを含有させた膜が挙げられる。「スズを主成分
とした金属材料」としては、スズの他に、アンチ
モン白金などを含有させた金属材料が挙げられ
る。「スズの低級酸化物」とは、SnOxについて
0<x<1で表わされ、真空蒸着法、スパツタリ
ング法などにより成膜される。「スズ又はスズの
低級酸化物を主成分とした膜」は、膜の光吸収が
10%以下になる膜厚が好ましく、例えばスズ膜の
質量膜厚(単位面積当りの膜質量をその膜の比重
で割つたものをいう。)については20Å以下が好
ましい。 以下、本発明を実施例をもつて詳細に説明す
る。 第2図は、透光性絶縁基板を用いた太陽電池に
おける本発明の一実施例を示し、第1図と同一構
成部分は同一記号を付している(以下同様)。 10はソーダライムガラスから成形されたガラ
ス基板であり、このガラス基板10上にスズを不
純物として含んだ酸化インジウム(以下「ITO」
という。)膜20(膜厚:700Å、シート抵抗:約
30Ω/□)を真空蒸着法により成膜し、このITO
膜20上にスズ膜9(質量膜厚:約10Å)を真空
蒸着により成膜する。このスズ膜9は非常に薄い
ものであるから、必ずしも連続膜にならず、島状
構造のような不連続膜になつていると予想され
る。このスズ膜9による光の吸収は、波長550n
mの光に対して約4%であつた。次に、このスズ
膜9上にp型a−SiC:H層30(膜厚:100
Å)、i型a−Si:H層40(膜厚:5000Å)及
びn型a−Si:H層50からなるa−Si半導体層
60をグロー放電分解法により成膜し、このa−
Si半導体層60上に金属電極としてアルミニウム
電極70を真空蒸着法により付着させて、太陽電
池を製作した。なお、本発明の効果を評価するた
めに、比較例として、第2図に示した実施例中、
ITO膜20上にスズ膜9を成膜せずに、直接a−
Si半導体層60を積層し、次いでアルミニウム電
極70を付着した太陽電池を製作した。 このような実施例及び比較例による太陽電池の
電流電圧特性は、AM1(エアマス1)に調整され
た光を照射したときの電流電圧特性を測定した結
果、それぞれ第3図の曲線11及び12で示され
る。また下表に実施例及び比較例による太陽電池
の諸特性を示す。なお、同表の数値は比較例の
個々の特性を基準にして規格化している。
The present invention relates to a solar cell using hydrogenated amorphous silicon (hereinafter referred to as "a-Si:H") or hydrogenated amorphous silicon carbide (hereinafter referred to as "a-SiC:H"). Conventionally, as a typical example of this solar cell, as shown in FIG. 1, on a transparent insulating substrate 1 such as glass,
A transparent conductive film 2 of indium oxide or the like is formed by a vacuum evaporation method, a sputtering method, or a CVD method, and a p-type a-Si:H layer 3 and an i-type a-Si:H layer 3 are formed by a glow discharge decomposition method.
An amorphous silicon semiconductor layer (hereinafter referred to as "a-Si semiconductor layer") 6 consisting of a layer 4 and an n-type a-Si:H layer 5 and a metal electrode 7 made of aluminum or the like are laminated by a vacuum evaporation method or the like. There is. The light 8 enters from the transparent insulating substrate 1 side, is mainly absorbed within the i-type a-Si:H layer 4, and generates an electromotive force between the transparent conductive film 2 and the metal electrode 7. . Although much research has been conducted on the conversion efficiency of such solar cells and the conditions for forming the a-Si semiconductor layer 6, the interface between the transparent conductive film 2 and the a-Si:H layer 3 has not yet been elucidated. Currently, there is a limit to the improvement of conversion efficiency, and there is also a drawback of large variations in efficiency. An object of the present invention is to eliminate the above-mentioned drawbacks, improve conversion efficiency, and provide a solar cell with less variation. In order to achieve such an object, the present invention provides a film in which a film mainly composed of indium oxide and p-type, i-type, and n-type layers are formed on a transparent insulating substrate.
Si:H, or at least one of the p-type and n-type layers is a-SiC:H, and the i-type layer is a-
In a solar cell sequentially provided with a-Si semiconductor layers of Si:H, a film mainly composed of tin is interposed between the film mainly composed of indium oxide and the a-Si:H or the a-SiC:H. A film that is mainly composed of tin and does not contain oxygen, or a film that is mainly composed of a lower oxide of tin expressed as SnOx (0<x<1), which is formed using a metal material as a component. This solar cell is characterized by having a membrane interposed therein. Here, the "transparent insulating substrate" is a substrate made of a transparent insulating material such as glass or film. Examples of the "film containing indium oxide as a main component" include films in which indium oxide contains tin oxide, tungsten oxide, molybdenum oxide, etc., in addition to indium oxide films. Examples of the "metal material containing tin as a main component" include metal materials containing antimony platinum or the like in addition to tin. The "lower tin oxide" is represented by 0<x<1 for SnOx, and is formed into a film by a vacuum evaporation method, a sputtering method, or the like. "Films mainly composed of tin or lower oxides of tin" have low light absorption.
The film thickness is preferably 10% or less, and for example, the mass film thickness (meaning the film mass per unit area divided by the specific gravity of the film) of the tin film is preferably 20 Å or less. Hereinafter, the present invention will be explained in detail using examples. FIG. 2 shows an embodiment of the present invention in a solar cell using a transparent insulating substrate, and the same components as in FIG. 1 are given the same symbols (the same applies hereinafter). 10 is a glass substrate molded from soda lime glass, and on this glass substrate 10 is formed indium oxide (hereinafter referred to as "ITO") containing tin as an impurity.
That's what it means. ) Film 20 (thickness: 700Å, sheet resistance: approx.
30Ω/□) was formed by vacuum evaporation method, and this ITO
A tin film 9 (mass film thickness: about 10 Å) is formed on the film 20 by vacuum evaporation. Since this tin film 9 is very thin, it is not necessarily a continuous film, but is expected to be a discontinuous film such as an island structure. The absorption of light by this tin film 9 is at a wavelength of 550n.
It was about 4% of the light of m. Next, on this tin film 9, a p-type a-SiC:H layer 30 (thickness: 100
Å), an a-Si semiconductor layer 60 consisting of an i-type a-Si:H layer 40 (film thickness: 5000 Å) and an n-type a-Si:H layer 50 is formed by glow discharge decomposition method, and this a-
A solar cell was manufactured by depositing an aluminum electrode 70 as a metal electrode on the Si semiconductor layer 60 by vacuum evaporation. In addition, in order to evaluate the effect of the present invention, as a comparative example, among the examples shown in FIG.
Without forming the tin film 9 on the ITO film 20, directly a-
A solar cell was manufactured in which a Si semiconductor layer 60 was laminated and then an aluminum electrode 70 was attached. The current-voltage characteristics of the solar cells according to the examples and comparative examples are as shown by curves 11 and 12 in Figure 3, respectively, as a result of measuring the current-voltage characteristics when irradiated with light adjusted to AM1 (air mass 1). shown. Further, the table below shows various characteristics of solar cells according to Examples and Comparative Examples. Note that the numerical values in the same table are standardized based on the individual characteristics of the comparative examples.

【表】 この表によれば、実施例の太陽電池は、比較例
のものと対比して変換効率を10%も向上させてい
ることがわかる。また、この変換効率のバラツキ
については、実施例の太陽電池が比較例のものよ
りも少ないことが確認された。なお、実施例の太
陽電池は短絡電流が減少している。これはスズ膜
9の内部での光吸収及びその表面での光反射によ
り有効に利用される光量が減少したためと予想さ
れる。しかし、この短絡電流の減少分よりもフイ
ルフアクタの増加分の方が大きいために、結果と
しては前述したとおり変換効率を増加させてい
る。フイルフアクタが増加した理由は現時点では
定かでないが、スズ膜9をITO膜20とp型a−
SiC:H層30との間に介在させたことにより、
このスズ膜9が、グロー放電分解法によつてp型
a−SiC:H層30を積層するときに発生する還
元性プラズマからITO膜20を保護し、抵抗性接
触(オーミツクコンタクト)を改善したためであ
ると予想される。 本発明は以上の実施例に限定されず、a−Si半
導体層60についてn型a−Si:H層50をn型
a−SiC:H層に変更し、p型a−SiC:H層3
0とn型a−Si:H層50(又はn型a−SiC:
H層)を置換してもよい。 なお、a−SiC:H層はa−Si:H層と対比し
てバンドギヤツプを大きくすることができ、短絡
電流及び開放端電圧を上昇させる効果があり、変
換効率が高くなる利点をもつている。 また、スズ膜9の成膜法としては、真空蒸着法
の他に、スパツタリング法でもよく、そのスズ膜
9としては金属スズのみならず、スズを主成分と
し、アンチモン、白金などを含有させた金属材料
の低級酸化物であつてもよい。このようなスズ膜
9又はスズの低級酸化物を介在しても、成膜後の
熱処理などの酸化工程を必要とせずに、前述した
ように太陽電池の特性を改善することができる。 以上のとおり、本発明によれば、従来以上に太
陽電池の変換効率を向上させ、かつそのバラツキ
を少なくさせたことから、その実用的価値は多大
である。
[Table] According to this table, it can be seen that the solar cells of the examples have improved conversion efficiency by as much as 10% compared to those of the comparative examples. Furthermore, it was confirmed that the variation in conversion efficiency was smaller in the solar cells of the examples than in the comparative examples. In addition, the short circuit current of the solar cell of the example is reduced. This is expected to be due to a decrease in the amount of light that can be effectively utilized due to light absorption inside the tin film 9 and light reflection on its surface. However, since the increase in the foil factor is greater than the decrease in short circuit current, the conversion efficiency is increased as described above. Although the reason for the increase in film factor is not clear at present, the tin film 9 is replaced with the ITO film 20 and the p-type a-
By interposing it between the SiC:H layer 30,
This tin film 9 protects the ITO film 20 from reducing plasma generated when p-type a-SiC:H layer 30 is laminated by glow discharge decomposition method, and improves resistive contact (ohmic contact). This is expected to be because of this. The present invention is not limited to the above embodiments, but the n-type a-Si:H layer 50 of the a-Si semiconductor layer 60 is changed to an n-type a-SiC:H layer, and the p-type a-SiC:H layer 3
0 and n-type a-Si:H layer 50 (or n-type a-SiC:
H layer) may be replaced. Note that the a-SiC:H layer can have a larger band gap than the a-Si:H layer, has the effect of increasing short-circuit current and open circuit voltage, and has the advantage of increasing conversion efficiency. . In addition, the tin film 9 may be formed by a sputtering method in addition to the vacuum evaporation method, and the tin film 9 may be made not only of metal tin but also of tin as a main component and containing antimony, platinum, etc. It may also be a lower oxide of a metal material. Even if such a tin film 9 or a lower oxide of tin is interposed, the characteristics of the solar cell can be improved as described above without requiring an oxidation process such as heat treatment after film formation. As described above, according to the present invention, the conversion efficiency of solar cells is improved more than ever, and the variation thereof is reduced, so that the present invention has great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽電池を示す断面図、第2図
は本発明による実施例を示す断面図、第3図は前
実施例による太陽電池の電流電圧特性図である。 10……ガラス基板、20……ITO膜、30…
…p型a−SiC:H層、40……i型a−Si:H
層、50……n型a−Si:H層、60……a−Si
半導体層、70……アルミニウム電極、8……
光、9……スズ膜。
FIG. 1 is a sectional view showing a conventional solar cell, FIG. 2 is a sectional view showing an embodiment according to the present invention, and FIG. 3 is a current-voltage characteristic diagram of the solar cell according to the previous embodiment. 10...Glass substrate, 20...ITO film, 30...
...p-type a-SiC:H layer, 40...i-type a-Si:H
Layer, 50... n-type a-Si:H layer, 60... a-Si
Semiconductor layer, 70... Aluminum electrode, 8...
Light, 9...Tin film.

Claims (1)

【特許請求の範囲】[Claims] 1 透光性絶縁基板上に、酸化インジウムを主成
分とした膜と、p型、i型及びn型の各層がa−
Si:Hであり又はp型及びn型のうち少なくとも
一方の層がa−SiC:Hであつてi型の層がa−
Si:Hであるa−Si半導体層とを順次具備した太
陽電池において、前記酸化インジウムを主成分と
した膜と前記a−Si:H又はa−SiC:Hとの間
に、スズを主成分とした金属材料を用いて成膜さ
れた、スズを主成分とし酸素を含有しない膜又は
SnOx(ただし、0<x<1である。)で表わされ
るスズの低級酸化物を主成分とした膜を介在して
いることを特徴とする太陽電池。
1 A film mainly composed of indium oxide and p-type, i-type, and n-type layers are placed on a transparent insulating substrate.
Si:H, or at least one of the p-type and n-type layers is a-SiC:H, and the i-type layer is a-
In a solar cell that sequentially includes a-Si semiconductor layers that are Si:H, a layer that contains tin as a main component is disposed between the film that mainly contains indium oxide and the a-Si:H or a-SiC:H. A film formed using a metal material containing tin as a main component and containing no oxygen or
1. A solar cell comprising a film mainly composed of a lower oxide of tin represented by SnOx (0<x<1).
JP57228918A 1982-12-27 1982-12-27 Solar cell Granted JPS59119875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228918A JPS59119875A (en) 1982-12-27 1982-12-27 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228918A JPS59119875A (en) 1982-12-27 1982-12-27 Solar cell

Publications (2)

Publication Number Publication Date
JPS59119875A JPS59119875A (en) 1984-07-11
JPS6320026B2 true JPS6320026B2 (en) 1988-04-26

Family

ID=16883889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228918A Granted JPS59119875A (en) 1982-12-27 1982-12-27 Solar cell

Country Status (1)

Country Link
JP (1) JPS59119875A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2538300B2 (en) * 1988-02-10 1996-09-25 三洋電機株式会社 Photoelectric conversion device
JPH0272564U (en) * 1988-11-24 1990-06-01

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548978A (en) * 1978-10-04 1980-04-08 Asahi Chem Ind Co Ltd Photo-electromotive element
JPS55127083A (en) * 1979-03-26 1980-10-01 Matsushita Electric Ind Co Ltd Semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548978A (en) * 1978-10-04 1980-04-08 Asahi Chem Ind Co Ltd Photo-electromotive element
JPS55127083A (en) * 1979-03-26 1980-10-01 Matsushita Electric Ind Co Ltd Semiconductor element

Also Published As

Publication number Publication date
JPS59119875A (en) 1984-07-11

Similar Documents

Publication Publication Date Title
RU2435250C2 (en) Front contact with high-work function tco for use in photovoltaic device and method of making said contact
EP2092571B1 (en) Front electrode with thin metal film layer and high work-function buffer layer for use in photovoltaic device and method of making same
US5091764A (en) Semiconductor device having a transparent electrode and amorphous semiconductor layers
US8936842B2 (en) Low-E coating having zinc aluminum oxide based layer doped with yttrium
US4163677A (en) Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier
WO2007100488A2 (en) Indium zinc oxide based front contact for photovoltaic device and method of making same
EP2132781A2 (en) Front electrode for use in photovoltaic device and method of making same
WO2012105148A1 (en) Photoelectric conversion element
JP3619681B2 (en) Solar cell and manufacturing method thereof
WO2008063305A2 (en) Front electrode for use in photovoltaic device and method of making same
JP3025392B2 (en) Thin film solar cell and manufacturing method
JPH0658971B2 (en) Photovoltaic device manufacturing method
JPS6320026B2 (en)
JPH10190028A (en) High refractive index transparent conductive film and solar cell
JP4280490B2 (en) Integrated thin film photoelectric conversion device and manufacturing method thereof
JPS6323672B2 (en)
JPH0583199B2 (en)
JPS6152992B2 (en)
JPS6143870B2 (en)
JP2001274430A (en) Thin film photoelectric converter
JPH10294478A (en) Photoelectric conversion element
JPH0312973A (en) Amorphous thin film solar cell
JPS63194372A (en) Amorphous photoelectric conversion device
JPH05145095A (en) Photovoltaic element
JPH0586677B2 (en)