JPS631998B2 - - Google Patents

Info

Publication number
JPS631998B2
JPS631998B2 JP56025427A JP2542781A JPS631998B2 JP S631998 B2 JPS631998 B2 JP S631998B2 JP 56025427 A JP56025427 A JP 56025427A JP 2542781 A JP2542781 A JP 2542781A JP S631998 B2 JPS631998 B2 JP S631998B2
Authority
JP
Japan
Prior art keywords
weight
parts
fire
liquid
foamed silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56025427A
Other languages
Japanese (ja)
Other versions
JPS57141476A (en
Inventor
Tadashi Ookami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARADEN KOJI KK
Original Assignee
HARADEN KOJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARADEN KOJI KK filed Critical HARADEN KOJI KK
Priority to JP56025427A priority Critical patent/JPS57141476A/en
Publication of JPS57141476A publication Critical patent/JPS57141476A/en
Publication of JPS631998B2 publication Critical patent/JPS631998B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Securing Of Glass Panes Or The Like (AREA)
  • Special Wing (AREA)
  • Sealing Material Composition (AREA)
  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高度な耐火性能をもつ、シリコーン系
の耐火気密シール材料に関する。 今日、建築物の高層化および防火に対する規制
の強化に伴い、建築物開口部の耐火気密シールは
必要不可欠となりつつある。従来、建築物開口部
シール材としては無機質繊維、無機パテ材が多く
用いられてきたが、これらのシール材は耐火性能
および気密性に難点があり、施工面でも劣つてい
た。すなわち、これらのシール材では、火災時に
材料の亀裂、収縮等による隙間を生じ、隣室に延
焼し、人命の危険および火災による損失の増大等
の問題があつた。 上記の無機シール材の欠点を改良するものとし
て、難燃性ウレタンフオームが使われていたが、
その耐火性はまだ十分でなく、ごく最近になつ
て、発泡シリコーンからなるシール材が提供され
ている。このものは2液混合のRTV(室温加硫)
シリコーンであり、ポンプ、ミキシングガン、ホ
ースより構成される簡単な注入装置を用いて開口
部に原料の2液を注入すると、この開口部に充填
された液状物質は、20〜30秒で発泡を開始して膨
張し開口部の各部に密着し、発泡は5〜6分で完
了する。この発泡シリコーンは火災にさらされる
と表面にSiO2ができ、火災が内部に侵入するの
阻止する効果がある。また注入時には液状材料で
あるため、施工部の細部まで充填され、その膨張
と相まつて高度の気密性を保持させる。したがつ
て該発泡シリコーンは耐火気密シール材としてす
ぐれているが、火災時、最も苛酷な条件となるケ
ーブル貫通孔等に使用した場合、耐火性能がまだ
十分であるとはいえなかつた。 本発明はこの種の発泡シリコーンシール材に、
より高度の耐火性能を賦与することを目的として
開発されたものであり、通常の発泡シリコーン原
料を基材としてこれに対する効果的な難燃化添加
物を発見して本発明に到達したものである。すな
わち、本発明の上記の目的は、触媒、充填材など
通常の添加物を適宜に含有する慣用の発泡シリコ
ーン原料の液状体100重量部に、20〜50重量%の
OH基またはH2Oを保有し60〜500℃の範囲で脱
水吸熱反応を起こす無機水和物10〜40重量部、リ
ン酸エステル10〜40重量部、および無機質繊維
0.5〜3重量部を添加してなる耐火気密シール材
によつて効果的に達成することができる。 上記耐火気密シール材組成物において用いられ
る発泡シリコーンとしては、一般にはRTV(常温
加硫型)シリコーン発泡体が代表的であり、これ
は下式に示すように水素基をもつたシロキサンと
シラノール基を有するシロキサンとを、酸、アル
カリ、有機金属化合物、白金系などの触媒の存在
下、常温で脱水素縮合することにより常温加熱硬
化し、この反応により発生する水素ガスで発泡を
行なわせるもので、例えば特公昭52−42826号公
報等に種々の具体化例が記載されている。 SiH+HO−Si→−Si−O−Si−+H2 発泡シリコーンを製造するに当つては、Si−H
含有シロキサンと触媒を混合したA液と、Si−
OH含有シロキサンからなるB液を混合したり、
その逆にSi−OHシロキサンと触媒を混合したA
液を、Si−HからなるB液と混合してもよいし、
Si−OHシロキサンを2つに分割し、一方に触媒
を混合(A液)、他方にSi−Hシロキサンを混合
(B液)、この2液を使用前に混合したりする、2
液混合法が適用される。 更に発泡シリコーンの特性を高めるために、発
泡シリコーン原液には種々の充填材を添加する必
要があり、補強用のシリカ微粉末や、準補強用
の、焼成けいそう土シリカ等、径の大きなシリ
カ、石英粉末、酸化チタン、酸化亜鉛、またシリ
コーンレジン類等の充填剤分散促進剤、および有
機過酸化物等の加硫剤を上記A液、B液に加え
る。充填材の中では特に微粉末シリカが広く使用
され、その使用量は発泡液の50〜70重量%まで用
いられることもある。 これら充填材および触媒を含有したA液、B液
という形で発泡シリコーン材料は市販されてい
る。 本発明では上記の触媒、充填材を含有する発泡
液(A液、B液)100重量部に、20〜50重量%の
OH基またはH2Oを保有し60〜500℃の範囲で脱
水吸熱反応を起こす無機水和物10〜40重量部、リ
ン酸エステル10〜40重量部、無機質繊維0.5〜3
重量部を加えるものである。 本発明で用いる無機水和物としては水酸化アル
ミニウム〔Al(OH)3・10H2O〕、ホウ酸ナトリウ
ム〔Na2B4O7・10H2O〕、2水石こう〔CaSO4
2H2O〕、粉末ケイ酸ナトリウム〔Na2SiO3
5H2O〕、水酸化マグネシウム〔Mg(OH)2〕等が
ある。またリン酸エステルとしてはリン酸トリク
レシル〔(CH3C6H4O)3PO〕、リン酸トリブチル
〔(C4H9O)3PO〕、リン酸トリフエニル
〔(C6H5O)3PO〕等がある。無機質繊維としては
石綿、岩綿、ガラス繊維、セラミツクフアイバー
等がある。 本発明ではA、B各液に各々上記範囲内の適量
の無機水和物、リン酸エステルおよび無機質繊維
を添加し均一になるまで撹拌し、一般には両液を
1:1の重量比で注入、発泡させ成型物を得る。 このようにして成型された発泡シリコーンは火
災時のような高温にさらされた場合、無機水和物
はOH基またはH2Oを放出し熱エネルギーを吸収
し、またリン酸エステルは炭化生成物と結合して
保護膜を形成し、熱エネルギーや酸素の侵入を遮
断し、放出された水蒸気は気相における可燃性ガ
スを希釈する。これらの作用により発泡シリコー
ンの燃焼速度が抑制され、高度な耐火性能をもつ
耐火気密シール材となる。また基材として用いら
れている発泡シリコーンは本来耐放射線性にも優
れているので本発明の組成物は特に原子炉等にお
いて、耐放射線性に優れた耐火性シール材として
有用である。また無機質繊維は上記添加剤による
発泡シリコーンの強度低下を補うためのものであ
る。 例 1 BISCO社の発泡シリコーンの原液SF−20(商標
名)のA液、B液に、本発明の難燃剤を加える
か、または加えないものを試料a〜d(第1表)
として用い、注入発泡機にて、上記A液、B液を
1:1の重量比で型内に注入し、発泡させて得ら
れた、第1図に示すような試験体C、Dについ
て、JISA1304に準じ加熱2時間、耐火試験を行
つた結果を第2表に示す。なお第1表中、外割%
とあるのは発泡液(SF−20)に対する配合剤の
%であることを示すもので、以下、同様である。 試 料 難燃剤の配合及び厚さ
TECHNICAL FIELD The present invention relates to a silicone-based fire-resistant hermetic sealing material having a high degree of fire resistance. Today, as buildings become taller and regulations regarding fire prevention become more stringent, fireproof airtight seals for openings in buildings are becoming essential. Conventionally, inorganic fibers and inorganic putty materials have often been used as sealing materials for openings in buildings, but these sealing materials have drawbacks in fire resistance and airtightness, and are also inferior in terms of construction. That is, in the event of a fire, these sealing materials create gaps due to cracks, shrinkage, etc. of the material, causing the fire to spread to adjacent rooms, causing problems such as endangering human life and increasing losses due to the fire. Flame-retardant urethane foam has been used to improve the drawbacks of the above-mentioned inorganic sealants, but
Its fire resistance is still insufficient, and only recently sealing materials made of foamed silicone have been provided. This is a two-component mixture RTV (room temperature vulcanization)
When the two raw materials are injected into the opening using a simple injection device consisting of a pump, mixing gun, and hose, the liquid substance filled in the opening will foam in 20 to 30 seconds. The foam starts to expand and adhere to each part of the opening, and foaming is completed in 5 to 6 minutes. When this silicone foam is exposed to fire, SiO 2 forms on its surface, which has the effect of preventing fire from penetrating inside. Furthermore, since it is a liquid material when injected, it fills the construction area to the smallest detail and, together with its expansion, maintains a high degree of airtightness. Therefore, although the silicone foam is excellent as a fire-resistant airtight sealing material, it cannot be said to have sufficient fire-resistant performance when used in cable through-holes, etc., which are subject to the most severe conditions in the event of a fire. The present invention is directed to this type of foamed silicone sealing material.
It was developed with the aim of imparting a higher degree of fire resistance, and the present invention was achieved by discovering effective flame retardant additives for ordinary foamed silicone raw materials as a base material. . That is, the above object of the present invention is to add 20 to 50% by weight to 100 parts by weight of a conventional foamed silicone raw material liquid containing appropriate usual additives such as catalysts and fillers.
10 to 40 parts by weight of an inorganic hydrate that has an OH group or H 2 O and undergoes a dehydration endothermic reaction in the range of 60 to 500°C, 10 to 40 parts by weight of a phosphoric acid ester, and inorganic fibers.
This can be effectively achieved by using a fire-resistant airtight sealing material containing 0.5 to 3 parts by weight. The foamed silicone used in the above-mentioned fireproof airtight sealing material composition is typically RTV (room temperature vulcanization type) silicone foam, which consists of a siloxane with a hydrogen group and a silanol group as shown in the formula below. This product is cured by heating at room temperature by dehydrogenating and condensing siloxane having the following properties at room temperature in the presence of an acid, an alkali, an organometallic compound, a platinum-based catalyst, etc., and foaming is performed with the hydrogen gas generated by this reaction. Various embodiments are described in, for example, Japanese Patent Publication No. 52-42826. SiH + HO-Si → -Si-O-Si- + H 2 In producing foamed silicone, Si-H
Liquid A, which is a mixture of siloxane containing catalyst and Si-
Mixing liquid B consisting of OH-containing siloxane,
On the other hand, A mixed with Si-OH siloxane and catalyst
The liquid may be mixed with liquid B consisting of Si-H, or
Divide the Si-OH siloxane into two parts, mix the catalyst in one part (liquid A), mix the Si-H siloxane in the other part (liquid B), and mix these two parts before use.
Liquid mixing method is applied. Furthermore, in order to improve the properties of foamed silicone, it is necessary to add various fillers to the foamed silicone stock solution. , quartz powder, titanium oxide, zinc oxide, filler dispersion promoters such as silicone resins, and vulcanizing agents such as organic peroxides are added to the above A and B solutions. Among the fillers, finely powdered silica is particularly widely used, and the amount used may range from 50 to 70% by weight of the foaming liquid. Foamed silicone materials are commercially available in the form of liquids A and B containing these fillers and catalysts. In the present invention, 20 to 50% by weight is added to 100 parts by weight of the foaming liquid (liquid A, liquid B) containing the above catalyst and filler.
10 to 40 parts by weight of an inorganic hydrate that has an OH group or H 2 O and causes a dehydration endothermic reaction in the range of 60 to 500°C, 10 to 40 parts by weight of a phosphoric acid ester, and 0.5 to 3 parts by weight of an inorganic fiber.
Add parts by weight. Inorganic hydrates used in the present invention include aluminum hydroxide [Al(OH) 3.10H 2 O], sodium borate [Na 2 B 4 O 7.10H 2 O], and gypsum dihydrate [CaSO 4 .
2H 2 O], powdered sodium silicate [Na 2 SiO 3 .
5H 2 O], magnesium hydroxide [Mg(OH) 2 ], etc. Phosphate esters include tricresyl phosphate [(CH 3 C 6 H 4 O) 3 PO], tributyl phosphate [(C 4 H 9 O) 3 PO], and triphenyl phosphate [(C 6 H 5 O) 3 PO] etc. Examples of inorganic fibers include asbestos, rock wool, glass fiber, and ceramic fiber. In the present invention, appropriate amounts of inorganic hydrate, phosphate ester, and inorganic fiber within the above range are added to each of liquids A and B, and stirred until uniform, and generally both liquids are poured at a weight ratio of 1:1. , to obtain a molded product by foaming. When the foamed silicone molded in this way is exposed to high temperatures such as during a fire, the inorganic hydrate releases OH groups or H 2 O and absorbs thermal energy, and the phosphoric acid ester releases carbonization products. It forms a protective film that blocks the ingress of thermal energy and oxygen, and the released water vapor dilutes combustible gases in the gas phase. These effects suppress the combustion rate of silicone foam, resulting in a fire-resistant airtight sealing material with high fire-resistant performance. Furthermore, since the foamed silicone used as the base material inherently has excellent radiation resistance, the composition of the present invention is useful as a fire-resistant sealing material with excellent radiation resistance, particularly in nuclear reactors and the like. Further, the inorganic fiber is used to compensate for the decrease in strength of the foamed silicone caused by the above-mentioned additives. Example 1 Samples a to d (Table 1) were prepared by adding or not adding the flame retardant of the present invention to liquids A and B of BISCO's silicone foam stock solution SF-20 (trade name).
Regarding test specimens C and D as shown in Fig. 1, which were obtained by injecting the above A and B liquids into a mold at a weight ratio of 1:1 using an injection foaming machine and foaming them, Table 2 shows the results of a 2-hour heating and fire resistance test according to JISA1304. In addition, in Table 1, the external percentage
"" indicates the percentage of the compounding agent relative to the foaming liquid (SF-20), and the same applies hereinafter. Sample Flame retardant composition and thickness

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第2表中試験体Dの試料cおよびdが本発明の
ものであるが、これらの結果から本発明の試料が
耐火性に優れていることがわかる。(残炎時間に
若干のバラツキがみられるが)。 例 2 SF−20のA、B両液を各300g紙コツプに別々
に採り、難燃剤と石綿を各々に所定の半量ずつ入
れ充分撹拌分散させる。これを一つの紙コツプに
移し4cmの羽根のついた電気ドリルで20秒間撹拌
混合し、20×20cm、深さ1.5cmの型枠に流し込み
発泡させる。発泡体は1日間放置した後、長さ
100mm、巾30mm、厚さ1.5mmの短冊状に切り出し、
上、下に治具を貼り付け引張り試験体とする。 インストロン万能試験機を用いスパン10cm、引
張り速度2cm/分で、強度を試験した結果を第3
表に示す。
[Table] Samples c and d of test specimen D in Table 2 are those of the present invention, and these results show that the samples of the present invention are excellent in fire resistance. (Although there is some variation in the afterflame time). Example 2 Separately take both SF-20 solutions A and B into 300g paper cups, add half of the flame retardant and asbestos to each, and stir thoroughly to disperse. Transfer this to a paper pot, stir and mix for 20 seconds using an electric drill with a 4 cm blade, and pour into a mold of 20 x 20 cm and 1.5 cm deep to foam. After the foam is left for one day, the length
Cut into strips of 100 mm, width 30 mm, and thickness 1.5 mm.
Attach jigs to the top and bottom to make a tensile test specimen. The strength was tested using an Instron universal testing machine at a span of 10 cm and a tensile speed of 2 cm/min.
Shown in the table.

【表】 第3表から、発泡シリコーン原液に水酸化アル
ミニウム、リン酸トリクレシルを加えると、発泡
シリコーン成型体の強度が下がるが、石綿の添加
により補強され、強度の低下を防ぐことができる
ことが判る。 石綿M−6と4TはK−3である。 例 3 信越化学社の発泡シリコーンの原液、KE−
51RTV(商標名)のA液、B液、及びそれに本発
明の難燃剤および補強材を加えたものを試料とし
て用い、第2図に示すようなケイカライトH製の
型M内にA:B=1:1重量比の割合で注入し、
得られた試験体C、Dについて、小型水平加熱炉
により2時間、加熱試験を行つた。図中〜は
測温点である。 添加剤の配合量は水酸化アルミニウム38%、リ
ン酸トリクレシル30%、石綿(6クラス)1%で
ある。
[Table] From Table 3, it can be seen that when aluminum hydroxide and tricresyl phosphate are added to the foamed silicone stock solution, the strength of the foamed silicone molded product decreases, but the addition of asbestos strengthens it and prevents the decrease in strength. . Asbestos M-6 and 4T are K-3. Example 3 Shin-Etsu Chemical's foamed silicone stock solution, KE-
Using 51RTV (trade name) liquids A and B and the flame retardant and reinforcing material of the present invention as samples, A:B was placed in a mold M made of Keicalite H as shown in Figure 2. = Injected at a weight ratio of 1:1,
A heating test was conducted on the obtained specimens C and D for 2 hours in a small horizontal heating furnace. In the figure, ~ are temperature measurement points. The additive content is 38% aluminum hydroxide, 30% tricresyl phosphate, and 1% asbestos (class 6).

【表】 第4表から本発明の難燃剤添加品が耐火性にす
ぐれていることが判る。 例 4 本発明の難燃剤の配合を下記第5表および第6
表に示すように変えたほかは(No.1〜No.3)、例
1および例2と同様の耐熱性試験および物性試験
を行ない夫々第5表および第6表に示される結果
を得た。
[Table] From Table 4, it can be seen that the flame retardant additive of the present invention has excellent fire resistance. Example 4 The composition of the flame retardant of the present invention is shown in Tables 5 and 6 below.
Except for the changes shown in the table (No. 1 to No. 3), the same heat resistance test and physical property test as in Example 1 and Example 2 were conducted, and the results shown in Table 5 and Table 6 were obtained, respectively. .

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

添付図面の第1図は本発明に係る試験体と比較
用の試験体の耐火試験におけるジメンジヨンおよ
び測温位置を示す概念図であり、第2図は本発明
の他の実施態様に係る試験体の耐火試験における
ジメンジヨンおよび測温位置を示す概念図であ
り、第3図は添加物のない試験体についての耐火
試験におけるジメンジヨンおよび測温位置を示す
概念図である。
FIG. 1 of the accompanying drawings is a conceptual diagram showing the dimensions and temperature measurement positions in the fire resistance test of a test specimen according to the present invention and a comparative test specimen, and FIG. 2 is a conceptual diagram showing the test specimen according to another embodiment of the present invention. FIG. 3 is a conceptual diagram showing the dimension and temperature measurement position in the fire resistance test of FIG. 3, and FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 発泡シリコーン原料液状体100重量部に、20
〜50重量%のOH基またはH2Oを保有し60〜500
℃の範囲で脱水吸熱反応を起こす無機水和物10〜
40重量部、リン酸エステル10〜40重量部、無機質
繊維0.5〜3重量部を加えたものからなる、耐火
気密シール材。
1 Add 20 parts by weight of foamed silicone raw material liquid to 100 parts by weight.
~50% by weight of OH groups or H2O 60~500
Inorganic hydrate that undergoes a dehydration endothermic reaction in the range of 10 to
40 parts by weight, 10 to 40 parts by weight of phosphoric acid ester, and 0.5 to 3 parts by weight of inorganic fiber.
JP56025427A 1981-02-25 1981-02-25 Refractory airtight sealing material Granted JPS57141476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56025427A JPS57141476A (en) 1981-02-25 1981-02-25 Refractory airtight sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56025427A JPS57141476A (en) 1981-02-25 1981-02-25 Refractory airtight sealing material

Publications (2)

Publication Number Publication Date
JPS57141476A JPS57141476A (en) 1982-09-01
JPS631998B2 true JPS631998B2 (en) 1988-01-14

Family

ID=12165660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56025427A Granted JPS57141476A (en) 1981-02-25 1981-02-25 Refractory airtight sealing material

Country Status (1)

Country Link
JP (1) JPS57141476A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2673559B2 (en) * 1988-09-16 1997-11-05 藤倉ゴム工業株式会社 Flame-retardant putty composition
DE4408660A1 (en) * 1993-10-26 1995-04-27 Bayer Ag Mixtures with self-lubricating properties
JP6543648B2 (en) * 2017-03-17 2019-07-10 株式会社二幸技研 Resin molding equipment
JP7202736B1 (en) * 2021-12-28 2023-01-12 内山工業株式会社 battery

Also Published As

Publication number Publication date
JPS57141476A (en) 1982-09-01

Similar Documents

Publication Publication Date Title
US4686244A (en) Intumescent foamable compositions
US4433069A (en) Method for preparing flame resistant polysiloxane foams and foams prepared thereby
US5246974A (en) Bonding, sealing and adhesive composition based on silicone
US4719249A (en) Intumescent foamable compositions
US4695597A (en) Organopolysiloxane composition for fire-resistant foamed silicone rubber
JPS631998B2 (en)
JP4230725B2 (en) Insulating refractory material composition and insulating refractory material using the same
EP0212827A2 (en) Silicone water base fire barriers
US4259455A (en) Fire retardant siloxane foams and method for preparation
KR100530670B1 (en) Refractory Paint Film Composition
RU2115676C1 (en) Organosiloxane foam composition
JPS6334919B2 (en)
RU2567955C2 (en) Composition, based on liquid low-molecular siloxane caoutchouc for fireproof material
JP2011063783A (en) Intumescent resin composition for fire prevention
JPH108058A (en) Refractory sealing material for preventing fire spreading
JP3109988B2 (en) Heat-resistant foamable composition and heat-resistant foamable sheet
JPH0331379A (en) Fire resistant sealant composition
JPS5935938A (en) Fire-resisting heat-insulating sheet
JPS62267394A (en) Fireproofing putty composition
KR800000949B1 (en) Flame retardative resin foam
JPH05117658A (en) Granular refractory filler
JPS56141331A (en) Preparation of fire-resistant silicone foam
JPS62215689A (en) Improvement in fireproof coking compound
JPS63274317A (en) Penetrating section structure of wire and cable
JPS6268737A (en) Flame-retardant heat-insulating material and manufacture thereof