JPS63199274A - Aqueous coating composition for heat exchanger and heat exchanger coated with said composition - Google Patents

Aqueous coating composition for heat exchanger and heat exchanger coated with said composition

Info

Publication number
JPS63199274A
JPS63199274A JP22756386A JP22756386A JPS63199274A JP S63199274 A JPS63199274 A JP S63199274A JP 22756386 A JP22756386 A JP 22756386A JP 22756386 A JP22756386 A JP 22756386A JP S63199274 A JPS63199274 A JP S63199274A
Authority
JP
Japan
Prior art keywords
heat exchanger
film
frost
water
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22756386A
Other languages
Japanese (ja)
Inventor
Jun Nozue
野末 純
Masahiko Muto
無徒 雅彦
Nobuo Furuno
伸夫 古野
Masahiro Itai
板井 柾弘
Satoshi Tanno
聡 丹野
Hachiro Koma
小間 八郎
Hiroaki Suga
宏明 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Nippon Paint Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP22756386A priority Critical patent/JPS63199274A/en
Publication of JPS63199274A publication Critical patent/JPS63199274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide the titled composition outstanding in water wettability, and performance persistency when applied on the aluminum fin of heat exchangers, effective in suppressing frost deposition on the heat exchangers, comprising each specific cation exchange resin, film-forming resin emulsion and surfactant in specified proportion. CONSTITUTION:The objective composition comprising (A) 5-40wt.% of a cation exchange resin in which >=30(pref. >=50)% of the ion exchange group has been ionically exchanged by lithium (pref., with the total exchange capacity >=1.5mg eq./g dry resin and a particle size 0.5-10mu), (B) 94-40wt.% of a film-forming resin emulsion free from cationic surfactant, and (C) 1-20wt.% of either anionic or nonionic surfactant (pref., nonionic one; e.g., polyethylene glycol monolaurate), and furthermore, pref. (D) a non-neutral type water-soluble resin. All of the amounts mentioned above are on a solid basis.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は熱交換器用の水性塗料組成物にかかりさらに詳
しくは熱交換器の伝熱面に適用され、長期間優れた水濡
れ性と着霜抑制効果を示す塗膜を与えうる水性塗料組成
物ならびに該組成物で被覆された伝熱面を有する熱交換
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a water-based coating composition for heat exchangers, and more specifically, it is applied to the heat transfer surface of a heat exchanger, and has excellent water wettability and frost formation control for a long period of time. The present invention relates to an aqueous coating composition capable of providing an effective coating and to a heat exchanger having a heat transfer surface coated with the composition.

従来技術 近年、空気調和機における空気熱源ヒートポンプ式空気
調和機(以下単にヒートポンプと呼ぶ)の占める割合は
急増してきており、家庭用ルームエアコン、業務用エア
コンなどについては半数以上を占めている。また、これ
らヒートポンプに用いられる熱交換器の大部分は、アル
ミフィンとこれらに直交する冷媒管から構成されるフィ
ンチューブ型熱交換器である。
BACKGROUND ART In recent years, the proportion of air-source heat pump type air conditioners (hereinafter simply referred to as heat pumps) in air conditioners has been rapidly increasing, and they now account for more than half of household room air conditioners, commercial air conditioners, and the like. Furthermore, most of the heat exchangers used in these heat pumps are fin-tube heat exchangers that are composed of aluminum fins and refrigerant pipes orthogonal to the aluminum fins.

一方、冷房時には室内側熱交換器のフィン表面に水分の
凝縮が起こるが、フィン表面が撥水性であると、隣合う
フィン表面間に水滴として付着したり、あるいはフィン
表面間をブリッジしてしまう。このため熱交換器の通風
抵抗を増大させ、熱交換器通風量の低下を招き、ひいて
は冷房能力の低下の原因となる。
On the other hand, during cooling, moisture condenses on the fin surfaces of the indoor heat exchanger, but if the fin surfaces are water-repellent, water droplets may adhere between adjacent fin surfaces or form bridges between the fin surfaces. . This increases the ventilation resistance of the heat exchanger, leading to a decrease in the amount of ventilation in the heat exchanger, which in turn causes a decrease in cooling capacity.

一方、暖房時には室外側熱交換器において前述した冷房
時に室内側交換器に起こるのと同様な現象が起こる。ま
た、暖房時においては外気温度によっでは、室外側熱交
換器に着霜が起こる。熱交換器に着霜した場合は通風抵
抗が増大し、通過風量の低下を招き、暖房能力低下の原
因となることは水分の凝縮が起こる場合と同じであるが
、着霜の場合、熱交換器はどんどん目詰まっていくため
通過風量の低下は一定レベルで留まることがなく時間と
共に次第に低下していく。このため、一般的にはある判
定条件により、室外側熱交換器を除霜している。この除
霜方法としては、ホットガスデフロストが一最的である
が、この間は暖房運転は一時停止する。このため室内温
度が低下し、不快感を与える結果となる。
On the other hand, during heating, a phenomenon similar to that which occurs in the indoor exchanger during cooling occurs in the outdoor heat exchanger as described above. Furthermore, during heating, depending on the outside air temperature, frost may form on the outdoor heat exchanger. When frost forms on a heat exchanger, ventilation resistance increases, leading to a decrease in the amount of air passing through the heat exchanger, which causes a decrease in heating capacity, just as moisture condensation occurs. As the vessel becomes more and more clogged, the decrease in the passing air volume does not stay at a certain level, but gradually decreases over time. For this reason, the outdoor heat exchanger is generally defrosted according to certain determination conditions. Hot gas defrost is the best defrosting method, but heating operation is temporarily suspended during this time. This causes the indoor temperature to drop, resulting in discomfort.

また、除霜時フィン表面が撥水面であると、霜が融解し
た水分は隣り合うフィン間で水滴となったり、ブリッジ
した状態で熱交換器に残ってしまう。このため暖房運転
を再開した際、初期風量の低下を招く、さらに残留水分
がフィン間で凍ってしまい、これを機として着霜が促進
され、熱交換器の目詰まりを早める結果となり、暖房能
力の低下はさらに激しくなる。このため除霜頻度が多く
なり、不快感を増すと共に運転効率も著しく低下する。
Further, if the fin surface is water-repellent during defrosting, water from melting frost becomes water droplets between adjacent fins or remains in the heat exchanger in a bridged state. As a result, when heating operation is restarted, the initial air volume decreases, and residual moisture freezes between the fins, which promotes frost formation and accelerates clogging of the heat exchanger, resulting in heating capacity. The decline will become even more severe. This increases the frequency of defrosting, which increases discomfort and significantly reduces operating efficiency.

このように従来のヒートポンプにあってはアルミフィン
表面を親水性にしないと種々の問題が発生するため、フ
ィン表面の親水化のための処理方法がいくつか提案され
てきた。例えば特開昭50−38645号ではフィン表
面に多孔質の無機質被膜を形成せしめる方法が、また、
特開昭54−148034号には有機質被膜を付着させ
′、その表面のみを加水分解して水湿潤性を得る方法や
、フィンの形状を特殊化して水切り性や水濡れ性を改善
する方法が提案されている。し″かしながらこれらの方
法はいづれも水濡れ性を改善し、フィン間のブリッジを
なくし、通風抵抗の増大を抑制することによる熱交換特
性の維持を主目的とするもので、着霜防止には全く無力
である。
As described above, in conventional heat pumps, various problems occur unless the aluminum fin surfaces are made hydrophilic, so several treatment methods have been proposed for making the fin surfaces hydrophilic. For example, Japanese Patent Application Laid-open No. 50-38645 describes a method of forming a porous inorganic film on the fin surface.
JP-A No. 54-148034 describes a method of attaching an organic film and hydrolyzing only the surface to obtain water wettability, and a method of specializing the shape of the fins to improve drainage and water wettability. Proposed. However, all of these methods mainly aim to maintain heat exchange characteristics by improving water wettability, eliminating bridges between fins, and suppressing increases in ventilation resistance, and prevent frost formation. is completely powerless.

また界面活性剤を利用し水濡れ性を改善する技術におい
て、界面活性剤の溶は出しによる持続性低下に対しては
界面活性剤と高級脂肪酸よりなる皮膜形成を教示した特
開昭58−16192号が挙げられるが、この技術にお
いても着霜防止は何ら考慮されていない。
In addition, in the technology of improving water wettability using surfactants, Japanese Patent Application Laid-Open No. 58-16192 taught the formation of a film consisting of a surfactant and a higher fatty acid in order to reduce durability due to dissolution of the surfactant. No. 1, but this technology does not take into account frost prevention at all.

他方着霜防止に対する手段としては特公昭53−161
38号に融点降下物質を圧入容器中により定期的に噴出
することが提案されているが、これは主として冷蔵庫内
の着霜防止手段であり、フィン数の多いヒートポンプの
室外側熱交換器は均一な噴霧は困難で、また圧力容器を
備えることは装置が大型となり好ましくない。また、別
手段としてフィン表面に疎水化皮膜を形成する方法が特
開昭54−139159号にしめされているが、着霜抑
制の可能性はあっても除霜時の水滴ブリッジ発生の問題
があり、望ましくない。
On the other hand, as a means to prevent frost formation, the Japanese Patent Publication No. 53-161
No. 38 proposes that a melting point depressing substance be periodically injected into a pressurized container, but this is mainly a means of preventing frost formation inside a refrigerator, and the outdoor heat exchanger of a heat pump with a large number of fins has a uniform temperature. It is difficult to spray properly, and the provision of a pressure vessel increases the size of the device, which is undesirable. In addition, as another method, a method of forming a hydrophobic film on the fin surface is disclosed in JP-A-54-139159, but although it has the possibility of suppressing frost formation, it has the problem of water droplet bridge formation during defrosting. Yes, undesirable.

また特開昭60−102978号では被塗物表面を処理
された上にイオン交換樹脂粉末を接着剤で固定化した膜
を形成して親水性を付与する方法が示されているが、熱
交換フィン材の加工性および水濡れ性を改良する手法に
とどまっている。
Furthermore, JP-A No. 60-102978 discloses a method of imparting hydrophilicity by forming a film on the surface of the object to be coated by fixing ion-exchange resin powder with an adhesive. The method is limited to improving the workability and water wettability of the fin material.

このように従来水濡れ性、持続性の問題と着霜抑制を同
時に解決する技術は見出されておらず、市場においてそ
の有効な手段の開発が切望されていた。他方、塗装ライ
ンにおける火災防止や作業員の健康面、あるいは省資源
の点から、かかる塗装組成物が水性処理剤であることが
市場ニーズに応えるものであることは明らかである。
As described above, no technology has been found that can simultaneously solve the problems of water wettability and sustainability and the suppression of frost formation, and there has been a strong desire in the market for the development of an effective means. On the other hand, it is clear that water-based coating compositions meet market needs in terms of fire prevention in coating lines, worker health, and resource conservation.

発明が解決しようとする問題点 如上に鑑み、水性被覆用組成物であって熱交換器アルミ
フィンに適用した場合水濡れ性、持続性に優れ、且つ着
霜抑制に有効なものを提供することが本発明目的である
。さらにかかる組成物で被覆された伝熱面を有する熱交
換器を提供することも本発明目的である。
In view of the problems to be solved by the invention, it is an object of the present invention to provide an aqueous coating composition that has excellent water wettability and durability when applied to aluminum fins of a heat exchanger, and is effective in suppressing frost formation. is the object of the present invention. It is further an object of the invention to provide a heat exchanger having a heat transfer surface coated with such a composition.

問題点を解決するための手段 本発明に従えば上記目的が、 (a)イオン交換基の30%以上がリチウムによりイオ
ン交換されているカチオン交換樹脂(固形分換算) 5〜40重量% (b)カチオン型界面活性剤を含まぬ被膜形成性樹脂エ
マルション(固形分換算) 94〜40重量% (e)アニオン型もしくはノニオン型界面活性剤(固形
分換算) 1〜20重量% を主成分として含む熱交換器用水性塗料組成物ならびに
該組成物を熱交換器の伝熱面に塗布することにより達成
せられる。
Means for Solving the Problems According to the present invention, the above objects are achieved by: (a) a cation exchange resin in which 30% or more of the ion exchange groups are ion-exchanged with lithium (in terms of solid content) 5 to 40% by weight (b ) A film-forming resin emulsion that does not contain a cationic surfactant (in terms of solid content) 94 to 40% by weight (e) Anionic or nonionic surfactant (in terms of solid content) 1 to 20% by weight as the main component This can be achieved by applying a water-based coating composition for a heat exchanger and the composition to the heat transfer surface of the heat exchanger.

本発明者らは着霜に関しその発生、生長メカニズムなど
につき研究を進めた結果、霜の発生、生長プロセスとし
て先づフィン表面が露点以下の時水滴が凝縮し、その後
水滴もしくは水成膜が凍り所謂氷晶化がおこり、その上
に霜核が発生し、次いで空気中の水分が昇華現象で核に
付着し、霜の生長が起こることを確認した。しかも一旦
霜核が発生し、その生長が始まってからは霜高の制御は
外的要因、例えば風速、温度、湿度、フィン形状などの
制御以外には手段がないこと、熱交換器のアルミフィン
上の霜の高さを低くする上で、かかる外的要因以外の因
子によるとするならば水膜が氷晶化する前に何らかの対
策が必要であること、水膜が氷晶化する過程で氷晶膜の
結晶構造を反射型偏光顕微鏡で調べたところ、結晶構造
が下地により異なることを見出した。そこで下地の塗料
組成と着霜ならびに霜高の関係につき種々研究を続けた
結果、ある特定のカチオンを吸着したイオン交換樹脂と
特定の界面活性剤の両者が存在する系においてのみ持続
性のある着霜抑制効果、就中霜高を低く抑える効果のあ
ることを見出し、本発明を完成させたものである。
The inventors of the present invention have conducted research into the formation and growth mechanisms of frost formation, and have found that the frost formation and growth process involves first condensing water droplets when the fin surface is below the dew point, and then freezing the water droplets or water film. It was confirmed that so-called ice crystallization occurs, frost nuclei are formed on the ice, and then moisture in the air adheres to the nuclei through sublimation, causing frost growth. Moreover, once frost kernels have formed and their growth begins, the only way to control the frost height is by controlling external factors such as wind speed, temperature, humidity, fin shape, etc., and the aluminum fins of the heat exchanger. If lowering the height of the frost above is due to factors other than these external factors, it is necessary to take some measures before the water film turns into ice crystals, and in the process of the water film turning into ice crystals. When the crystal structure of the ice crystal film was examined using a reflective polarizing microscope, it was found that the crystal structure differs depending on the substrate. Therefore, as a result of various studies on the relationship between the base paint composition, frost formation, and frost height, we found that only a system with a specific surfactant and an ion exchange resin adsorbing a specific cation has a long-lasting adhesion. The present invention was completed based on the discovery that it has a frost suppressing effect, particularly an effect of suppressing frost height to a low level.

すなわち本発明の水性塗料組成物にはカチオン交換樹脂
で、そのイオン交換基の30%以上がリチウムによりイ
オン交換されたものが使用せられる。かかるカチオン交
換樹脂としてはポリスチレンスルホン酸型の強酸性陽イ
オン交換樹脂を始め各種のものが市販されており、それ
らはいづれも本発明において好適に使用せられるが、総
交換容量が1.5mg当量/g DRY R以上のもの
が好ましい。これらイオン交換樹脂はH型として、ある
い° はナトリウム中和型として入手せられるが、本発
明においては一旦常法によりH型となし、次いでイオン
交換基の30%以上、好ましくは50%以上がリチウム
によりイオン交換せしめられたものが使用せられる。ま
たイオン交換樹脂は塗料組成物に用いられるため、その
平均粒子径が0.1〜20μ程度、さらに好ましくは0
.5〜10μ程度の粒子として使用することが好ましく
、常法により粉砕、分級して用いられる。
That is, the aqueous coating composition of the present invention uses a cation exchange resin in which 30% or more of the ion exchange groups have been ion exchanged with lithium. Various types of such cation exchange resins are commercially available, including strongly acidic cation exchange resins of the polystyrene sulfonic acid type, and any of them can be suitably used in the present invention, but those with a total exchange capacity of 1.5 mg equivalent /g DRY R or higher is preferred. These ion exchange resins are available as H-type or sodium-neutralized type, but in the present invention, they are first converted into H-type by a conventional method, and then 30% or more, preferably 50% or more of the ion exchange groups are is ion-exchanged with lithium. In addition, since the ion exchange resin is used in coating compositions, its average particle size is about 0.1 to 20 μm, more preferably 0.1 to 20 μm.
.. It is preferable to use the particles in the form of particles of about 5 to 10 μm, and they are used after being pulverized and classified by a conventional method.

本発明においては上記のカチオン交換樹脂と組み合わせ
て、アニオン型もしくはノニオン型の界面活性剤が用い
られる。これら界面活性剤は通常の型のもので、例えば
アニオン型としてはアルキルベンゼンスルホン酸塩、ラ
ウリル硫酸エステル塩、スルホコハク酸オクチルエステ
ル塩など、ノニオン型としてはノニルフェノール類、ラ
ウリルアルコール類、ポリエチレングリコールモノラウ
レートなどが代表例として挙げられるが、勿論これらに
限定されるものではない。特に好ましい界面活性剤はノ
ニオン型のものである。
In the present invention, an anionic or nonionic surfactant is used in combination with the above cation exchange resin. These surfactants are of the usual type; for example, anionic types include alkylbenzene sulfonates, lauryl sulfate salts, and sulfosuccinic acid octyl ester salts; nonionic types include nonylphenols, lauryl alcohols, and polyethylene glycol monolaurates. etc. are given as representative examples, but of course the invention is not limited to these. Particularly preferred surfactants are nonionic surfactants.

本発明者らは上述のリチウム含有カチオン交換樹脂とノ
ニオン型あるいはアニオン型の界面活性剤の両者が被覆
面中に存在すると、着霜してもその霜高が低く、したが
って熱交換器の長時間の運転に耐えられる塗膜を構成せ
しめうろことを見出した。この霜高を低く抑制しうる効
果は上記イオン交換樹脂と、界面活性剤の組合せに特異
的なものであって、例えばそれらの一方のみ、あるいは
他のアルカリ金属イオン含有カチオン交換樹脂と界面活
性剤の組合せによっては達成されず、またリチウム含有
率が30%に満たぬ場合にも効果が得られない。イオン
交換基の30%以上がリチウムによりイオン交換されて
いるカチオン交換樹脂とノニオン型あるいはアニオン型
界面活性剤の組合せのみが、いかなる理由で着霜しても
霜高を低く抑制しうるのかについては今日までのところ
充分には解明されていない。
The present inventors found that when both the above-mentioned lithium-containing cation exchange resin and nonionic or anionic surfactant are present in the coated surface, the frost height is low even if frost forms, and therefore the heat exchanger can be used for a long time. We have discovered that scales can be used to form a coating that can withstand driving. This effect of suppressing frost height to a low level is specific to the combination of the above-mentioned ion exchange resin and surfactant, for example, only one of them, or other alkali metal ion-containing cation exchange resin and surfactant. This effect cannot be achieved depending on the combination of , and the effect cannot be obtained when the lithium content is less than 30%. As to whether or not only the combination of a cation exchange resin in which 30% or more of the ion exchange groups are ion-exchanged with lithium and a nonionic or anionic surfactant can suppress frost height to a low level even if frost forms for any reason. It has not been fully elucidated to date.

一般的に氷の成長に関しては氷晶核の面に垂直に氷が成
長することが知られているから、霜核の発生、成長も同
じ現象と推定され、霜も霜核面に対し垂直方向に成長す
るであろう0本発明者らは氷晶膜の中の単位面積当たり
の結晶数が多いほど霜の高さが低くなり、上述のカチオ
ン交換樹脂と界面活性剤の組み合わせの場合には確かに
他の場合より氷晶膜中の結晶数が多いことも確認してい
る。氷晶膜の結晶数が多いことはその上に発生する霜核
の数が多いことを示しており、その結果同一量の水蒸気
が運ばれてきた場合、熱交換器表面で昇華により霜が成
長するのに霜核1コ当たりの霜の量は霜核の数が多いほ
ど少なくなることが容易に理解され、その結果として霜
高が低くなるものであろう。したがって本発明者らは上
記カチオン交換樹脂と界面活性剤の組み合わせの場合、
単なるイオン交換樹脂や、金属粉や、凝固点降下物の混
入あるいは他のイオン交換樹脂と界面活性剤の組合せに
比し、氷晶膜中の結晶核の数を著しく増大せしめる効果
があり、その結果霜核の数を多く発生させ霜高を低く抑
制する効果を示すものと考えている。
It is generally known that ice grows perpendicular to the surface of the ice crystal nucleus, so it is assumed that the generation and growth of frost nuclei is the same phenomenon, and that frost also grows perpendicular to the surface of the frost nucleus. The inventors found that the higher the number of crystals per unit area in the ice crystal film, the lower the frost height, and in the case of the above-mentioned combination of cation exchange resin and surfactant, It has also been confirmed that the number of crystals in the ice crystal film is greater than in other cases. A large number of crystals in the ice crystal film indicates a large number of frost nuclei generated on it, and as a result, when the same amount of water vapor is carried, frost grows by sublimation on the heat exchanger surface. However, it is easy to understand that the amount of frost per frost kernel decreases as the number of frost kernels increases, and as a result, the frost height becomes lower. Therefore, in the case of the combination of the above cation exchange resin and surfactant, the present inventors
Compared to simple ion exchange resins, metal powders, freezing point depressants, or combinations of other ion exchange resins and surfactants, it has the effect of significantly increasing the number of crystal nuclei in the ice crystal film. We believe that this is effective in generating a large number of frost kernels and suppressing frost height.

本発明では熱交換器のアルミフィンなどに被覆するため
の塗料組成物を提供するため、さらに被膜形成性成分が
必要であるが、省資源および他の要望から水性塗料が望
ましく、従って媒体を水とし、かかる被膜形成成分が樹
脂エマルションとして含有せしめられる。したがって本
発明の他の必須成分はカチオン型界面活性剤を含まぬ被
膜形成性樹脂エマルションである。かかるエマルション
としては通常のアクリルエマルション、シリコンエマル
ション、エポキシエマルション、ウレタンエマルション
、酢ビエマルションなどが用いられるが、被膜の耐久性
などの点からアクリルエマルションやシリコンエマルシ
ョンあるいはそれらのブレンドであることが好ましい。
Since the present invention provides a coating composition for coating aluminum fins of heat exchangers, etc., a film-forming component is additionally required, but a water-based coating is preferable for resource saving and other reasons. The film-forming component is contained as a resin emulsion. Therefore, another essential component of the present invention is a film-forming resin emulsion that does not contain a cationic surfactant. As such emulsions, ordinary acrylic emulsions, silicone emulsions, epoxy emulsions, urethane emulsions, vinyl acetate emulsions, etc. are used, but acrylic emulsions, silicone emulsions, or blends thereof are preferred from the viewpoint of the durability of the coating.

樹脂エマルションは常法により製造せられるが、通常エ
マルション化のため界面活性剤あるいは乳化剤が使用せ
られ、これらがカチオン系であるとリチウム、含有カチ
オン交換樹脂などとの相互作用で系の凝固が認められる
ので、カチオン型界面活性剤を含んではならない。
Resin emulsions are produced by conventional methods, but surfactants or emulsifiers are usually used for emulsification, and if these are cationic, coagulation of the system is observed due to interaction with lithium, the cation exchange resin, etc. must not contain cationic surfactants.

本発明においては、固形分換算で上述のイオン交換基の
30%以上がリチウムによりイオン交換されたカチオン
交換樹脂5〜40重量%、アニオン型もしくはノニオン
型界面活性剤1〜20重量%、カチオン型界面活性剤を
含まぬ被膜形成性樹脂エマルションを必須成分として含
む水性塗料組成物が提供されるのである。上述のカチオ
ン交換樹脂量が5重量%に満たぬ場合には本発明目的と
する霜高抑制効果が充分ではなく、40重量%を越える
と組成物の造膜性が失われるし、また界面活性剤量が1
重量%未満ではやはり発明目的、効果が達成されず、2
0重量%を越えると耐水性など膜物性が低下するからで
ある。
In the present invention, in terms of solid content, 5 to 40% by weight of a cation exchange resin in which 30% or more of the above-mentioned ion exchange groups are ion-exchanged with lithium, 1 to 20% by weight of an anionic or nonionic surfactant, and a cationic type surfactant. There is provided an aqueous coating composition containing as an essential component a film-forming resin emulsion that does not contain a surfactant. If the amount of the above-mentioned cation exchange resin is less than 5% by weight, the frost height suppression effect aimed at by the present invention will not be sufficient, and if it exceeds 40% by weight, the film-forming properties of the composition will be lost, and the surface activity will be reduced. The dosage is 1
If it is less than 2% by weight, the purpose and effect of the invention will not be achieved.
This is because if it exceeds 0% by weight, the physical properties of the film such as water resistance will deteriorate.

しかしながら樹脂エマルションの製造に際し、アニオン
型もしくはノニオン型界面活性剤を使用する場合、上記
の界面活性剤量はかがるエマルション中に含有せられる
界面活性剤量をも包含せしめ所定範囲内に選定せられる
べきである。
However, when an anionic or nonionic surfactant is used in the production of a resin emulsion, the above amount of surfactant should be selected within a predetermined range, including the amount of surfactant contained in the glazing emulsion. It should be done.

尚、本発明者らは上述の必須成分に加え非中和型の水溶
性樹脂、すなわち酸基をアルカリなどで中和して得られ
る型のものを除外した水溶性樹脂例えばポリビニルアル
コール、エチレンオキサイド系水溶性樹脂、メチルセル
ローズなどを添加することにより一層優れた水濡れ性、
持続性、膜物性を有する塗膜の得られることも見出して
いる。
In addition to the above-mentioned essential components, the present inventors have developed water-soluble resins that exclude non-neutralized water-soluble resins, that is, those obtained by neutralizing acid groups with alkalis, etc., such as polyvinyl alcohol and ethylene oxide. Improved water wettability by adding water-soluble resin, methyl cellulose, etc.
It has also been found that a coating film having good durability and film properties can be obtained.

本発明の組成物にはまた所望により着色顔料、体質顔料
、染料用溶剤、表面調整剤など通常の塗料添加剤を加え
ることができる。
The composition of the present invention may also contain conventional paint additives such as coloring pigments, extender pigments, solvents for dyes, and surface conditioners, if desired.

本発明の水性塗料組成物は通常のハゲ塗り、吹付けなど
の方法で熱交換器アルミフィン上に塗装され、乾燥によ
り優れた表面塗膜が形成せしめられるが該塗膜は薄すぎ
ると効果が少なく、また厚すぎると熱伝導性に影響を及
ぼすので、通常1〜50μの範囲に適用せられることが
好ましい。かくして得られる被覆は良好な水濡れ性、持
続性を示し、着霜抑制ならびに霜高抑制効果において極
めて優れており、本発明の組成物は熱交換器用の塗料と
して極めて有用である。
The water-based paint composition of the present invention is applied onto the aluminum fins of the heat exchanger by a conventional coating method, spraying, etc., and an excellent surface coating film is formed by drying, but if the coating film is too thin, it will not be effective. If the thickness is too small or too thick, it will affect the thermal conductivity, so it is usually preferable to apply the thickness in the range of 1 to 50μ. The coating thus obtained exhibits good water wettability and durability, and is extremely effective in inhibiting frost formation and frost height, and the composition of the present invention is extremely useful as a coating for heat exchangers.

以下、実施例により本発明を説明する。特にことわりな
き限り部および%は重量による。
The present invention will be explained below with reference to Examples. Parts and percentages are by weight unless otherwise specified.

製造例1:リチウム含有イオン交換樹脂の製造イオン交
換基2.0当量/AのデュオライトC−20(Na型カ
チオン交換樹脂、住人化学社製、登録商標名)を塩酸処
理でH型にした後、水酸化リチウム水溶液で処理し、リ
チウムイオン吸着度70%のイオン交換樹脂となし、水
に分散させて不揮発分30%のイオン交換樹脂分散体(
A)を得た。比較の為デュオライトC−20を水酸化リ
チウム溶液で直接処理してリチウムイオン吸着度20%
のイオン交換樹脂を作り、水で分散させ不揮発分30%
のイオン交換樹脂分散体(B)を得た。さらに比較の為
デュオライトC−20を水に分散させ不揮発分30%の
分散体(C)を得な。
Production Example 1: Production of lithium-containing ion exchange resin Duolite C-20 (Na type cation exchange resin, manufactured by Sumima Kagaku Co., Ltd., registered trademark) with 2.0 equivalents/A of ion exchange groups was converted to H type by treatment with hydrochloric acid. After that, it was treated with a lithium hydroxide aqueous solution to form an ion exchange resin with a lithium ion adsorption degree of 70%, and dispersed in water to form an ion exchange resin dispersion with a nonvolatile content of 30% (
A) was obtained. For comparison, Duolite C-20 was directly treated with lithium hydroxide solution to obtain a lithium ion adsorption rate of 20%.
Make an ion exchange resin and disperse it with water to reduce the non-volatile content to 30%.
An ion exchange resin dispersion (B) was obtained. Furthermore, for comparison, Duolite C-20 was dispersed in water to obtain a dispersion (C) with a nonvolatile content of 30%.

実施例1 500−ステンレスビーカーにトークリル1lCX−1
007(アクリルエマルション、東洋インキ社製、不揮
発分45%)200部を仕込み、攪拌しつつイオン交換
樹脂分散体(A)50部を加え、さらにユニチカボバー
ル0F−100(ユニチカ化成社製、ノニオン型界面活
性剤、ポリビニルアルコール登録商標名、不揮発分10
0%)10部と水90部の水溶液を徐々に添加し、攪拌
して均質組成物を得た。
Example 1 Tocryl 1lCX-1 in a 500-stainless steel beaker
007 (acrylic emulsion, manufactured by Toyo Ink Co., Ltd., non-volatile content 45%) was charged, 50 parts of ion exchange resin dispersion (A) was added with stirring, and Unitika Bobal 0F-100 (manufactured by Unitika Kasei Co., Ltd., nonionic) was added with stirring. type surfactant, polyvinyl alcohol registered trademark name, non-volatile content 10
0%) and 90 parts of water were gradually added and stirred to obtain a homogeneous composition.

実施例2 実施例1と同様方法で、下記組成の組成物を得た。Example 2 A composition having the following composition was obtained in the same manner as in Example 1.

イオン交換樹脂分散体(A)     100部炭酸リ
チウム             3部比較例1 実施例1と同様方法で、但し下記組成の組成物をfFっ
な。
Ion exchange resin dispersion (A) 100 parts Lithium carbonate 3 parts Comparative Example 1 The same method as in Example 1 was carried out except that the following composition was prepared using fF.

)−レジ’) :Fン5E−1980200部イオン交
換樹脂分散体(B)      50部ユニチカボバー
ルuF−1Oolo部 水                        
  90部比較例2 実施例1と同様方法で、但し下記組成の組成物を作った
)-Resi'): Fn5E-1980 200 parts Ion exchange resin dispersion (B) 50 parts Unitika Bobal uF-1 Oolo part water
90 parts Comparative Example 2 A composition was prepared in the same manner as in Example 1, but with the following composition.

トー りIJ tIy IcX−1007200部イオ
ン交換樹脂分散体(A)      15部アデカノー
ル0H−42040部 比較例3 実施例1と同様方法で、但し下記組成の組成物を作った
Tori IJ tIy IcX-1007 200 parts Ion exchange resin dispersion (A) 15 parts Adekanol 0H-420 40 parts Comparative Example 3 A composition was prepared in the same manner as in Example 1, but with the following composition.

トーレシリコン5E−1980200部イオン交換樹脂
分散体(C)     100部アデカノール0H−4
2040部 実施例1〜2、比較例1〜3の各組成物を、アルミ板(
10CIIX 20CIIIX 1 am)にバーコー
ターで乾燥膜厚10μとなる如く塗装し、140℃で2
0分間乾燥させ試験片を作った。また、無処理アルミ板
(10cmX 20cmX 1 mm )を比較例4と
した。これらを用い下記水濡れ性および持続性の試験を
行い、その結果を第1表に示した。
Toray Silicone 5E-1980 200 parts Ion exchange resin dispersion (C) 100 parts Adekanol 0H-4
2040 parts of each composition of Examples 1-2 and Comparative Examples 1-3 was placed on an aluminum plate (
10CIIX 20CIIIX 1 am) with a bar coater to a dry film thickness of 10μ, and coated at 140℃ for 2
A test piece was prepared by drying for 0 minutes. Further, an untreated aluminum plate (10 cm x 20 cm x 1 mm) was used as Comparative Example 4. Using these, the following water wettability and durability tests were conducted, and the results are shown in Table 1.

試」1方」L 水濡れ性: 試験片に対し、ワイダー#71(岩国塗装機株式会社製
)を用い、純水を霧吹き状に1回吹付け、水滴の拡がり
状態を観察した。
Test "1" L Water wettability: Using Wider #71 (manufactured by Iwakuni Painting Machinery Co., Ltd.), pure water was sprayed once on the test piece in a mist-like manner, and the spread of water droplets was observed.

水濡れ性の持続性: 試験片を20°Cの純水に8時間浸漬し、引き上げて2
0℃で16時間風乾させることを1サイクルとして、5
サイクル後の水濡れ性を上記水濡れ性試験方法で判定し
た。
Sustainability of water wettability: The test piece was immersed in pure water at 20°C for 8 hours, then pulled out and
One cycle is air drying at 0℃ for 16 hours, and 5
Water wettability after cycling was determined using the water wettability test method described above.

着霜高さ: 上記試験片を参考図に示されている装置の冷却板に密着
させた。
Frost height: The above test piece was brought into close contact with the cooling plate of the device shown in the reference diagram.

空気温度(DB)         20℃空気温度(
WB)       14.5℃ダクト内平均風速  
     0.5m/s供試品表面温度       
 −10℃装置全体は温度と湿度を制御できる恒温室内
に設置されている。ダクト内平均風速はノズル差圧式風
量計より得られた値より換算されるが、ファンの回転数
を制御することにより所定の値となるようにしている。
Air temperature (DB) 20℃ air temperature (
WB) 14.5℃ Average wind speed inside the duct
0.5m/s Sample surface temperature
The entire −10°C apparatus is installed in a thermostatic chamber where temperature and humidity can be controlled. The average wind speed in the duct is calculated from the value obtained from the nozzle differential pressure type airflow meter, and is maintained at a predetermined value by controlling the rotation speed of the fan.

試験片の表面温度は、冷却板に送るブライン温度を制御
することにより所定の値としている。
The surface temperature of the test piece is kept at a predetermined value by controlling the temperature of the brine sent to the cooling plate.

霜高さの評価については、冷却板に対し垂直に移動し、
その距離を読み取ることのできる装置を考案し、60分
後の霜表面の高さを測定した。霜高さは複数点の測定結
果の平均値(朋)を採用した。
For frost height evaluation, move perpendicular to the cooling plate,
They devised a device that could read the distance and measured the height of the frost surface 60 minutes later. For the frost height, the average value of the measurement results at multiple points was used.

上記試験結果を第1表に示す。The above test results are shown in Table 1.

(以下余白) 実施例3 実施例1で得られた塗料組成物をロールコート機を用い
、予め脱脂処理を行ったアルミニウム製熱交換器用ロー
ル状フィン素材に乾燥膜厚10μになるように塗装し、
140°Cで20分間乾燥処理を行った。この様にして
処理されたフィンで組み立てて得られた熱交換器をヒー
トポンプ式空気調和機の暖房運転時の室外熱交換器とし
て用い、着霜現象が生じる条件下で運転を行い、その際
の経過時間と暖房能力、経過時間と風量の関係を調べ、
その結果を添付図の第1図および第2図にAとして表示
した。無処理に比べて優れた熱交換特性を示した。
(Left below) Example 3 Using a roll coater, the coating composition obtained in Example 1 was applied to a rolled fin material for an aluminum heat exchanger that had been previously degreased to a dry film thickness of 10 μm. ,
Drying treatment was performed at 140°C for 20 minutes. The heat exchanger obtained by assembling the fins treated in this way was used as an outdoor heat exchanger during heating operation of a heat pump type air conditioner, and was operated under conditions where frost formation occurred. Examine the relationship between elapsed time and heating capacity, elapsed time and air volume,
The results are shown as A in FIGS. 1 and 2 of the attached drawings. It showed superior heat exchange properties compared to the untreated material.

比較例5 実施例3で用いたものと同じヒートポンプ式空気調和機
で、但し室外熱交換器のフィン素材には上記塗料組成物
を塗布せず実施例3と同様の暖房運転を実施し、経過時
間と暖房能力、経過時間風量の関係を調べ、その結果を
添付図の第1図および第2図にBとして示した。
Comparative Example 5 Using the same heat pump air conditioner as that used in Example 3, but without applying the above coating composition to the fin material of the outdoor heat exchanger, heating operation was performed in the same manner as in Example 3. The relationship between time, heating capacity, and air volume over time was investigated, and the results are shown as B in Figures 1 and 2 of the attached drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる塗料組成物で被覆された熱交換
器(A)および該被覆を有しない熱交換器(B)を用い
たし−トポンブ式空気調和機による暖房運転時の経過時
間と暖房能力の関係図、第2図は同じく経過時間と風量
の関係図であり、参考図は塗装試験板の着霜試験に用い
られた装置図である。 尚、参考図において1は空気流、2はダクト、3は熱線
風速計センサー、4は熱線風速計、5は冷却板、6は試
験片、7は霜高さ測定装置、8は断熱材、9はブライン
冷却槽、10はポンプ、11はチャンバー、12はノズ
ル差圧式風量計、13はファン。 特許出願代理人
Figure 1 shows the elapsed time during heating operation with a top pump air conditioner using a heat exchanger (A) coated with the coating composition of the present invention and a heat exchanger (B) without the coating. The diagram of the relationship between heating capacity and Figure 2 is also a diagram of the relationship between elapsed time and air volume, and the reference diagram is a diagram of the equipment used in the frosting test of the painted test board. In addition, in the reference diagram, 1 is an air flow, 2 is a duct, 3 is a hot wire anemometer sensor, 4 is a hot wire anemometer, 5 is a cooling plate, 6 is a test piece, 7 is a frost height measuring device, 8 is a heat insulating material, 9 is a brine cooling tank, 10 is a pump, 11 is a chamber, 12 is a nozzle differential pressure airflow meter, and 13 is a fan. patent application agent

Claims (4)

【特許請求の範囲】[Claims] (1)(a)イオン交換基の30%以上がリチウムによ
りイオン交換されているカチオン交換 樹脂(固形分換算) 5〜40重量% (b)カチオン型界面活性剤を含まぬ被膜形成性樹脂エ
マルション(固形分換算) 94〜40重量% (c)アニオン型もしくはノニオン型界面活性剤(固形
分換算) 1〜20重量% を主成分として含む熱交換器用水性塗料組成物。
(1) (a) Cation exchange resin in which 30% or more of the ion exchange groups are ion-exchanged with lithium (solid content) 5 to 40% by weight (b) Film-forming resin emulsion containing no cationic surfactant (in terms of solid content) 94 to 40% by weight (c) An aqueous coating composition for heat exchangers containing as a main component 1 to 20% by weight of an anionic or nonionic surfactant (in terms of solid content).
(2)非中和型水溶性樹脂をさらに含む水性塗料組成物
(2) A water-based coating composition further containing a non-neutralized water-soluble resin.
(3)被膜形成性樹脂エマルションがアクリル樹脂ある
いはシリコン樹脂エマルションである特許請求の範囲第
1項記載の組成物。
(3) The composition according to claim 1, wherein the film-forming resin emulsion is an acrylic resin or a silicone resin emulsion.
(4)(a)イオン交換基の30%以上がリチウムによ
りイオン交換されているカチオン交換 樹脂(固形分換算) 5〜40重量% (b)カチオン型界面活性剤を含まぬ被膜形成性樹脂エ
マルション(固形分換算) 94〜40重量% (c)アニオン型もしくはノニオン型界面活性剤(固形
分換算) 1〜20重量% を主成分として含む水性塗料組成物で被覆された伝熱面
を有する熱交換器。
(4) (a) Cation exchange resin in which 30% or more of the ion exchange groups are ion-exchanged with lithium (solid content) 5 to 40% by weight (b) Film-forming resin emulsion containing no cationic surfactant (solid content equivalent) 94 to 40% by weight (c) Anionic or nonionic surfactant (solid content equivalent) 1 to 20% by weight A heat transfer surface coated with an aqueous coating composition containing as a main component 1 to 20% by weight exchanger.
JP22756386A 1986-09-25 1986-09-25 Aqueous coating composition for heat exchanger and heat exchanger coated with said composition Pending JPS63199274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22756386A JPS63199274A (en) 1986-09-25 1986-09-25 Aqueous coating composition for heat exchanger and heat exchanger coated with said composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22756386A JPS63199274A (en) 1986-09-25 1986-09-25 Aqueous coating composition for heat exchanger and heat exchanger coated with said composition

Publications (1)

Publication Number Publication Date
JPS63199274A true JPS63199274A (en) 1988-08-17

Family

ID=16862870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22756386A Pending JPS63199274A (en) 1986-09-25 1986-09-25 Aqueous coating composition for heat exchanger and heat exchanger coated with said composition

Country Status (1)

Country Link
JP (1) JPS63199274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332697A (en) * 1992-04-03 1993-12-14 Showa Alum Corp Lamination type evaporator
JP2009150585A (en) * 2007-12-19 2009-07-09 Sumitomo Light Metal Ind Ltd Fin material for heat exchanger and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332697A (en) * 1992-04-03 1993-12-14 Showa Alum Corp Lamination type evaporator
JP2009150585A (en) * 2007-12-19 2009-07-09 Sumitomo Light Metal Ind Ltd Fin material for heat exchanger and its manufacturing method

Similar Documents

Publication Publication Date Title
AU689539B2 (en) Aluminum-containing metal composite material and process forproducing same
KR100301262B1 (en) Aluminum alloy fin material with excellent antibacterial and antifungal properties, heat exchanger for air conditioner and fin material for heat exchanger
JP5586834B2 (en) Aluminum fin material for heat exchanger
CA1297613C (en) Composition for forming hydrophilic film on aluminum
CN108291788A (en) Precoat fin and heat exchanger
JPH08323285A (en) Member with excellent water repellency and anti-frosting property and its preparation
JPH06300482A (en) Heat exchanger
US5012862A (en) Hydrophilic fins for a heat exchanger
JPS63199274A (en) Aqueous coating composition for heat exchanger and heat exchanger coated with said composition
WO2019151050A1 (en) Restraining agent for frost growth and fin material using same
CN102443329B (en) Coating composition and aluminum heat radiation sheet utilizing the same
CN105849499B (en) heat exchanger coating
JP2834228B2 (en) Water repellent coating composition and heat exchanger using the water repellent coating composition
JPS63372A (en) Antibacterial coating for air-conditioning equipment
CN102464753B (en) Water soluble resin, fin material of heat exchanger adopting the water soluble resin and the heat exchanger
JP3225793B2 (en) Highly hydrophilic paint
WO2006082906A1 (en) Heat exchanger, refrigerating cycle apparatus, and hydrophilic coating material used therefor
JPH0719776A (en) Aluminum-containing metal composite for heat exchanger
JPH03244680A (en) Water-repellent coating composition and heat exchanger using water repellent-coating composition
JPH09113181A (en) Aluminum member for heat exchanger and manufacture thereof
JP2001164175A (en) Hydrophilifying agent for heat-exchanger fin material
JP2584109B2 (en) Paint for water-repellent coating and heat exchanger coated with the paint
JPS598372B2 (en) Surface treatment method for aluminum or its alloys
CN108486627A (en) A kind of surface treatment method of frosting resistance
CN108753027A (en) Heat exchanger, air conditioner and refrigeration equipment