JPH06300482A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH06300482A
JPH06300482A JP14720191A JP14720191A JPH06300482A JP H06300482 A JPH06300482 A JP H06300482A JP 14720191 A JP14720191 A JP 14720191A JP 14720191 A JP14720191 A JP 14720191A JP H06300482 A JPH06300482 A JP H06300482A
Authority
JP
Japan
Prior art keywords
water
heat exchanger
amino group
frost
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14720191A
Other languages
Japanese (ja)
Inventor
Ryosuke Sako
良輔 迫
Kazuhiko Ogawa
和彦 小川
Takao Kawamoto
隆雄 河本
Mitsuru Ikegaya
満 池ケ谷
Tomomasa Takeshita
倫正 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nihon Parkerizing Co Ltd
Original Assignee
Mitsubishi Electric Corp
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nihon Parkerizing Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP14720191A priority Critical patent/JPH06300482A/en
Publication of JPH06300482A publication Critical patent/JPH06300482A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an aluminum-made heat exchanger which has a specific film that is hydrophilic without producing water drops and able to restrain the growth of frost depositing. CONSTITUTION:A heat exchanger has a film which is formed by applying and drying a water-based treatment liquid containing one or more water soluble polymers (I) selected from polyvinyl alcohol and its derivatives, water-soluble polymers (II) containing at least one of primary, secondary and tertiary amino groups and quaternary ammonium group in a molecule, a crosslinking agent (III) which can be mixed with (I) and (II), and silica fine particles (IV) or one or more sorts of metallic compounds (V) selected from lithium, magnesium, and barium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、家庭用、および業務用
ルームエアコン(以下エアコンと総称する)に用いられ
るアルミニウムまたはアルミニウム合金製熱交換器に関
するものである。さらに詳しく述べるならば、アルミニ
ウム、アルミニウム合金(以下、アルミニウムと総称す
る)表面に適用し、表面に優れた親水性を付与して水滴
の生成を防止し、且つ、付着する霜の成長を抑制するこ
とを特徴とする被覆用組成物で被覆された熱交換器に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger made of aluminum or aluminum alloy used for domestic and commercial room air conditioners (hereinafter collectively referred to as "air conditioners"). More specifically, it is applied to the surface of aluminum and aluminum alloys (hereinafter collectively referred to as "aluminum") to impart excellent hydrophilicity to the surface to prevent the formation of water droplets and suppress the growth of frost that adheres. And a heat exchanger coated with the coating composition.

【0002】[0002]

【従来の技術】エアコンにおいて、経済性、クリーン暖
房、省スペース等の利点から空気熱源ヒートポンプ方式
(以下、ヒートポンプと記す)の普及が高まっている。
ヒートポンプで用いられる熱交換器の放熱、或は冷却部
はアルミニウムフィン材で構成され熱交換効率の向上の
ため単位体積当りの表面積をできる限り大きく取る設計
がなされフィン間隔がきわめて狭い。このため、冷房運
転時において室内器の伝熱面であるフィン表面には大気
中の水分が凝縮し、フィン表面が疎水性であるほど凝縮
水は水滴になり易く、フィン間隙で目詰まりを起こし、
風路抵抗が増加し、熱効率を低下させる。
2. Description of the Related Art In air conditioners, an air heat source heat pump system (hereinafter referred to as a heat pump) is becoming popular because of its advantages such as economy, clean heating, and space saving.
The heat radiating or cooling section of the heat exchanger used in the heat pump is made of aluminum fin material, and the surface area per unit volume is designed to be as large as possible in order to improve the heat exchange efficiency, and the fin spacing is extremely narrow. Therefore, during cooling operation, moisture in the atmosphere condenses on the fin surface, which is the heat transfer surface of the indoor unit, and the more hydrophobic the fin surface, the more easily the condensed water becomes water droplets, causing clogging in the fin gap. ,
Airway resistance increases, reducing thermal efficiency.

【0003】一方、暖房運転時、外気温が低下すると室
外器のフィン表面に着霜が生じ、暖房能力が低下する。
このため、除霜を行うことが必要で、一般に逆サイクル
除霜が行われている。しかし、この間は、暖房運転を一
時停止しなくてはならず、室内において不快感を与える
結果となる。フィン表面が疎水性であると除霜運転によ
り融解した水分はフィン間に残存し易く、暖房運転を再
開した時残存した水分が再氷結し暖房能力を低下させ
る。また、氷結した残存水分上に新たな着霜が起こるた
め、除霜運転の頻度が多くなり、暖房効率が著しく低下
する。
On the other hand, during heating operation, if the outside air temperature drops, frost forms on the fin surface of the outdoor unit, and the heating capacity drops.
Therefore, it is necessary to perform defrosting, and reverse cycle defrosting is generally performed. However, during this period, the heating operation must be temporarily stopped, which results in discomfort in the room. If the fin surface is hydrophobic, the water melted by the defrosting operation tends to remain between the fins, and when the heating operation is restarted, the remaining water re-freezes and reduces the heating capacity. In addition, since new frost is formed on the frozen residual water, the frequency of the defrosting operation is increased and the heating efficiency is significantly reduced.

【0004】従ってエアコンの運転効率を向上させるた
めには、フィン表面の親水性を大きくし、冷房運転時の
フィン表面の水滴生成を防止すること、および暖房運転
時にフィン表面に生成する霜の高さをできる限り低く抑
えること、および霜の生成に要する時間をできるだけ長
くすること等が必要となる。
Therefore, in order to improve the operation efficiency of the air conditioner, the hydrophilicity of the fin surface is increased to prevent the generation of water droplets on the fin surface during the cooling operation, and the high frost generated on the fin surface during the heating operation. It is necessary to keep the height as low as possible, and to make the time required for frost formation as long as possible.

【0005】エアコンの熱交換器において、風路抵抗を
小さくし、熱効率を向上させる手段として、伝熱面であ
るフィン表面を親水化する方法について、水ガラス、シ
リカゾル等、の親水性無機化合物や、界面活性剤や水溶
性樹脂等の有機化合物を単独、または組み合わせて使用
する種々の方法が提案されている。
In a heat exchanger of an air conditioner, as a means for reducing air passage resistance and improving thermal efficiency, a method of hydrophilizing a fin surface which is a heat transfer surface includes hydrophilic inorganic compounds such as water glass and silica sol. Various methods have been proposed in which an organic compound such as a surfactant or a water-soluble resin is used alone or in combination.

【0006】これらの方法のうち、有機高分子樹脂とシ
リカを併用する方法として、特開昭54−142650
号の「多孔性シリカ微粒子を含有する有機高分子樹脂溶
液で表面処理することを特徴とするアルミニウム熱交換
器の表面処理方法」、特開昭55−164264号の
「水性塗料用樹脂、界面活性剤、合成シリカを特定量含
有する水性塗料組成物」がある。
Of these methods, a method of using an organic polymer resin and silica in combination is disclosed in Japanese Patent Laid-Open No. 142426/1979.
"A method for surface treatment of an aluminum heat exchanger characterized by surface-treating with an organic polymer resin solution containing fine particles of porous silica", JP-A-55-164264, "Resin for water-based coating, surface active Agent, an aqueous coating composition containing a specific amount of synthetic silica ".

【0007】これらの中で用いられる有機高分子樹脂、
あるいは水性塗料樹脂は、それ自体では親水性というよ
りむしろ疎水性であるものや、親水性が不十分であった
り、親水性であっても皮膜が水に溶解してしまうもので
ある。これら該発明は、樹脂皮膜にシリカを併用するこ
とによってはじめて親水性表面を形成するものである。
さらに、シリカの効果により初期状態での親水性は発揮
できるものの、シリカの皮膜中への固定化については考
慮されてなく、結露水によるシリカの脱落が考えられ、
性能の持続性は期待できない。また、シリカによる着霜
障害抑制効果(フィン表面に霜が嵩高く生成して風路抵
抗が大きくなりエアコンの運転効率が低下することを防
ぐ効果)については全く触れていない。
Organic polymer resins used in these,
Alternatively, the water-based coating resin itself is hydrophobic rather than hydrophilic, or is insufficient in hydrophilicity, or even if hydrophilic, the film dissolves in water. In these inventions, a hydrophilic surface is formed only by using silica in the resin film.
Furthermore, although the hydrophilicity in the initial state can be exhibited by the effect of silica, the immobilization of silica in the film is not taken into consideration, and it is considered that the silica may fall off due to dew condensation water.
The sustainability of performance cannot be expected. Further, no mention is made of the effect of silica for suppressing frost formation failure (the effect of preventing frost from forming on the fin surface in a bulky manner and increasing the airway resistance to reduce the operating efficiency of the air conditioner).

【0008】[0008]

【発明が解決しようとする課題】本発明は、長期に亘っ
て優れた親水性を有する親水性有機皮膜に分散性の良い
特定粒径のシリカ粒子および特定した金属化合物を親水
性皮膜に均一に固定化させることにより、安定な親水性
を維持し、且つ、長期に亘って優れた着霜障害抑制効果
を持続させる機能を有する熱交換器を提供することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention is to uniformly disperse silica particles having a specific particle size and a specified metal compound having good dispersibility in a hydrophilic organic film having excellent hydrophilicity for a long time. An object of the present invention is to provide a heat exchanger having a function of maintaining stable hydrophilicity by immobilizing and having a function of maintaining an excellent frosting disorder suppressing effect for a long period of time.

【0009】[0009]

【問題を解決するための手段】本発明者らは、上記目的
の達成のため、以下に示した方法が有効であることを見
いだした。アルミニウム製熱交換器の伝熱部に、ポリビ
ニルアルコールおよびその水溶性誘導体から選ばれる1
種以上の水溶性重合体(I) 、1分子内に第1アミノ基、
第2アミノ基、第3アミノ基、第4級アンモニウム基の
群から選ばれる1種以上を含む水溶性重合体(II)、(I)
および(II)と混合可能な架橋剤(III) ならびにシリカ微
粒子(IV)を含有する水系処理液を適用したものを第一発
明とし、ポリビニルアルコールおよびその水溶性誘導体
から選ばれる1種以上の水溶性重合体(I) 、1分子内に
第1アミノ基、第2アミノ基、第3アミノ基、第4級ア
ンモニウム基の群から選ばれる1種以上を含む水溶性重
合体(II)、(I) および(II)と混合可能な架橋剤(III) 、
シリカ微粒子(IV)ならびにリチウム化合物、マグネシウ
ム化合物、バリウム化合物の群から選ばれる一種以上の
該金属化合物(V) を含有する水系処理液を適用したもの
を第二発明とするものである。
The present inventors have found that the following method is effective for achieving the above object. For the heat transfer part of the aluminum heat exchanger, selected from polyvinyl alcohol and its water-soluble derivatives 1
At least one water-soluble polymer (I), a primary amino group in one molecule,
Water-soluble polymer (II), (I) containing at least one member selected from the group consisting of secondary amino group, tertiary amino group and quaternary ammonium group
The application of an aqueous treatment liquid containing a cross-linking agent (III) and silica fine particles (IV) that can be mixed with (2) and (II) is defined as the first invention, and one or more water-soluble agents selected from polyvinyl alcohol and water-soluble derivatives thereof are used. Polymer (I), a water-soluble polymer (II) containing at least one member selected from the group consisting of primary amino group, secondary amino group, tertiary amino group and quaternary ammonium group in one molecule, (II), I) and (II) and a crosslinkable agent (III) that can be mixed,
A second invention is applied with an aqueous treatment liquid containing fine silica particles (IV) and one or more metal compounds (V) selected from the group consisting of lithium compounds, magnesium compounds and barium compounds.

【0010】ここで述べるポリビニルアルコールおよび
その水溶性誘導体(I) は、一般式
The polyvinyl alcohol and its water-soluble derivative (I) described here have the general formula

【化1】 で表示し得る重合体で、通常、酢酸ビニルまたはその共
重合体の加水分解によって得られる水溶性共重合体、ま
たはこれらを更に後反応させて得られる水溶性重合体で
ある。ここで、1は50〜100の整数、mは0〜50
の整数、およびnは0〜50の整数で、R1 はH、また
はCH3 である。Xが、ガルボキシル基、スルホン酸
基、ホスホン酸基の少なくとも1種を含むアニオン性置
換基である場合は、例えば、アクリル酸、メタクリル
酸、無水マレイン酸、ビニルスルホンサン等との共重合
物であるアニオン変性PVAが挙げられる。また、メタ
クリロキシエチルホスフェート、アクリル酸エステル
等、加水分解によってアニオン性となるものも含まれ
る。カチオン性置換基の場合は、Xは第1〜3アミノ基
の何れかまたは、第4級アンモニウム基である。次に、
PVA系として活性メチレン変性物等が挙げられ、PV
Aとジケテンとの反応物、例えばアセトアセチル化PV
A等がある。また、Xは前記した基の何れか1種以上を
含むものである。
[Chemical 1] The polymer which can be represented by (1) is usually a water-soluble copolymer obtained by hydrolysis of vinyl acetate or its copolymer, or a water-soluble polymer obtained by further post-reacting these. Here, 1 is an integer of 50 to 100 and m is 0 to 50.
And n is an integer of 0 to 50, and R 1 is H or CH 3 . When X is an anionic substituent containing at least one of a galboxyl group, a sulfonic acid group and a phosphonic acid group, it is, for example, a copolymer with acrylic acid, methacrylic acid, maleic anhydride, vinylsulfone sun or the like. An anion-modified PVA is mentioned. Also included are those that become anionic by hydrolysis, such as methacryloxyethyl phosphate and acrylic acid ester. In the case of a cationic substituent, X is any of primary to tertiary amino groups or a quaternary ammonium group. next,
Examples of PVA-based materials include active methylene-modified products.
A reaction product of A and diketene, for example, acetoacetylated PV
There are A etc. In addition, X includes at least one of the above groups.

【0011】PVAの水溶性誘導体としては、上記した
構造の他、スチレン、アクリロニトリル、ビニルエーテ
ル、その他ノニオニック重合性モノマーも水溶性を害さ
ない程度に共重合させたものも含まれる。
As the water-soluble derivative of PVA, in addition to the above structure, styrene, acrylonitrile, vinyl ether, and other nonionic polymerizable monomers copolymerized to the extent that water solubility is not impaired are also included.

【0012】水溶性重合体(II)は、エチレンイミン、
N,N−ジメチル−N,N−ジアリルアンモニウム塩等
の単独重合物、または、これらと、アクリル酸、メタク
リル酸、イタコン酸、マイレン酸、ビニルスルホン酸、
スチレンスルホン酸、スルホエチルアクリレート、アク
リルアミド、N−メチレンスルホン酸アクリルアミド、
2−アクリルアミド−2−メチルプロパンスルホン酸、
N−メチロールアクリルアミド等の重合性モノマーとの
共重合物、ポリアクリルアミドのホフマン反応物、ポリ
アクリルアミド、ポリビニルフェノールのマンニッヒ変
性物、ポリN−ビニルフタルイミド、ポリビニルコハク
酸イミド、ポリビニルイソシアネートの加水分解物、ポ
リニトロエチレン、及びその誘導体の還元物、また、こ
れらを4級化したアンモニウム塩、縮合反応により得ら
れるカチオン性ナイロン、カチオン性ポリアミド、エポ
キシ変性カチオン性ポリアミド等の1分子内に第1アミ
ノ基、第2アミノ基、第3アミノ基、第4級アンモニウ
ム基の群から選ばれる1種以上を含む水溶性重合体であ
る。
The water-soluble polymer (II) is ethyleneimine,
Homopolymers such as N, N-dimethyl-N, N-diallylammonium salt or the like, or with these, acrylic acid, methacrylic acid, itaconic acid, maleic acid, vinyl sulfonic acid,
Styrene sulfonic acid, sulfoethyl acrylate, acrylamide, N-methylene sulfonic acid acrylamide,
2-acrylamido-2-methylpropanesulfonic acid,
Copolymers with polymerizable monomers such as N-methylolacrylamide, Hoffmann reaction products of polyacrylamide, polyacrylamide, Mannich modified products of polyvinylphenol, polyN-vinylphthalimide, polyvinylsuccinimide, hydrolysates of polyvinylisocyanate, Reduced products of polynitroethylene and its derivatives, quaternized ammonium salts, cationic nylons obtained by condensation reaction, cationic polyamides, epoxy-modified cationic polyamides, etc. having a primary amino group in one molecule. , A water-soluble polymer containing at least one selected from the group consisting of a secondary amino group, a tertiary amino group and a quaternary ammonium group.

【0013】水溶性有機架橋剤(III) としては、水溶性
のブロック化ポリイソシアネート、水溶性のポリメチロ
ール、ポリグリシジル、ポリアジリジル化合物やアルデ
ヒド類等で、例えば重亜流酸ソーダブロック化イソシア
ネート、メチロールメラミン、メチロール尿素、メチロ
ール化ポリアクリルアミド、ポリエチレンオキサイドの
ジグリシジルエーテル、ジアジリジル化ポリエチレンオ
キサイドグリオキザール等で、(I) および(II)と混合可
能なものである。
Examples of the water-soluble organic cross-linking agent (III) include water-soluble blocked polyisocyanates, water-soluble polymethylols, polyglycidyls, polyaziridyl compounds and aldehydes, such as sodium bisulfite-blocked isocyanate and methylolmelamine. , Methylolurea, methylolated polyacrylamide, diglycidyl ether of polyethylene oxide, diaziridylated polyethylene oxide glyoxal and the like, which can be mixed with (I) and (II).

【0014】シリカ微粒子(IV)としては、湿式法、ある
いは乾式法で製造される粉末シリカ、あるいはシリカゾ
ルで、その一次粒径が0.005〜50μ、好ましく
は、0.01〜10μである。
The silica fine particles (IV) are powdered silica or silica sol produced by a wet method or a dry method, and have a primary particle size of 0.005 to 50 μm, preferably 0.01 to 10 μm.

【0015】リチウム化合物としては、LiF、LiC
l、LiBr、LiI、LiNO3、Li2 CO3 、L
3 PO4 、LiMnO4 、Li2 Cr2 7 、Li4
SiO4 、Li2 SiO3 、LiBO2 、Li3
4 、Li2 WO4 、HCOOLi、Li2 2 4
CH3 COOLi、C2 5 COOLi、LIOOCC
2 COOLi、クエン酸リチウム、酒石酸リチウム、
トリメリット酸リチウム、ピロメリット酸リチウム、マ
グネシウム化合物としては、MgF2 、MgCl2、M
gBr2 、MgI2 、Mg(NO3 2 、MgCO3
Mg3 (PO4 2、Mg(MnO4 2 、MgCr2
7 、Mg2 SiO4 、MgSiO3 、Mg(BO2
2 、Mg3 (VO4 2 、MgWO4 、(HCOO)2
Mg、MgC 2 4 、(CH3 COO)2 Mg、(C2
5 COO)2 Mg、シュウ酸マグネシウム、クエン酸
マグネシウム、酒石酸マグネシウム、トリメリット酸マ
グネシウム、ピロメリット酸マグネシウム、バリウム化
合物としては、BaF2 、BaCl2 、BaBr2 、B
aI2 、Ba(NO3 2 、BaCO3 、Ba3 (PO
4 2 、Ba(MnO4 2 、BaCr2 7 、Ba2
SiO4 、BaSiO3、Ba(BO2 2 、Ba
3 (VO4 2 、BaWO4 、(HCOO)2 Ba、B
aC2 4 、(CH3 COO)2 Ba、(C2 5 CO
O)2 Ba、シュウ酸バリウム、クエン酸バリウム、酒
石酸バリウム、トリメリット酸バリウム、ピロメリット
酸バリウム、等が例示される。
The lithium compounds include LiF and LiC.
l, LiBr, LiI, LiNO3, Li2CO3, L
i3POFour, LiMnOFour, Li2Cr2O7, LiFour
SiOFour, Li2SiO3, LiBO2, Li3V
OFour, Li2WOFour, HCOOLi, Li2C2OFour,
CH3COOLi, C2HFiveCOOLi, LIOOCC
H 2COOLi, lithium citrate, lithium tartrate,
Lithium trimellitic acid, lithium pyromellitic acid,
MgF compound is MgF2, MgCl2, M
gBr2, MgI2, Mg (NO3)2, MgCO3,
Mg3(POFour)2, Mg (MnOFour)2, MgCr2
O7, Mg2SiOFour, MgSiO3, Mg (BO2)
2, Mg3(VOFour)2, MgWOFour, (HCOO)2
Mg, MgC 2OFour, (CH3COO)2Mg, (C2
HFiveCOO)2Mg, magnesium oxalate, citric acid
Magnesium, magnesium tartrate, trimellitic acid
Gnesium, magnesium pyromellitic acid, barium conversion
As a mixture, BaF2, BaCl2, BaBr2, B
aI2, Ba (NO3)2, BaCO3, Ba3(PO
Four)2, Ba (MnOFour)2, BaCr2O7, Ba2
SiOFour, BaSiO3, Ba (BO2)2, Ba
3(VOFour)2, BaWOFour, (HCOO)2Ba, B
aC2OFour, (CH3COO)2Ba, (C2HFiveCO
O)2Ba, barium oxalate, barium citrate, liquor
Barium tartrate, barium trimellitate, pyromerit
Examples thereof include barium acid.

【0016】これらは、単独で、または2種以上の組合
わせで使用することが可能である。シリカ微粒子(IV)お
よび金属化合物(V) は分散性を良くするために特殊な表
面処理が施されたものを使用する。この他に、防錆剤、
充填剤、着色剤、界面活性剤、消泡剤、レベリング剤、
防菌防黴剤等が本願の主旨や、皮膜性能を損なわない範
囲で添加し得る。
These can be used alone or in combination of two or more. The silica fine particles (IV) and the metal compound (V) are used after being subjected to a special surface treatment in order to improve the dispersibility. In addition to this, rust inhibitor,
Fillers, colorants, surfactants, defoamers, leveling agents,
Antibacterial and antifungal agents and the like may be added within the scope of the purpose of the present application and the range of not impairing the film performance.

【0017】塗装方法としては、浸漬、噴霧、ロール、
フローコート法等が使用される。濃度や粘度について
は、使用する塗装方法、所望膜厚等により適当なものが
選ばれる。塗膜厚としては、熱効率を高めるため0.0
5〜10μ、好ましくは0.2〜2μ程度とするのが好
ましい。この場合、膜厚より粒径の大きなシリカは膜表
面から突出して皮膜に固着される。
As the coating method, dipping, spraying, rolling,
A flow coat method or the like is used. The concentration and the viscosity are appropriately selected depending on the coating method used, the desired film thickness and the like. The coating thickness is 0.0 to improve thermal efficiency.
The thickness is preferably 5 to 10 μ, and more preferably 0.2 to 2 μ. In this case, silica having a particle size larger than the film thickness protrudes from the film surface and is fixed to the film.

【0018】アルミニウムは予め脱脂処理をし、直接塗
布、またはベーマイト処理、クロメート処理等の化成処
理を施してから処理しても良く、アクリル樹脂系、ウレ
タン樹脂系、エポキシ樹脂系等の適当なプライマーを施
した後、本処理剤を施しても良い。乾燥は一般に90〜
300℃、より好ましくは100〜250℃にて行なわ
れる。
Aluminum may be subjected to degreasing treatment in advance and then directly applied or subjected to chemical conversion treatment such as boehmite treatment and chromate treatment, and then treated with a suitable primer such as acrylic resin type, urethane resin type and epoxy resin type. After applying the treatment, the treatment agent may be applied. Drying is generally 90-
It is carried out at 300 ° C, more preferably 100 to 250 ° C.

【0019】[0019]

【作用】本発明の皮膜は、長期に亘って優れた親水性、
着霜障害抑制効果を持続する機能を、アルミニウム製熱
交換器の伝熱部に与えるものである。本皮膜において、
ポリマー中の第1〜3アミノ基、あるいは第4級アンモ
ニウム基が親水性を付与し、これらの官能基を有するポ
リマーはPVA系ポリマーと架橋剤との反応で高度に架
橋した網状構造樹脂とIPN(Inter Penet
rating Network)構造をとり、親水基が
常に皮膜表面に移行し、あるいは極一部が溶解すること
によって親水性が持続される。従って、水溶性重合体
(I) 、水溶性重合体(II)、および有機架橋剤(III) との
反応で得られる有機皮膜は優れた親水性および親水持続
性を有する。
The film of the present invention has excellent hydrophilicity for a long time,
The heat transfer part of the aluminum heat exchanger is provided with a function of continuing the effect of suppressing the frost formation disorder. In this film,
The tertiary amino group or quaternary ammonium group in the polymer imparts hydrophilicity, and the polymer having these functional groups is a network resin and IPN highly crosslinked by the reaction of the PVA-based polymer and the crosslinking agent. (Inter Penet
A hydrophilic network is formed, and hydrophilic groups are constantly transferred to the surface of the coating film, or a very small portion of the hydrophilic group is dissolved to maintain the hydrophilicity. Therefore, the water-soluble polymer
The organic film obtained by the reaction with (I), the water-soluble polymer (II), and the organic cross-linking agent (III) has excellent hydrophilicity and hydrophilic durability.

【0020】本皮膜中に添加されるシリカ粒子、Li、
Mg、Ba化合物の着霜障害を抑制する効果については
次のように考えられる。まず着霜の発生過程から説明す
る。伝熱面温度が0℃より低い状態で熱交換器が作動す
る場合、空気中の水分が凝縮して伝熱表面に過冷却水滴
が生じ、しばらく過冷却したまま水滴がある大きさまで
生長する。水滴が生長すると隣あった水滴が合体するこ
とが頻繁となり、そのことが刺激となって水滴が凍結
し、氷の結晶核となる。この他、空気中からなんらかの
刺激があるなど、種々の原因によって水滴から氷の結晶
核になる。氷の結晶核になった後は、核の表面から徐々
に樹枝上の結晶が発生し、霜層が形成されていく。過冷
却から始まる着霜の他に、昇華によって伝熱面に直接氷
の結晶核が発生する場合もあるが、空調機や冷凍機の作
動においては、昇華による着霜は少ないと考えられる。
Silica particles, Li, added in the coating
The effect of suppressing the frosting disorder of the Mg and Ba compounds is considered as follows. First, the process of frost formation will be described. When the heat exchanger operates in a state where the heat transfer surface temperature is lower than 0 ° C., water in the air is condensed to generate supercooled water droplets on the heat transfer surface, and the water droplets grow to a certain size while being supercooled for a while. When water droplets grow, adjacent water droplets often coalesce, which stimulates the water droplets to freeze and become ice crystal nuclei. In addition, water droplets become ice crystal nuclei due to various causes such as some irritation from the air. After becoming ice crystal nuclei, crystals on the dendrites gradually form from the surface of the nuclei, and a frost layer is formed. In addition to frost formation starting from supercooling, sublimation may directly generate ice crystal nuclei on the heat transfer surface, but it is considered that frost formation due to sublimation is small in the operation of an air conditioner or a refrigerator.

【0021】以上が着霜の発生過程であるが、着霜量が
増加してくると熱交換器の圧力損失が増大して風量が減
少し、所定の熱交換量を得ることが困難になる。このよ
うな着霜による障害を制御するためには、まず、着霜高
さをできるだけ低くすること、すなわち着霜密度を大き
くすることが必要である。霜層は上記のように過冷却水
滴の凍結から生じるものであるから、着霜密度を大きく
するには結晶核の数、ひいては過冷却水滴の数を増やせ
ばよいと考えられる。
The above is the process of frost formation. When the amount of frost increases, the pressure loss of the heat exchanger increases and the air volume decreases, making it difficult to obtain a predetermined amount of heat exchange. . In order to control such an obstacle due to frost formation, it is first necessary to reduce the frost formation height as much as possible, that is, increase the frost formation density. Since the frost layer is generated from the freezing of supercooled water droplets as described above, it is considered that the number of crystal nuclei, and thus the number of supercooled water droplets, should be increased in order to increase the frost density.

【0022】そこで、過冷却水滴を増やすために、伝熱
面の皮膜において水分子を吸着されるサイトの数を増加
することが必要になる。この目的のために、本発明では
皮膜中に均一に分布させるために、特殊な表面処理を施
した分散性の良いシリカ粒子Li、Mg、Baの化合物
を加えている。空気中の水分が凝縮する際、シリカ粒子
のシラノール基は水分子との結合力が強く、凝縮水を強
く吸着する。その結果シリカ粒子が水分子の吸着サイト
となるため、結晶核の数が増大し、着霜高さを低く制御
することができる。イオンの水和エネルギーが大きいこ
とから、Li、Mg、Ba化合物も同様の効果があっ
た。本皮膜中に添加されるシリカ微粒子は、樹脂中のア
ミノ基と脱水反応することにより皮膜中に固定化される
ため結露水による脱落がなく着霜障害抑制効果を持続で
きると考えられる。
Therefore, in order to increase the number of supercooled water drops, it is necessary to increase the number of sites where water molecules are adsorbed in the film on the heat transfer surface. To this end, in the present invention, compounds of silica particles Li, Mg, and Ba that have been subjected to a special surface treatment and have good dispersibility are added in order to uniformly distribute them in the film. When water in the air is condensed, the silanol groups of the silica particles have a strong bonding force with water molecules and strongly adsorb condensed water. As a result, the silica particles serve as an adsorption site for water molecules, so that the number of crystal nuclei increases and the frost height can be controlled to be low. Since the hydration energy of the ions was large, the Li, Mg, and Ba compounds had the same effect. It is considered that the silica fine particles added to the present film are fixed in the film by dehydration reaction with the amino groups in the resin, and therefore the frost damage prevention effect can be maintained without dropping off due to dew condensation water.

【0023】[0023]

【実施例】次に実施例により本発明を説明する。以下に
示した処理液組成の親水性付与有機高分子樹脂ベース試
料を用いて、実施例1〜6、比較例1〜3に示した内容
の処理板試料を作製し、FACE接触角計CA−P型
(協和界面科学(株)製)を用い、処理直後と室温で流
水72時間浸漬した後の試料表面の接触角を測定するこ
とにより親水性を評価した。結果を表1に示した。着霜
障害抑制効果については、実施例1〜6、比較例1〜3
の処理試料を50mm四方に切断し、処理をしていないア
ルミ面を冷却板上に密着させ、空気温度+2℃、相対湿
度80%、空気流速1m/sec.、アルミ面温度−5
℃、着霜時間2時間の着霜条件で着霜試験を行い、着霜
量、着霜高さを測定した。無処理面の着霜量、着霜高
さ、及び着霜密度を1として、実施例1〜6、比較例1
〜3の処理試料面に発生した着霜量、着霜高さ、及び着
霜密度を比較した結果を表2に示した。
The present invention will be described below with reference to examples. Using the hydrophilicity-imparting organic polymer resin base samples having the treatment liquid compositions shown below, treated plate samples having the contents shown in Examples 1 to 6 and Comparative Examples 1 to 3 were prepared, and FACE contact angle meter CA- Hydrophilicity was evaluated by using P type (manufactured by Kyowa Interface Science Co., Ltd.) and measuring the contact angle of the sample surface immediately after the treatment and after immersion in running water for 72 hours at room temperature. The results are shown in Table 1. Regarding the frosting disorder suppression effect, Examples 1 to 6 and Comparative Examples 1 to 3
The treated sample of No. 1 was cut into a 50 mm square, the untreated aluminum surface was brought into close contact with the cooling plate, and the air temperature was + 2 ° C., the relative humidity was 80%, the air flow rate was 1 m / sec. , Aluminum surface temperature-5
A frosting test was performed under frosting conditions of ℃ and frosting time of 2 hours, and the amount of frost and the height of frost were measured. Examples 1 to 6 and Comparative Example 1 with the amount of frost on the untreated surface, the height of frost, and the frost density being 1
Table 2 shows the results of comparing the frost formation amount, the frost formation height, and the frost formation density generated on the treated sample surfaces of Nos. 3 to 3.

【0024】<ベース試料1>PVA(日本合成化学工
業(株)製、ゴーセノールCH−20)60重量部、カ
チオン性ポリアミド(三井東圧化学(株)製、ユーラミ
ンP5600)を30重量部、水溶性メラミン(三井サ
イアナミッド(株)製、サイメル350)10部。
<Base Sample 1> 60 parts by weight of PVA (Nippon Gosei Kagaku Kogyo Co., Ltd., Gohsenol CH-20), 30 parts by weight of cationic polyamide (Mitsui Toatsu Chemical Co., Ltd., Euramine P5600), water soluble Sexual melamine (Mitsui Cyanamid Co., Ltd., Cymel 350) 10 parts.

【0025】<ベース試料2>カチオン変性PVA(日
本合成化学工業(株)製、ゴーセファイマーK)70重
量部、両性ポリアクリルアミド(昭和高分子(株)製、
コーガム205)20重量部、グリオキザール10重量
部。
<Base sample 2> 70 parts by weight of cation-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., Gohsefimer K), amphoteric polyacrylamide (manufactured by Showa Polymer Co., Ltd.),
20 parts by weight of cogum 205), 10 parts by weight of glyoxal.

【0026】実施例1 脱脂洗浄した厚さ1mmのアルミニウム板(A1100
材)に熱効果型ウレタン樹脂系プライマー(日本パーカ
ライジング(株)製、パルトップ3975)を約1μの
厚さになるようにバーコートし、160℃で約3分間加
熱乾燥した。この皮膜上にベース試料1の固形分に対し
て平均粒径5μのシリカ粒子を30重量%添加し分散さ
せた分散液を膜厚約1μになるようにバーコートし、2
30℃で約3分間加熱乾燥した。
Example 1 A 1 mm thick aluminum plate (A1100) that had been degreased and washed
The material was bar-coated with a heat-effect type urethane resin-based primer (Paltop 3975, manufactured by Nippon Parkerizing Co., Ltd.) to a thickness of about 1 μm, and heated and dried at 160 ° C. for about 3 minutes. On this film, 30% by weight of silica particles having an average particle size of 5 μm was added and dispersed with respect to the solid content of the base sample 1, and the dispersion was bar-coated to a film thickness of about 1 μm.
It was dried by heating at 30 ° C. for about 3 minutes.

【0027】実施例2 実施例1と同様の素材に同様のプライマーを施し、この
プライマー上にベース試料1の固形分に対して平均粒径
0.05μのシリカ粒子を30重量%添加し分散させた
分散液を膜厚約1μになるようにバーコートし、230
℃で約3分間加熱乾燥した。
Example 2 The same material as in Example 1 was applied with the same primer, and 30% by weight of silica particles having an average particle diameter of 0.05 μ was added and dispersed on the solid content of the base sample 1. Bar coating the dispersion to a film thickness of approximately 1μ
It was dried by heating at 0 ° C. for about 3 minutes.

【0028】実施例3 実施例1と同様の素材に同様のプライマーを施し、この
プラシマー上にベース試料1の固形分に対して平均粒径
1μのシリカ粒子を20重量%、LiFを10重量%を
添加し分散させた分散液を膜厚約1μになるようにバー
コートし、230℃で約3分間加熱乾燥した。
Example 3 The same material as in Example 1 was applied with the same primer, and 20% by weight of silica particles having an average particle size of 1 μ and 10% by weight of LiF were added to the solid content of the base sample 1 on this plusmer. Was added and dispersed to form a dispersion having a film thickness of about 1 μm, which was bar-coated and dried by heating at 230 ° C. for about 3 minutes.

【0029】実施例4 実施例1と同様の素材に同様のプライマーを施し、この
プライマー上にベース試料1の固形分に対して平均粒径
1μのシリカ粒子を20重量%、MgCO3 を10重量
%を添加し分散させた分散液を膜厚約1μになるように
バーコートし、230℃で約3分間加熱乾燥した。
Example 4 The same material as in Example 1 was applied with the same primer, and 20% by weight of silica particles having an average particle size of 1 μ and 10% by weight of MgCO 3 were added to the solid content of the base sample 1. %, And the dispersion was dispersed by bar coating to a film thickness of about 1 μm and dried by heating at 230 ° C. for about 3 minutes.

【0030】実施例5 実施例1と同様の素材に同様のプライマーを施し、この
プライマー上にベース試料2の固形分に対して平均粒径
1μのシリカ粒子を20重量%、BaSO4 を20重量
%を添加し分散させた分散液を膜厚約1μになるように
バーコートし、230℃で約3分間加熱乾燥した。
Example 5 The same material as in Example 1 was applied with the same primer, and on this primer, 20% by weight of silica particles having an average particle size of 1 μ and 20% by weight of BaSO 4 with respect to the solid content of the base sample 2. %, And the dispersion was dispersed by bar coating to a film thickness of about 1 μm and dried by heating at 230 ° C. for about 3 minutes.

【0031】実施例6 実施例1と同様の素材に同様のプライマーを施し、この
プライマー上にベース試料2の固形分に対して平均粒径
1μのシリカ粒子を5重量%、リチウムシリケートを3
0重量%を添加し分散させた分散液を膜厚約1μになる
ようにバーコートし、230℃で約3分間加熱乾燥し
た。
Example 6 The same material as in Example 1 was applied with the same primer, and 5% by weight of silica particles having an average particle size of 1 μm and 5% by weight of lithium silicate based on the solid content of the base sample 2 were applied on this primer.
The dispersion liquid to which 0% by weight was added and dispersed was bar-coated to a film thickness of about 1 μm, and dried by heating at 230 ° C. for about 3 minutes.

【0032】比較例1 実施例1と同様の素材に同様のプライマーを施し、この
プライマー上にベース試料1だけの組成で膜厚約1μに
なるようにバーコートし、230℃で約3分間加熱乾燥
した。
Comparative Example 1 The same material as in Example 1 was applied with the same primer, and the primer was bar-coated with the composition of only the base sample 1 to a film thickness of about 1 μm and heated at 230 ° C. for about 3 minutes. Dried.

【0033】比較例2 実施例1と同様の素材に同様のプライマーを施し、この
プライマー上にベース試料2だけの組成で膜厚約1μに
なるようにバーコートし、230℃で約3分間加熱乾燥
した。
Comparative Example 2 The same material as in Example 1 was applied with the same primer, and the primer was bar-coated on the primer with the composition of the base sample 2 only to a film thickness of about 1 μm and heated at 230 ° C. for about 3 minutes. Dried.

【0034】比較例3 実施例1と同様の素材に同様のプライマーを施し、この
プライマー上にPVA(日本合成化学工業(株)製、ゴ
ーセノールGH−20)水溶液を塗布し、200℃で加
熱乾燥した。
Comparative Example 3 The same material as in Example 1 was applied with the same primer, and an aqueous solution of PVA (Gosenol GH-20, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was applied on this primer and dried by heating at 200 ° C. did.

【0035】比較例4 実施例1と同様の素材に同様のプライマーを施し、この
プライマー上にPVA(日本合成化学工業(株)製、ゴ
ーセノールGH−20)水溶液に、平均粒径0.02μ
のシリカ粒子をPVA固形分に対して20重量%添加し
分散させた分散液を塗布し、200℃で加熱乾燥した。
Comparative Example 4 The same material as in Example 1 was applied with the same primer, and an aqueous solution of PVA (Nippon Gosei Kagaku KK, Gohsenol GH-20) aqueous solution was applied onto this primer to give an average particle diameter of 0.02 μm.
20% by weight of the silica particles of the above was added to the PVA solid content and dispersed, and the resulting dispersion was applied, and dried by heating at 200 ° C.

【0036】比較例5 実施例1と同様の素材を脱脂だけ行った。Comparative Example 5 The same material as in Example 1 was degreased.

【0037】実施例7 実用に供する熱交換器(フィンピッチ1.7mm、フィン
幅22mm、管径9.52mm、段ピッチ5.4mm、列数1
列)を脱脂した後、熱硬化型ウレタン樹脂系プライマー
(日本パーカライジング(株)製、パルトップ397
5)を約1μの厚さになるよう浸漬塗布し、160℃で
20分間加熱乾燥した。このプライマー上に、実施例3
に記載した分散液を膜厚約1μになるように浸漬塗布
し、230℃で20分間加熱乾燥した。
Example 7 Practical heat exchanger (fin pitch 1.7 mm, fin width 22 mm, pipe diameter 9.52 mm, stage pitch 5.4 mm, number of rows 1)
After degreasing the column, thermosetting urethane resin-based primer (Nippon Parkerizing Co., Ltd., Paltop 397)
5) was applied by dip coating to a thickness of about 1 μm, and dried by heating at 160 ° C. for 20 minutes. On this primer, Example 3
The dispersion described in 1 above was applied by dip coating to a film thickness of about 1 μm, and dried by heating at 230 ° C. for 20 minutes.

【0038】比較例6 実施例7と同様の熱交換器に同様の方法でプライマー処
理まで行い、比較例1に記載した分散液を膜厚約1μに
なるように浸漬塗布し、230℃で20分間加熱乾燥し
た。
Comparative Example 6 A heat exchanger similar to that of Example 7 was subjected to the same primer treatment as in Example 7, and the dispersion liquid described in Comparative Example 1 was applied by dip coating to a film thickness of about 1 μm. Heat dried for minutes.

【0039】比較例7 実施例7と同様の熱交換器を脱脂だけ行った。Comparative Example 7 The same heat exchanger as in Example 7 was degreased.

【0040】実施例7の熱交換器を空気温度2℃、相対
湿度80%、冷媒温度−6℃、初期前面風速1m/se
c.の着霜条件で着霜試験を行った。尚、送風機回転数
は実験中一定とした。比較例6、及び7の熱交換器との
風路抵抗の比較を図1に記載した。
In the heat exchanger of Example 7, the air temperature was 2 ° C., the relative humidity was 80%, the refrigerant temperature was −6 ° C., the initial front wind speed was 1 m / se.
c. The frosting test was conducted under the frosting conditions of The blower rotation speed was constant during the experiment. The comparison of the air passage resistance with the heat exchangers of Comparative Examples 6 and 7 is shown in FIG.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】表1から、比較例3はPVAの単独皮膜で
あるが、このものの親水性は高くなく、これにシリカを
分散させた比較例4では処理直後の親水性は良好である
が、持続力が乏しいことがわかる。これに比べ比較例
1、および2の本発明の皮膜からシリカ、あるいは金属
化合物を除いた系の親水性は良好であり、本発明の実施
例1〜6の親水持続性はさらに優れていることがわか
る。
From Table 1, Comparative Example 3 is a single film of PVA, but the hydrophilicity of this film is not high. In Comparative Example 4 in which silica is dispersed therein, the hydrophilicity immediately after the treatment is good, but the sustainability is long. It turns out that he lacks strength. On the other hand, the hydrophilicity of the systems obtained by removing the silica or the metal compound from the coatings of the present invention of Comparative Examples 1 and 2 is good, and the hydrophilic durability of Examples 1 to 6 of the present invention is further excellent. I understand.

【0044】表2から、親水性が比較的良好である比較
例1、および2は着霜高さ、着霜量を着霜高さで除して
求めた着霜密度はほぼ1で無処理板とほとんど変わらず
空気抵抗を減少させる効果は期待できない。これに比べ
シリカ、特定金属化合物を含む本発明の実施例1〜6
は、着霜高さは低く、着霜密度は20〜61%大きくな
っており着霜障害抑制効果が認められる。図1に示した
ように、実施例7に記載した本発明処理材は無処理材に
比べ着霜密度が高密度化して着霜高さが低くなる結果、
風路抵抗が小さくなり前面風速(熱交換器への空気の流
入速度)の低下が抑制され、風量が大きくなる。
From Table 2, Comparative Examples 1 and 2, which have relatively good hydrophilicity, have a frost formation height and a frost formation density obtained by dividing the frost formation amount by the frost formation height, which is almost 1 without any treatment. Almost the same as a plate, the effect of reducing air resistance cannot be expected. Compared with this, Examples 1 to 6 of the present invention containing silica and a specific metal compound
The frost formation height is low and the frost formation density is 20 to 61% larger, and the effect of suppressing frost formation is recognized. As shown in FIG. 1, the treated material of the present invention described in Example 7 has a higher frost density and a lower frost height than the untreated material.
The air passage resistance is reduced, the front wind speed (the air inflow speed into the heat exchanger) is suppressed from decreasing, and the air volume is increased.

【0045】[0045]

【発明の効果】以上からわかるように、本発明の熱交換
器は、優れた親水性、親水持続性、および優れた着霜障
害抑制効果を持ち、極めて有用である。
As can be seen from the above, the heat exchanger of the present invention has excellent hydrophilicity, long-lasting hydrophilicity, and excellent frost damage inhibiting effect, and is extremely useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例7、比較例6及び比較例7の各
熱交換器についての着霜試験における前面風速と時間と
の関係を示す図である。
FIG. 1 is a diagram showing a relationship between front wind speed and time in a frosting test for each heat exchanger of Example 7, Comparative Example 6, and Comparative Example 7.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C09D 129/04 PFN 6904−4J (72)発明者 河本 隆雄 静岡県静岡市小鹿3丁目18番1号 三菱電 機株式会社静岡製作所内 (72)発明者 池ケ谷 満 静岡県静岡市小鹿3丁目18番1号 三菱電 機株式会社静岡製作所内 (72)発明者 竹下 倫正 静岡県静岡市小鹿3丁目18番1号 三菱電 機株式会社静岡製作所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location C09D 129/04 PFN 6904-4J (72) Inventor Takao Kawamoto 3-18-1 Oga, Shizuoka-shi, Shizuoka No. Mitsubishi Electric Co., Ltd. Shizuoka Works (72) Inventor Mitsuru Ikegaya 3-18-1, Oka Shizuoka City, Shizuoka Prefecture Mitsubishi Electric Co., Ltd. Shizuoka Works (72) Inventor Tomomasa Takeshita 3-18, Oka Shizuoka City, Shizuoka Prefecture No. 1 Mitsubishi Electric Corporation Shizuoka Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリビニルアルコールおよびその水溶性
誘導体から選ばれる1種以上の水溶性重合体(I) 、1分
子内に第1アミノ基、第2アミノ基、第3アミノ基、第
4級アンモニウム基の群から選ばれる1種以上を含む水
溶性重合体(II)、(I) および(II)と混合可能な架橋剤(I
II) ならびにシリカ微粒子(IV)を含有する水系処理液を
塗布し、乾燥してなる皮膜を有するアルミニウムまたは
アルミニウム合金製熱交換器。
1. One or more water-soluble polymers (I) selected from polyvinyl alcohol and water-soluble derivatives thereof, wherein a primary amino group, a secondary amino group, a tertiary amino group and a quaternary ammonium are included in one molecule. A cross-linking agent (I) which is miscible with the water-soluble polymers (II), (I) and (II) containing at least one selected from the group of groups
A heat exchanger made of aluminum or an aluminum alloy, which has a coating formed by applying an aqueous treatment liquid containing II) and silica fine particles (IV) and drying.
【請求項2】 ポリビニルアルコールおよびその水溶性
誘導体から選ばれる1種以上の水溶性重合体(I) 、1分
子内に第1アミノ基、第2アミノ基、第3アミノ基、第
4級アンモニウム基の群から選ばれる1種以上を含む水
溶性重合体(II)、(I) および(II)と混合可能な架橋剤(I
II) 、シリカ微粒子(IV)ならびにリチウム化合物、マグ
ネシウム化合物、バリウム化合物の群から選ばれる1種
以上の金属化合物(V) を含有する水系処理液を塗布し、
乾燥してなる皮膜を有するアルミニウム、またはアルミ
ニウム合金製熱交換器。
2. One or more water-soluble polymers (I) selected from polyvinyl alcohol and water-soluble derivatives thereof, wherein a primary amino group, secondary amino group, tertiary amino group and quaternary ammonium are included in one molecule. A cross-linking agent (I) which is miscible with the water-soluble polymers (II), (I) and (II) containing at least one selected from the group of groups
II), silica fine particles (IV) and an aqueous treatment liquid containing at least one metal compound (V) selected from the group consisting of lithium compounds, magnesium compounds and barium compounds,
A heat exchanger made of aluminum or an aluminum alloy having a film formed by drying.
JP14720191A 1991-06-19 1991-06-19 Heat exchanger Pending JPH06300482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14720191A JPH06300482A (en) 1991-06-19 1991-06-19 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14720191A JPH06300482A (en) 1991-06-19 1991-06-19 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH06300482A true JPH06300482A (en) 1994-10-28

Family

ID=15424848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14720191A Pending JPH06300482A (en) 1991-06-19 1991-06-19 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH06300482A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152447A (en) * 1997-11-21 1999-06-08 Toto Ltd Surface-treating agent for forming photocatalyzing coating film, and formation of photocatalyzing coating film using the surface-treating agent
JP2001164175A (en) * 1999-12-09 2001-06-19 Kansai Paint Co Ltd Hydrophilifying agent for heat-exchanger fin material
JP2001172547A (en) * 1999-12-21 2001-06-26 Kansai Paint Co Ltd Treatment composition for rendering heat exchanger fin material hydrophilic
EP1154042A1 (en) * 2000-05-12 2001-11-14 Nippon Paint Co., Ltd. Treatment method for making heat exchanger hydrophilic and heat exchanger treated to be hydrophilic
WO2011037137A1 (en) * 2009-09-25 2011-03-31 株式会社神戸製鋼所 Resin composition exhibiting high performance in terms of inhibition of ice and frost formation, and laminated metal plate on which an ice/frost-formation inhibition layer is formed
WO2011065482A1 (en) * 2009-11-30 2011-06-03 日本ペイント株式会社 Anti-corrosion treatment method for aluminium heat exchanger
JP5497971B1 (en) * 2013-03-21 2014-05-21 日本パーカライジング株式会社 Hydrophilic surface treatment agent for aluminum-containing metal heat exchanger with excellent drainage
JP2017043744A (en) * 2015-08-28 2017-03-02 日本パーカライジング株式会社 Surface treatment agent, manufacturing method of coated film and metal material with coated film
KR20170038047A (en) 2014-08-08 2017-04-05 니혼 파커라이징 가부시키가이샤 Hydrophilization treatment agent for aluminum-containing metal material
JP2018070677A (en) * 2016-10-25 2018-05-10 日本パーカライジング株式会社 Surface treatment agent, film and surface treatment method
KR20220156932A (en) 2020-04-28 2022-11-28 디아이씨 가부시끼가이샤 Water-repellent aluminum material and manufacturing method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152447A (en) * 1997-11-21 1999-06-08 Toto Ltd Surface-treating agent for forming photocatalyzing coating film, and formation of photocatalyzing coating film using the surface-treating agent
JP2001164175A (en) * 1999-12-09 2001-06-19 Kansai Paint Co Ltd Hydrophilifying agent for heat-exchanger fin material
JP2001172547A (en) * 1999-12-21 2001-06-26 Kansai Paint Co Ltd Treatment composition for rendering heat exchanger fin material hydrophilic
EP1154042A1 (en) * 2000-05-12 2001-11-14 Nippon Paint Co., Ltd. Treatment method for making heat exchanger hydrophilic and heat exchanger treated to be hydrophilic
WO2011037137A1 (en) * 2009-09-25 2011-03-31 株式会社神戸製鋼所 Resin composition exhibiting high performance in terms of inhibition of ice and frost formation, and laminated metal plate on which an ice/frost-formation inhibition layer is formed
JP2011089112A (en) * 2009-09-25 2011-05-06 Kobe Steel Ltd Resin composition exhibiting high performance in inhibition of ice and frost formation, and laminated metal plate on which ice/frost-formation inhibition layer is formed
CN102549079A (en) * 2009-09-25 2012-07-04 株式会社神户制钢所 Resin composition exhibiting high performance in terms of inhibition of ice and frost formation, and laminated metal plate on which an ice/frost-formation inhibition layer is formed
US9139913B2 (en) 2009-11-30 2015-09-22 Nippon Paint Co., Ltd. Anti-corrosion treatment method for aluminum heat exchanger
WO2011065482A1 (en) * 2009-11-30 2011-06-03 日本ペイント株式会社 Anti-corrosion treatment method for aluminium heat exchanger
US20120288634A1 (en) * 2009-11-30 2012-11-15 Nippon Paint Co., Ltd. Anti-corrosion treatment method for aluminum heat exchanger
CN102892927A (en) * 2009-11-30 2013-01-23 日本油漆株式会社 Anti-corrosion treatment method for aluminium heat exchanger
JP5497971B1 (en) * 2013-03-21 2014-05-21 日本パーカライジング株式会社 Hydrophilic surface treatment agent for aluminum-containing metal heat exchanger with excellent drainage
KR20170038047A (en) 2014-08-08 2017-04-05 니혼 파커라이징 가부시키가이샤 Hydrophilization treatment agent for aluminum-containing metal material
EP3178897A4 (en) * 2014-08-08 2018-05-02 Nihon Parkerizing Co., Ltd. Hydrophilization treatment agent for aluminum-containing metal material
US10221318B2 (en) 2014-08-08 2019-03-05 Nihon Parkerizing Co., Ltd. Hydrophilization treatment agent for aluminum-containing metal material
JP2017043744A (en) * 2015-08-28 2017-03-02 日本パーカライジング株式会社 Surface treatment agent, manufacturing method of coated film and metal material with coated film
WO2017038251A1 (en) * 2015-08-28 2017-03-09 日本パーカライジング株式会社 Surface treatment agent, film production method, and film-equipped metal material
CN107922779A (en) * 2015-08-28 2018-04-17 日本帕卡濑精株式会社 Surface conditioning agent, the manufacture method of overlay film and the metal material with overlay film
JP2018070677A (en) * 2016-10-25 2018-05-10 日本パーカライジング株式会社 Surface treatment agent, film and surface treatment method
KR20220156932A (en) 2020-04-28 2022-11-28 디아이씨 가부시끼가이샤 Water-repellent aluminum material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0485801B1 (en) Heat exchanger
US4954372A (en) Metal surface hydrophilicizing process and composition
JPH03259975A (en) Water-repellent coating composition and heat exchanger coated therewith
JPH0493597A (en) Water repellent coating composition and heat exchanger coated with water repellant coating composition
JPH06300482A (en) Heat exchanger
CA1297613C (en) Composition for forming hydrophilic film on aluminum
US5211989A (en) Clear hydrophilic coating for heat exchanger fins
EP1425083B1 (en) Enthalpy exchanger
US5012862A (en) Hydrophilic fins for a heat exchanger
US5137067A (en) Hydrophilic and corrosion resistant fins for a heat exchanger
JP2004042482A (en) Aluminum material for heat-exchanger, and heat-exchanger using the same
JP3430482B2 (en) Heat exchange material
JPH0719776A (en) Aluminum-containing metal composite for heat exchanger
JP2507060B2 (en) Aluminum heat exchanger and manufacturing method thereof
JP3225793B2 (en) Highly hydrophilic paint
JPH03244680A (en) Water-repellent coating composition and heat exchanger using water repellent-coating composition
JPH0679820A (en) Member excellent in water repellency and anti-frosting properties and manufacture thereof
JPH03244996A (en) Water-repellent coating composition and heat exchanger using same
JP2584109B2 (en) Paint for water-repellent coating and heat exchanger coated with the paint
JPH11201688A (en) Fin material for heat-exchanger
JP2507119B2 (en) Water-repellent coating composition and heat exchanger coated with the water-repellent coating composition
JPH05222339A (en) Water-repellent coating composition and heat exchanger coated with water-repellent coating composition
JP2803798B2 (en) Heat exchanger
JPS58126989A (en) Surface treatment and surface treatment liquid that give hydrophilic property to aluminium product
JPH03251693A (en) Composition for water repellent coating and heat exchanger employing composition for water repellent coating