JPS63198794A - Controller for following-up load fluctuation in pneumatic machinery - Google Patents

Controller for following-up load fluctuation in pneumatic machinery

Info

Publication number
JPS63198794A
JPS63198794A JP2962787A JP2962787A JPS63198794A JP S63198794 A JPS63198794 A JP S63198794A JP 2962787 A JP2962787 A JP 2962787A JP 2962787 A JP2962787 A JP 2962787A JP S63198794 A JPS63198794 A JP S63198794A
Authority
JP
Japan
Prior art keywords
pressure
capacity
control
compressor
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2962787A
Other languages
Japanese (ja)
Inventor
Toshio Kaneko
金子 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2962787A priority Critical patent/JPS63198794A/en
Publication of JPS63198794A publication Critical patent/JPS63198794A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce any loss of power by separating the operation of capacity adjustors from the press-feed state based on a discharge pressure when the operating point of a compressor reaches a blow control line relating to the operating limit of the capacity adjustors. CONSTITUTION:By means of a pressure controller 6 are operated capacity adjustors 3-a, 3-b on the suction sides of respective independent compressing mechanisms 10-1, 10-b so as to control press-feed quantity in such as way as to keep the pressure in a press-feed main pipe 5 constant. When a load decreases and an operating point reaches a capacity control line 12, a pressure control signal from the pressure controller 6 is cut and the capacity adjustors 3-a, 3-b are held so as to be separated from the press-feed state so that blowers 8-a, 8-b are opened to release gas. Therefore, it is possible to prevent a blowing operation in the press-feed state even in the region beyond the quantity decreasing range of a booster at the time of decreasing the load, thereby reducing any loss of power.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気機械の負荷変動追従制御装置に係り、特
に、負荷変動の激しいガス圧送設備に使用される昇圧機
構、例えば圧縮機の負荷変動追従制御に好適な空気機械
の負荷変動追従制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a load fluctuation follow-up control device for air machinery, and in particular to a pressure boosting mechanism used in gas pumping equipment with severe load fluctuations, such as a compressor load control device. The present invention relates to a load fluctuation follow-up control device for an air machine suitable for fluctuation follow-up control.

〔従来の技術〕[Conventional technology]

一般に、多用途に使用されるガス圧送設備においては、
負荷使用量の変動は激しいが圧力は一定で使用する場合
が多い、このようなガス圧送設備の配管系には、複数台
の圧縮機が使用され、負荷変動に応じて圧縮機の容量ま
たは台数を調整する必要がある。
Generally, in gas pressure transmission equipment used for multiple purposes,
Multiple compressors are used in the piping system of such gas pumping equipment, where load usage fluctuates widely but pressure is often kept constant, and the capacity or number of compressors changes depending on load fluctuations. need to be adjusted.

容量を調整するために、圧縮機は容量調整装置を有して
おり、遠心圧縮機の場合における容量制御の手段を、第
3図および第4図を参照して説明する。
In order to adjust the capacity, the compressor has a capacity adjustment device, and the means for capacity control in the case of a centrifugal compressor will be explained with reference to FIGS. 3 and 4.

ここに第3図は、従来のガス圧送設備における圧縮機の
容量制御装置の系統図、第4図は、第3図における圧縮
機の作動点特性図である。
Here, FIG. 3 is a system diagram of a compressor capacity control device in a conventional gas pumping facility, and FIG. 4 is an operating point characteristic diagram of the compressor in FIG. 3.

第3図に示すように、従来のガス圧送設備では圧送本管
5の圧力が一定となるように、圧力制御装置6によって
複数台の圧縮機1,2.・・・・・・が制御される。
As shown in FIG. 3, in conventional gas pressure feeding equipment, a plurality of compressors 1, 2, . ...is controlled.

すなわち、負荷が減少したときには、圧送本管5の圧力
が上昇することになるので、圧力制御装置6によって各
圧縮機1,2の圧送量を減少させるように容量調整装置
(例えば吸入弁)3,4が絞られる。この結果、圧縮機
の作動点は、第4図に示すように、定風圧上のA点から
B点に移行し、さらに圧送@(風量)を減少させる場合
には、サージング発生領域となる境界線(以下サージラ
インという)11との交点である0点に移行することに
なる。
That is, when the load decreases, the pressure in the pressure main pipe 5 increases, so the pressure control device 6 adjusts the capacity adjustment device (for example, suction valve) 3 to reduce the amount of pressure delivered by each compressor 1, 2. , 4 are narrowed down. As a result, the operating point of the compressor shifts from point A to point B on the constant air pressure, as shown in Figure 4, and when the pressure is further reduced, the boundary becomes the surging region. It will move to point 0, which is the intersection with line (hereinafter referred to as surge line) 11.

一方、サージライン11における運転を防止させるため
に、サージライン11の手前側に、圧気を大気に開放し
て無負荷運転をするような、いわゆる放風制御ライン1
2′を設け、この放風制御ライン12′上のD点より小
風量側で圧縮機を運転させないように、第73図に示す
放風装置!(例えば放風弁)8からガスを放出させるよ
う放風制御装@7によって制御する。
On the other hand, in order to prevent operation in the surge line 11, a so-called air discharge control line 1 is installed in front of the surge line 11, which releases pressurized air to the atmosphere and performs no-load operation.
2' is provided to prevent the compressor from operating on the smaller air volume side than point D on the air blowing control line 12', as shown in FIG. 73! (For example, a blow-off valve) 8 is controlled by a blow-off control device @7 to release gas.

この運転中の、各圧縮機の放風装置8からのガスの放出
量の総和量が、いずれかの圧縮機の容量より上廻オ)つ
た場合には、該当する圧縮機を停止させて圧縮機運転台
数の調整を行う。
During this operation, if the total amount of gas discharged from the air blowing device 8 of each compressor exceeds the capacity of any of the compressors, the relevant compressor is stopped and the compressor is Adjust the number of vehicles in operation.

なお、この種の装置に関するものとして、特開昭58−
15793号公報記載の圧縮機の無負荷運転制御装置が
知られている、 〔発明が解決しようとする問題点〕 上記従来の制御装b!では、あるプラントなどの負荷使
用数の変動幅が大きい場合、ガス圧送配管系における圧
縮機の運転台数調整の過渡時に、圧送圧力状態における
放風運転となるため動力の損失となり、また、負荷変動
の繰返し頻度が高い場fには、圧縮機の起動停止頻度が
高くなるため、運転管理がわずられしいという問題およ
び装置の機械的寿命が短くなるという問題があり、これ
を防止するためには放風運転を継続させなければならな
いという問題があった。
Regarding this type of device, Japanese Patent Application Laid-Open No. 1986-
[Problems to be solved by the invention] The above-mentioned conventional control device b! If there is a large fluctuation range in the number of load used in a certain plant, etc., during a transition period when adjusting the number of operating compressors in the gas pressure piping system, air is discharged under the pressure state, resulting in power loss, and load fluctuations. If f is repeated frequently, the frequency of starting and stopping the compressor increases, which causes the problem of troublesome operation management and the problem of shortening the mechanical life of the equipment.To prevent this, There was a problem in that the ventilation operation had to be continued.

本発明は、上記従東技術の問題点を解決するためになさ
れたもので、負荷変動があるガス圧送設備における昇圧
機構(例えば圧縮機)の制御幅を拡大し、負荷減量時に
昇圧機構の減量幅を越えた領域においても圧送圧力状態
における族1!1i1i$1転を防止させ、動力の損失
を低減し、装置の機械的寿命を向上しうる空気機械の負
荷変動追従制御装置を提供することを、その目的とする
ものである。
The present invention was made in order to solve the problems of the above-mentioned Juto technology, and it expands the control range of the pressure boosting mechanism (for example, a compressor) in gas pressure feeding equipment where the load fluctuates, and reduces the pressure of the pressure boosting mechanism when the load is reduced. To provide a load fluctuation follow-up control device for an air machine, which can prevent group 1!1i1i$1 rotation in a pumping pressure state even in an area exceeding the width, reduce power loss, and improve the mechanical life of the device. Its purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明に係る空気機械の負
荷変動追従制御装置の構成は、負荷変動のあるガス圧送
配管系に複数の吸込口を有する多軸並列形の昇圧機構を
備え、当該昇圧機構の容量制御運転時に、当該昇圧機構
の作動点が、前記複数の吸込口にそれぞれ装備されてい
る容量調整装にした圧送圧力状態から切り離して絞り込
むための容量制御装置を設けたものである。
In order to achieve the above object, the configuration of the load fluctuation follow-up control device for an air machine according to the present invention includes a multi-shaft parallel pressure boosting mechanism having a plurality of suction ports in a gas pressure transmission piping system subject to load fluctuations. A capacity control device is provided for narrowing down the operating point of the pressure boosting mechanism during capacity control operation of the pressure boosting mechanism by separating it from the pumping pressure state set by the capacity adjusting devices respectively equipped at the plurality of suction ports. .

なお付記すると、上記目的は、1台の駆動機によって独
立した吸込口を有する複数の昇圧機構を駆動できる、例
えば多軸並列形の圧縮機における、各昇圧機構部を圧送
圧力状態から切離す容量制御機構を採用することによっ
て達成されるものである。
As an additional note, the above purpose is to increase the capacity to separate each boosting mechanism from the pumping pressure state in, for example, a multi-shaft parallel compressor in which a single drive machine can drive multiple boosting mechanisms with independent suction ports. This is achieved by employing a control mechanism.

〔作用〕[Effect]

圧縮機の昇圧機構部の吸込側に設置された容量調整装置
を絞ることにより、圧縮機の風量−風圧特性曲線は、先
に第4図に示したごとく、風量および圧力ともに減少す
る。したがって、負荷変動時に負荷が減少してきた場合
、圧縮機の作動点は、圧送状態圧力における放風制御ラ
インとの交点まで容量調整装置を絞ったのち、さらに絞
り込むと、圧力は圧送状態圧力より低下するとともに風
量も減少するにの状態において、圧縮機吐出ガスを大気
または吸込側へ放風装置を介して放出させることによっ
て圧送状711と切離すことができる。この運転状態に
おいては、圧送圧力放風状態に比較して仕事量が減少す
るため動力の損失の節約がはかられる。
By throttling the capacity adjusting device installed on the suction side of the pressure boosting mechanism of the compressor, the air volume-air pressure characteristic curve of the compressor decreases both the air volume and the pressure, as shown in FIG. 4 above. Therefore, when the load decreases during load fluctuations, the operating point of the compressor is to reduce the capacity adjustment device to the point where it intersects with the air discharge control line at the pumping state pressure, and then narrow it down further, the pressure will drop below the pumping state pressure. At the same time, in a state where the air volume also decreases, the compressor discharge gas can be separated from the pumping shape 711 by discharging it to the atmosphere or the suction side via the air blowing device. In this operating state, the amount of work is reduced compared to the pressure-feeding, pressure-discharging state, so power loss can be saved.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図および第2図を参照し
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

ここに第1図は、本発明の一実施例に係る2軸並列形圧
縮機の容量制御装置の系統図、第2図は、第1図におけ
る圧縮機の作動点説明図である。第1図中、第3図と同
一符号のものは従来の装置と同等部分を示している。
FIG. 1 is a system diagram of a capacity control device for a two-shaft parallel compressor according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of operating points of the compressor in FIG. 1. In FIG. 1, the same reference numerals as in FIG. 3 indicate parts equivalent to those of the conventional device.

第1図に示す装置は、先に従来技術を説明した第3図と
同様、ガス圧送設備に関するもので、圧力制御装置6に
よって、昇圧機端に係る複数台(第1図では2台を示す
)の圧縮機構部が制御されるものを示し、図中、実線矢
印はガスの流れ、破線矢印は制御信号系を示している。
The device shown in FIG. 1 is related to gas pressure feeding equipment, similar to the device shown in FIG. 3 which explained the prior art. ) is controlled, and in the figure, solid line arrows indicate the flow of gas, and broken line arrows indicate the control signal system.

なお、圧力制御装置[¥6は、設定圧と実測圧の偏差が
0となるように制御する。例えば圧力指示調節計を用い
るもので、6aは、プロセス圧力を電子信号に変換させ
る圧力変換器である。
Note that the pressure control device [¥6] controls so that the deviation between the set pressure and the measured pressure becomes 0. For example, a pressure indicating regulator is used, and 6a is a pressure converter that converts the process pressure into an electronic signal.

第1図において、圧縮機は、駆動機13によって駆動さ
れ、独立した吸込口14−aおよび14−bを有する圧
縮機構部10−aおよび10−bによって構成される2
軸通列形圧縮機10を示す。
In FIG. 1, the compressor is driven by a drive machine 13 and includes two compression mechanism sections 10-a and 10-b having independent suction ports 14-a and 14-b.
A shaft-in-line compressor 10 is shown.

前記圧力制御装置6によって、各独立した前記圧縮機構
部10−aおよび10−bの吸込側に設置されている容
量調整装置(例えば吸込絞り弁)3  aおよび:(−
bが作動し、負荷変動に応じて圧送本管5の圧力が一定
となるよう圧送量を制御するものである。
The pressure control device 6 controls the capacity adjustment devices (for example, suction throttle valves) 3a and :(-
b is activated to control the pumping amount so that the pressure in the pumping main pipe 5 remains constant according to load fluctuations.

圧力制御装置6の制御信号の途中にある9は、第2図に
示すサージライン11 (11−8,11−bの総称)
よりわずかに大風量側になるように、圧送圧力と流量の
信号から演算処理される放風制御ラインに係る容量制御
ライン12(12−a。
9 in the middle of the control signal of the pressure control device 6 is the surge line 11 (generic name for 11-8, 11-b) shown in FIG.
The capacity control line 12 (12-a) is related to the air discharge control line which is calculated based on the pumping pressure and flow rate signals so that the air volume is slightly larger.

12−bの総称)を設定するための容量制御装置である
。この容量制御装置9は、例えばプログラム演算処理タ
イプの流量指示調節計を用いるもので、9a、9bは、
プロセス流量を電子信号に変換させる流量変換器である
。容量制御装置9は、流量と圧力の2信号により制御す
る、いわゆるカスケード制御装置9A、9Bを具備して
いる。これら容量制御装置9は、プラントの負荷変動時
に負荷量が減少した場合に、圧縮機10の作動点が第2
図に示す容量制御ライン12 (12−a。
12-b) is a capacity control device for setting. This capacity control device 9 uses, for example, a program calculation processing type flow rate indicating controller, and 9a and 9b are as follows:
A flow converter that converts process flow into an electronic signal. The capacity control device 9 includes so-called cascade control devices 9A and 9B that are controlled by two signals of flow rate and pressure. These capacity control devices 9 are configured to adjust the operating point of the compressor 10 to a second level when the load amount decreases during load fluctuations in the plant.
Capacity control line 12 (12-a) shown in the figure.

12−b)に到達したときには、圧力制御装置6からの
圧力制御信号をカットして、容量i1[装置(吸込絞り
弁)3−a、3−bを保持させる制御、および圧送圧力
状態より切離して容量調整装置3−a、3−bを絞り込
むと同時に放風装置(例えば放風弁)8−a、8−bを
開いてガスを放出させる制御を行うものである。
12-b), the pressure control signal from the pressure control device 6 is cut and the capacity i1 [device (suction throttle valve) 3-a, 3-b is controlled to be held and disconnected from the pumping pressure state. At the same time, the capacity adjusting devices 3-a and 3-b are narrowed down, and at the same time, the air blowing devices (for example, blowing valves) 8-a and 8-b are opened to release the gas.

このような構成の圧縮機の容量制御装置の、特に負荷変
動追従制御動作について説明する。
In particular, the load fluctuation follow-up control operation of the compressor capacity control device having such a configuration will be described.

第2図に示す圧縮機の作動点説明図は、状態■は、圧縮
機構部10−a、10−bいずれも圧送の状態で、その
それぞれの作動点と圧縮機構部10−a、1.0−b組
合せた状態とを横軸に風量、縦軸に圧力をとって示して
いる。また状態■は、圧縮機構部10−aが圧送状態圧
力、風量から切離された最小放出開度制御状態を示すも
のである。
In the diagram illustrating the operating points of the compressor shown in FIG. 2, in state (2), both the compression mechanisms 10-a and 10-b are in a pressure-feeding state, and the respective operating points and the compression mechanisms 10-a, 1. The 0-b combination state is shown with air volume on the horizontal axis and pressure on the vertical axis. Further, state (2) indicates a minimum discharge opening control state in which the compression mechanism section 10-a is separated from the pumping state pressure and air volume.

2軸並列形圧縮機】、0は、独立した吸込口14nおよ
び14−bを有する圧縮機構部10−8および10−b
が並列に作動しているため、第2図の状態■に示すごと
く、それぞれの圧縮機構部の定風圧上における最大風量
をQaおよびQbとし、定風圧−ににおける容量制御ラ
イン12−aおよび12−b作動点における絞り風量を
1 / 2 Qaおよび1 / 2 Qbとすれば、こ
の圧縮機の全体の定風圧上の作動範囲風量は、最小風量
のとき1/2 (Qa + Qb ) 、最大風量のと
き(Qll +Qb )で、その間となる。
2-shaft parallel compressor], 0 is a compression mechanism section 10-8 and 10-b having independent suction ports 14n and 14-b.
are operating in parallel, the maximum air volume of each compression mechanism section at constant air pressure is set as Qa and Qb, and the capacity control lines 12-a and 12 at constant air pressure are -b If the throttle air volume at the operating point is 1/2 Qa and 1/2 Qb, the operating range air volume of this compressor at constant air pressure is 1/2 (Qa + Qb) at the minimum air volume, and 1/2 (Qa + Qb) at the maximum When the air volume is (Qll + Qb), it will be in between.

したがって、2軸通列形圧縮機10全体の作動範囲に対
して負荷変動追従時には、それぞれの圧縮機構部10−
8および10−bの容量調整装置(吸込絞り弁)3−a
および3−bに追従優先順位を設けるよう圧力制御装置
6からの圧力制御信号に対して容量制御装置9を制御さ
せ、負荷減量制御時において順次追従制御させて両者と
も容量制御ライン12−8および12−bに到達した場
合に、第2図の「状態■」に示すごとく、最初に容量制
御ライン12− ;iに到達保持していた容量調整装置
;3−aを圧送状態圧力、風量から切離して最小放出開
度状態に絞り込むと同時に、放出装置8−a (放風弁
)よりこの最小放出ガスを放出させる制御をする。この
場合、後から容欲制御ライン12−bに到達した容量?
14整装置3−bは第2図の「状態■」に示すように圧
送状態制御を継続する。
Therefore, when following load fluctuations in the entire operating range of the two-shaft in-line compressor 10, each compression mechanism section 10-
8 and 10-b capacity adjustment device (suction throttle valve) 3-a
The capacity control device 9 is controlled in response to the pressure control signal from the pressure control device 6 so as to provide a follow-up priority order for the lines 12-8 and 3-b, and the follow-up control is performed sequentially during load reduction control so that both the capacity control lines 12-8 and When reaching 12-b, as shown in "Status ■" in Figure 2, the capacity control line 12-;i is first reached and the capacity adjustment device that was holding; 3-a is changed from the pumping state pressure and air volume. At the same time, the discharge device 8-a (blowing valve) is controlled to discharge this minimum discharge gas. In this case, the capacity that reached the appetite control line 12-b later?
The 14-regulating device 3-b continues to control the pumping state as shown in "state 2" in FIG.

さらにプラントの負荷が減少して追従制御をする場合に
は、後から容量制御ラインに到達した容量調整装置3−
bも、先に容量制御ラインに到達して圧送状態より切離
した制御と同様に制御する。
Furthermore, when the load of the plant decreases and follow-up control is performed, the capacity adjustment device 3-
b is also controlled in the same way as the control that reached the capacity control line first and was disconnected from the pumping state.

なお、負荷増量制御時には、上記減量制御時と全く逆順
序の制御である。
Note that during load increase control, control is performed in a completely reverse order to the above-mentioned decrease control.

したがって、2軸位列形遠心圧縮機10に本制御方式を
採用すると、前述の独立した圧縮機構部]0−8および
10−bの容量を同一とすれば、圧送状態の運転制御幅
は従来の制御方式の運転制御幅の2倍に拡大する。また
、負荷減量時に圧縮機の減量幅を越える減量領域におい
ても、圧送状態における放風運転を防止できるため、動
力の損失を軽減できる。この場合、圧送状態切離し時の
動力は一般に吐出圧力が5〜8kg/cdG程度の動力
空気源用の場合、圧送状態放風運転時の約40%である
Therefore, if this control method is adopted for the two-axis aligned centrifugal compressor 10, and if the capacity of the above-mentioned independent compression mechanism sections 0-8 and 10-b is the same, the operational control width in the pumping state will be the same as before. The operational control width of the control method will be expanded to twice that of the previous control method. Further, even in a region where the load is reduced in a range exceeding the reduction range of the compressor, air blowing operation in the pumping state can be prevented, so power loss can be reduced. In this case, the power when the pumping state is disconnected is generally about 40% of the power during the pumping state air discharge operation in the case of a power air source with a discharge pressure of about 5 to 8 kg/cdG.

本実施例によれば、負荷変動があるガス圧送設備におい
て、圧縮機の運転制御幅が拡大するので運転管理のオ)
ずられしさが防止でき、また、負荷減量時に圧縮機の減
量幅を越えた領域においても圧送状態数風量運転を防止
できるため、動力の損失を節約できる効果がある。
According to this embodiment, in gas pressure transmission equipment where load fluctuations occur, the range of compressor operation control is expanded, so operation management is improved.
It is possible to prevent misalignment, and even in a region where the compressor exceeds the reduction range when the load is reduced, it is possible to prevent the pumping state from operating at several air volume, which has the effect of saving power loss.

なお、前述の実施例では、ガス圧力設備における2軸位
列形圧縮機の例について説明したが、本発明はこれに限
定されるものではなく、負荷変動のあるガス圧送配管系
における多軸並列形の昇圧機構、例えばブロワ等空気機
械に広く適用できるものである。
In the above embodiment, an example of a two-axis parallel compressor in gas pressure equipment was explained, but the present invention is not limited to this, and the present invention is not limited to this. This type of pressure boosting mechanism can be widely applied to air machines such as blowers.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、負荷変動があるガ
ス圧送設備における昇圧機構(例えば圧縮機)の制御幅
を拡大し、負荷減量時に昇圧機構の減量幅を越えた領域
においても圧送圧力状態における放風運転を防止させ、
動力の損失を低減し、装置の機械的寿命を向上しうる空
気機械の負荷変動追従制御装置を提供することができる
As described above, according to the present invention, the control range of the pressure boosting mechanism (for example, a compressor) in gas pressure feeding equipment where load changes is expanded, and the pumping pressure can be increased even in a region exceeding the pressure reduction range of the pressure boosting mechanism when the load is reduced. prevent air discharge operation in the state,
It is possible to provide a load fluctuation tracking control device for an air machine that can reduce power loss and improve the mechanical life of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る2軸位列形圧縮機の
容量制御装置の系統図、第2図は、第1図における圧縮
機の作動説明図、第3図は、従来のガス圧送設備におけ
る圧縮機の容量制御装置の系統図、第4図は、第;3図
における圧縮機の作動点特性図である。 3−a、3−b・・・容量調整装置、5・・・圧送本管
、6・・・圧力制御装置、8−a、8−b・・・放風装
置、9・・・容量制御装置、】0・・・2軸位列形圧縮
機、1.0−a、 1’0−b−−・圧縮機構部、12
−a。 12− b−・・容量制御ライン、14−a、14−b
・・・吸込口。
Fig. 1 is a system diagram of a capacity control device for a two-shaft in-line compressor according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the operation of the compressor in Fig. 1, and Fig. 3 is a conventional FIG. 4 is a system diagram of a capacity control device for a compressor in a gas pumping facility, and is an operating point characteristic diagram of the compressor in FIG. 3. 3-a, 3-b... Capacity adjustment device, 5... Pressure feeding main pipe, 6... Pressure control device, 8-a, 8-b... Air blowing device, 9... Capacity control Apparatus, ] 0... 2-axis in-line compressor, 1.0-a, 1'0-b --- Compression mechanism section, 12
-a. 12-b- Capacity control line, 14-a, 14-b
...Suction port.

Claims (1)

【特許請求の範囲】[Claims] 1、負荷変動のあるガス圧送配管系に複数の吸込口を有
する多軸並列形の昇圧機構を備え、当該昇圧機構の容量
制御運転時に、当該昇圧機構の作動点が、前記複数の吸
込口にそれぞれ装備されている容量調整装置の作動限界
に係る放風制御ラインに到達したときに、前記容量調整
装置の動作を、吐出圧力を基にした圧送圧力状態から切
り離して絞り込むための容量制御装置を設けたことを特
徴とする空気機械の負荷変動追従制御装置。
1. A gas pressure transmission piping system with load fluctuations is equipped with a multi-shaft parallel pressure boosting mechanism having multiple suction ports, and during capacity control operation of the pressure boosting mechanism, the operating point of the pressure boosting mechanism is at the plurality of suction ports. A capacity control device for separating and narrowing down the operation of the capacity adjustment device from the pumping pressure state based on the discharge pressure when reaching the air discharge control line related to the operating limit of each installed capacity adjustment device. A load fluctuation follow-up control device for an air machine, characterized in that:
JP2962787A 1987-02-13 1987-02-13 Controller for following-up load fluctuation in pneumatic machinery Pending JPS63198794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2962787A JPS63198794A (en) 1987-02-13 1987-02-13 Controller for following-up load fluctuation in pneumatic machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2962787A JPS63198794A (en) 1987-02-13 1987-02-13 Controller for following-up load fluctuation in pneumatic machinery

Publications (1)

Publication Number Publication Date
JPS63198794A true JPS63198794A (en) 1988-08-17

Family

ID=12281325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2962787A Pending JPS63198794A (en) 1987-02-13 1987-02-13 Controller for following-up load fluctuation in pneumatic machinery

Country Status (1)

Country Link
JP (1) JPS63198794A (en)

Similar Documents

Publication Publication Date Title
US6561766B2 (en) Oil free screw compressor operating at variable speeds and control method therefor
US7922457B2 (en) System and method for controlling a variable speed compressor during stopping
US11686310B2 (en) Method for controlling a rotary screw compressor
JPH1082391A (en) Control device of two-stage screw compressor
JPS63198794A (en) Controller for following-up load fluctuation in pneumatic machinery
EP0932091A3 (en) Method and apparatus for limiting a critical variable of a group of compressors or an individual compressor
JP2000054977A (en) Intermediate-stage pressure control method for screw compressor
JP3384894B2 (en) Turbo compressor capacity control method
JP3406514B2 (en) Method and apparatus for adjusting compressor capacity
JP2508695B2 (en) Method and apparatus for operating a plurality of compressors in parallel
JPS58167889A (en) Apparatus for running compressor
WO1999054628A1 (en) Adapted surge limit in a centrifugal compressor
JPH109147A (en) Reciprocating compressor control method
JP2005076500A (en) Method for switching air compressor
JPS6350692A (en) Screw type expander compressor
JPH09195982A (en) Protecting method for centrifugal compressor
JPH07332248A (en) Method and device for controlling combination number of turbo-compressors and displacement compressors and air source for compressor equipment
JPH08219088A (en) Multistage compression device and operation control method thereof
JPS6143287A (en) Operation control for compressor
JP2774433B2 (en) Centrifugal compressor capacity control device
JPH0739840B2 (en) Control method of multi-stage centrifugal compressor
JP2022032735A (en) Multi-stage air compressor
JP2001153091A (en) Method of starting multi-stage compression system and multi-stage compression system
JPH10238474A (en) Operation control method for air compressor
JPS59119089A (en) Capacity controlling apparatus for nitrogen compressor