JP3406514B2 - Method and apparatus for adjusting compressor capacity - Google Patents

Method and apparatus for adjusting compressor capacity

Info

Publication number
JP3406514B2
JP3406514B2 JP11454698A JP11454698A JP3406514B2 JP 3406514 B2 JP3406514 B2 JP 3406514B2 JP 11454698 A JP11454698 A JP 11454698A JP 11454698 A JP11454698 A JP 11454698A JP 3406514 B2 JP3406514 B2 JP 3406514B2
Authority
JP
Japan
Prior art keywords
compressor
pressure
turbo compressor
speed
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11454698A
Other languages
Japanese (ja)
Other versions
JPH11303792A (en
Inventor
治雄 三浦
一樹 高橋
秀夫 西田
直彦 高橋
康雄 福島
稔 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11454698A priority Critical patent/JP3406514B2/en
Publication of JPH11303792A publication Critical patent/JPH11303792A/en
Application granted granted Critical
Publication of JP3406514B2 publication Critical patent/JP3406514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機の容量調節
方法および容量調節装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor capacity adjusting method and a capacity adjusting apparatus.

【0002】[0002]

【従来の技術】従来の圧縮機の容量制御について、図3
ないし図5を参照して説明する。図3は、従来の圧縮機
の制御装置構成を示す系統図、図4は、ターボ圧縮機の
定風圧制御の動作を説明する線図、図5は、容積形圧縮
機の定風圧制御の動作を説明する線図である。一般に、
圧縮機単体の制御についてみると、図3に示すように、
駆動機22によって駆動される空気圧縮機21の吸込ラ
インに吸込弁24を設け、圧縮空気を需要側のプラント
へ送る吐出ラインに逆止弁25、吐出圧力検出器26を
設け、さらに逆止弁25の上流側に放風弁23を備えて
いる。
2. Description of the Related Art A conventional compressor capacity control is shown in FIG.
It will be described with reference to FIGS. FIG. 3 is a system diagram showing the configuration of a conventional compressor control device, FIG. 4 is a diagram for explaining the operation of constant wind pressure control of a turbo compressor, and FIG. 5 is an operation of constant wind pressure control of a positive displacement compressor. FIG. In general,
As for control of the compressor alone, as shown in FIG.
The suction line of the air compressor 21 driven by the drive unit 22 is provided with a suction valve 24, the discharge line for sending compressed air to the plant on the demand side is provided with a check valve 25, a discharge pressure detector 26, and a check valve. An exhaust valve 23 is provided on the upstream side of 25.

【0003】このような圧縮機の容量調節手段は種々あ
るが、例えば該圧縮機がターボ圧縮機で定風圧オン・オ
フ制御の場合を図4に示す。図4は、横軸に流量Q、縦
軸に吐出圧力Pdをとり、実線で特性曲線を示してい
る。図4に示すように、プラント設定圧力Pdpになる
ように圧縮機吐出ライン圧力が放風弁開圧力Pdhに到
達すると放風弁23を開き、圧縮機吐出ライン圧力が放
風弁閉圧力Pdlまで低下すると放風弁23を閉じる制
御、すなわち定風圧容量調節制御を行う。
There are various means for adjusting the capacity of such a compressor. For example, FIG. 4 shows a case where the compressor is a turbo compressor and constant wind pressure on / off control is performed. In FIG. 4, the horizontal axis represents the flow rate Q and the vertical axis represents the discharge pressure Pd, and the solid line shows the characteristic curve. As shown in FIG. 4, when the compressor discharge line pressure reaches the blowoff valve opening pressure Pdh so as to reach the plant set pressure Pdp, the blowoff valve 23 is opened, and the compressor discharge line pressure reaches the blowoff valve closing pressure Pdl. When it decreases, the control for closing the blowoff valve 23, that is, the constant wind pressure capacity adjustment control is performed.

【0004】また、該圧縮機が容積形圧縮機の場合に
は、図5に示すように圧縮機の特性曲線が変わるのみで
基本的な定風圧容量調節制御方法は同じである。放風弁
が開いているときは、すなわち、プラントの空気消費量
よりも圧縮機設備の供給空気量が多いために放風弁が開
いたものであり、この状態の圧縮機運転はできるだけエ
ネルギーを節約した方がよいのは明らかである。
When the compressor is a positive displacement compressor, the basic constant wind pressure capacity control method is the same except that the characteristic curve of the compressor is changed as shown in FIG. When the blow-off valve is open, that is, the blow-off valve is open because the amount of air supplied to the compressor equipment is larger than the air consumption of the plant, and the compressor operation in this state consumes as much energy as possible. Obviously it is better to save.

【0005】このため、例えば図3に示した例では、吸
込ラインに吸込絞り弁24を設け、放風弁開運転時には
該吸込絞り弁24を閉じることによって圧縮機消費動力
が最小になるようにする。なお、吸込絞り弁の閉状態は
ターボ圧縮機の場合には、サージング発生を回避するた
めの最小絞り開度を言う。放風弁開運転、すなわちアン
ロード運転時の動力は、通常、定格動力の約20〜30
%である。
For this reason, for example, in the example shown in FIG. 3, the suction throttle valve 24 is provided in the suction line, and the suction throttle valve 24 is closed when the blowoff valve is opened so that the power consumption of the compressor is minimized. To do. In the case of a turbo compressor, the closed state of the suction throttle valve is the minimum throttle opening for avoiding the occurrence of surging. The power during the blow-off valve opening operation, that is, the unloading operation is usually about 20 to 30 times the rated power.
%.

【0006】プラントが大きくなり、かかる圧縮機を定
風圧制御複数台並列運転する場合においても、基本の容
量調節運転方法は上述と変わらない。複数台運転するこ
とにより、放風弁開圧力Pdhをプラント設定圧力Pd
pに近付けられるので運転中の動力を低減できるメリッ
トがある。しかし、放風弁開、すなわちアンロード運転
時の消費動力は低減することができない。
Even when the plant becomes large and a plurality of constant air pressure control compressors are operated in parallel, the basic capacity adjusting operation method is the same as described above. By operating multiple units, the blowoff valve opening pressure Pdh is set to the plant set pressure Pd.
Since it can be brought close to p, there is an advantage that the power during driving can be reduced. However, the power consumption at the time of opening the blow-off valve, that is, during unload operation cannot be reduced.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記従来技
術の実状に鑑みなされたもので、本発明の目的は、経済
的な圧縮機構成で、かつアンロード運転状態(放風弁開
運転状態)の運転時間を低減し、トータルの運転消費動
力を低減しうる圧縮機の容量調節方法およびその装置を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional state of the art, and an object of the present invention is to provide an economical compressor configuration and an unloading operation state (blow-off valve opening operation). It is to provide a compressor capacity adjusting method and a device thereof that can reduce the operating time of (state) and reduce the total operating power consumption.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る圧縮機の容量調節装置の構成は、少な
くとも1台の回転数制御可能なターボ圧縮機を含む複数
台の空気圧縮機を並列に運転するプラントにおける圧縮
機の容量調節装置において、前記ターボ圧縮機を定風圧
制御するときに、該ターボ圧縮機の回転数制御圧力を、
他の空気圧縮機の放風弁開設定圧力よりも低くし、かつ
該ターボ圧縮機の放風弁開設定圧力は他の空気圧縮機の
放風弁開設定圧力よりも高く設定した制御装置を備えた
ものである。
In order to achieve the above object, the structure of a compressor capacity adjusting apparatus according to the present invention comprises a plurality of air compressors including at least one rotational speed controllable turbo compressor. In a compressor capacity control device in a plant operating machines in parallel, when controlling the constant air pressure of the turbo compressor, the rotational speed control pressure of the turbo compressor,
A control device is set to be lower than the blowoff valve open set pressure of another air compressor, and the blowoff valve open set pressure of the turbo compressor is set higher than the blowoff valve open set pressure of the other air compressor. Be prepared.

【0009】また、上記目的を達成するために、本発明
に係る圧縮機の容量調節方法の第一の構成は、少なくと
も1台の回転数制御可能なターボ圧縮機を含む複数台の
空気圧縮機を並列に運転するプラントにおける圧縮機の
容量調節方法において、前記ターボ圧縮機を回転数制御
によって定風圧制御し、最小回転数に到達し、さらに需
要側の必要流量が少なくても回転数は最小回転数を保持
し、プラント圧力が定風圧制御圧力よりも高い設定圧力
まで上昇するときに、放風弁を開くようにしたものであ
る。
In order to achieve the above-mentioned object, the first structure of the compressor capacity adjusting method according to the present invention has a plurality of air compressors including at least one rotational speed controllable turbo compressor. In a compressor capacity adjusting method in a plant that operates in parallel, the turbo compressor is controlled at a constant wind pressure by rotation speed control, reaches a minimum rotation speed, and the rotation speed is minimum even if the required flow rate on the demand side is small. The rotation speed is maintained, and the blowoff valve is opened when the plant pressure rises to a set pressure higher than the constant wind pressure control pressure.

【0010】さらに、上記目的を達成するために、本発
明に係る圧縮機の容量調節方法の第二の構成は、少なく
とも1台の回転数制御可能なターボ圧縮機を含む複数台
の空気圧縮機を並列に運転するプラントにおける圧縮機
の容量調節方法において、前記ターボ圧縮機は、吸込温
度と基準温度の比の約1/3乗に比例して定常回転数を
求め、該定常回転数に対して任意の比率で最小運転回転
数を求め、前記定常回転数と前記最小運転回転数との範
囲を容量調節運転範囲とするものである。
Further, in order to achieve the above object, the second structure of the compressor capacity adjusting method according to the present invention comprises a plurality of air compressors including at least one rotational speed controllable turbo compressor. In the compressor capacity adjusting method in a plant operating in parallel, the turbo compressor obtains a steady rotation speed in proportion to about 1/3 power of a ratio of a suction temperature and a reference temperature, and with respect to the steady rotation speed, The minimum operating speed is obtained at an arbitrary ratio, and the range between the steady rotational speed and the minimum operating speed is set as the capacity adjusting operating range.

【0011】また、回転数制御可能なターボ圧縮機を単
独で定風圧制御機として用いる圧縮機の容量調節方法の
第三の構成は、回転数制御可能なターボ圧縮機の容量調
節方法において、前記ターボ圧縮機は、吸込温度と基準
温度の比の約1/3乗に比例して定常回転数を求め、該
定常回転数に対して任意の比率で最小運転回転数を求
め、前記定常回転数と前記最小運転回転数との範囲を容
量調節運転範囲とし、前記ターボ圧縮機を回転数制御に
よって定風圧制御し、最小回転数に到達し、さらに需要
側の必要流量が少なくても回転数は最小回転数を保持
し、プラント圧力が定風圧制御圧力よりも高い設定圧力
まで上昇するときに、放風弁を開くようにしたものであ
る。
A third configuration of a compressor capacity adjusting method in which a rotational speed controllable turbo compressor is independently used as a constant wind pressure controller is the rotational speed controllable turbo compressor capacity adjusting method. The turbo compressor obtains a steady rotational speed in proportion to about 1/3 of the ratio of the suction temperature and the reference temperature, obtains a minimum operating rotational speed at an arbitrary ratio with respect to the steady rotational speed, and obtains the steady rotational speed. And the range of the minimum operating speed and the capacity adjustment operating range, constant wind pressure control of the turbo compressor by the rotational speed control, to reach the minimum rotational speed, even if the required flow rate on the demand side is low, the rotational speed is The minimum rotation speed is maintained, and the blowoff valve is opened when the plant pressure rises to a set pressure higher than the constant wind pressure control pressure.

【0012】[0012]

【発明の実施の形態】本発明の一実施の形態を図1およ
び図2を参照して説明する。図1は、本発明の一実施の
形態を示す複数台の圧縮機設備の系統図、図2は、図1
の設備におけるターボ圧縮機の定風圧制御の動作を説明
する線図である。図1は、複数台制御により、プラント
に一定圧力の空気を送る圧縮機設備構成を示している。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a system diagram of a plurality of compressor facilities showing an embodiment of the present invention, and FIG.
FIG. 3 is a diagram for explaining the operation of constant wind pressure control of the turbo compressor in the equipment of FIG. FIG. 1 shows a compressor equipment configuration for sending a constant pressure of air to a plant by controlling a plurality of units.

【0013】図1に示す設備では、空気圧縮機を3台と
し、内1台がターボ圧縮機である。残りの2台は容積形
圧縮機(例えばスクリュー圧縮機)5,9とする。ター
ボ圧縮機1は駆動機2で駆動され、この駆動機2は、例
えばインバータなどの回転数可変装置3により回転数変
化が可能な駆動機である。6,10は、容積形圧縮機
5,9の駆動機である。それぞれの圧縮機1,5,9の
吐出側には放風弁4,7,11が配設されている。ま
た、容積形圧縮機5,9の吸込ラインには吸込弁8,1
2がある。ターボ圧縮機1の吸込ラインにも吸込弁を設
けても良いが、本例では割愛した。
In the equipment shown in FIG. 1, there are three air compressors, one of which is a turbo compressor. The remaining two units are positive displacement compressors (for example, screw compressors) 5 and 9. The turbo compressor 1 is driven by a driving machine 2, and the driving machine 2 is a driving machine capable of changing the rotation speed by a rotation speed varying device 3 such as an inverter. Reference numerals 6 and 10 denote driving machines for the positive displacement compressors 5 and 9. Blow-off valves 4, 7, 11 are arranged on the discharge sides of the respective compressors 1, 5, 9. In addition, the suction valves 8, 1 are connected to the suction lines of the positive displacement compressors 5, 9.
There are two. A suction valve may be provided in the suction line of the turbo compressor 1, but it is omitted in this example.

【0014】各圧縮機の吐出ラインには逆止弁13があ
り、逆止弁の後(下流)で吐出ラインは一つになり需要
側のプラントへ送風される。該吐出ラインにはレシーバ
タンク14がある。また、吐出圧力検出器15が備えら
れている。ターボ圧縮機1の吸込ラインには温度検出器
16が備えられている。これら圧力検出器15,温度検
出器16等の検出信号を処理して放風弁4,7,11、
吸込弁8,12、回転数可変装置3に係るインバータの
回転数等を制御する制御装置17がある。この制御装置
17は機能により複数に構成されてもよい。
There is a check valve 13 in the discharge line of each compressor, and after the check valve (downstream), the discharge lines become one and are blown to the demand side plant. There is a receiver tank 14 in the discharge line. Further, a discharge pressure detector 15 is provided. A temperature detector 16 is provided on the suction line of the turbo compressor 1. The detection signals of the pressure detector 15, the temperature detector 16 and the like are processed to output the blow-off valves 4, 7, 11,
There is a control device 17 that controls the number of revolutions and the like of the suction valves 8 and 12 and the inverter related to the number-of-rotations variable device 3. The control device 17 may be configured in plural according to the function.

【0015】ここで、図2に示すように、ターボ圧縮機
1の吐出ラインにある放風弁4の放風弁開圧力Pdht
は、容積形圧縮機5,9の吐出ラインにある放風弁7,
11の放風弁開圧力Pdh´よりも高く設定する。ま
た、ターボ圧縮機1の回転数変化による容量調節設定圧
力はプラント設定圧力Pdpとし、このプラント設定圧
力Pdpは放風弁7,11の放風弁開圧力Pdh´より
も低い関係にする。
Here, as shown in FIG. 2, the blowoff valve opening pressure Pdht of the blowoff valve 4 in the discharge line of the turbo compressor 1 is shown.
Is a blow-off valve 7 in the discharge lines of the positive displacement compressors 5, 9.
The blower valve opening pressure 11 is set higher than Pdh '. Further, the capacity adjustment set pressure due to the change in the rotation speed of the turbo compressor 1 is set to the plant set pressure Pdp, and the plant set pressure Pdp is set to be lower than the blowoff valve opening pressure Pdh ′ of the blowoff valves 7 and 11.

【0016】このように構成された圧縮機設備の制御動
作について次に説明する。ターボ圧縮機1と容積形圧縮
機5,9により、プラントが必要とするプラント設定圧
力Pdpになるようにそれぞれの圧縮機を容量調節す
る。一般に、必ずと言ってよいほど、圧縮機容量はプラ
ント需要流量よりも大であるので、どれかの圧縮機は容
量調節が必要である。今、それぞれの圧縮機が起動し、
プラント圧力がプラント設定圧力Pdpに到達したとす
る。
The control operation of the compressor equipment constructed as above will be described below. The capacity of each compressor is adjusted by the turbo compressor 1 and the positive displacement compressors 5 and 9 so that the plant set pressure Pdp required by the plant is reached. Generally, the compressor capacity is almost always greater than the plant demand flow rate, so some compressors need capacity adjustment. Now each compressor starts up,
It is assumed that the plant pressure reaches the plant set pressure Pdp.

【0017】そして、圧縮機容量は、プラント需要流量
よりも大であるので、このままでは徐々にプラント圧力
が上昇してしまう。プラント圧力は、吐出圧力検出器1
5で検知され、その検知信号は制御装置17に取り込ま
れる。そして、吐出圧力がプラント設定圧力Pdpより
上昇しはじめると、制御装置17からターボ圧縮機1の
回転数可変装置3に回転数低下の指令が送られ、駆動機
2の回転数が低下し、圧縮機流量が調節される。
Since the compressor capacity is larger than the plant demand flow rate, the plant pressure gradually rises if this condition is maintained. The plant pressure is the discharge pressure detector 1
5, and the detection signal is taken into the control device 17. Then, when the discharge pressure starts to rise above the plant set pressure Pdp, the control device 17 sends a rotation speed lowering command to the rotation speed varying device 3 of the turbo compressor 1, and the rotation speed of the drive device 2 lowers and the compression is performed. The machine flow rate is adjusted.

【0018】図2は、そのときの圧力制御の動作例を示
したものである。図2は、横軸に流量Q、縦軸に吐出圧
力Pdをとり、実線で特性曲線を示している。Nmax
は設計回転数(定常回転数)、Nminは許容最小回転
数である。一点鎖線で示すPdpはプラント設定圧力の
レベル、Pdhtはターボ圧縮機1の放風弁4の放風弁
開圧力、Pdh´は容積形圧縮機の放風弁開圧力、Pd
l´は低下したプラント圧力レベルである。
FIG. 2 shows an operation example of pressure control at that time. In FIG. 2, the horizontal axis represents the flow rate Q and the vertical axis represents the discharge pressure Pd, and the solid line shows the characteristic curve. Nmax
Is a design rotation speed (steady rotation speed), and Nmin is an allowable minimum rotation speed. Pdp indicated by the one-dot chain line is the level of the plant set pressure, Pdht is the blowoff valve opening pressure of the blowoff valve 4 of the turbo compressor 1, Pdh ′ is the blowoff valve opening pressure of the positive displacement compressor, Pd
l'is the reduced plant pressure level.

【0019】ターボ圧縮機1は、プラント圧力が一定の
プラント設定圧力Pdpになるように、圧力が上昇すれ
ば回転数を下げる。このとき、容積形圧縮機5,9の放
風弁開圧力Pdh´はプラント設定圧力Pdpより高く
設定してあるので、容量調節は行わない。すなわち、タ
ーボ圧縮機1が最初に容量調節を行うのである。ターボ
圧縮機1の回転数が許容最小回転数Nminに到達する
と、供給空気量過多でプラント圧力が上昇してもその回
転数以下には回転数を下げない。したがつて、プラント
圧力が上昇する。
The turbo compressor 1 lowers the rotation speed as the pressure rises so that the plant pressure becomes a constant plant set pressure Pdp. At this time, the blowoff valve opening pressure Pdh ′ of the positive displacement compressors 5 and 9 is set higher than the plant set pressure Pdp, so the capacity is not adjusted. That is, the turbo compressor 1 first adjusts the capacity. When the rotation speed of the turbo compressor 1 reaches the allowable minimum rotation speed Nmin, the rotation speed is not reduced below the rotation speed even if the plant pressure rises due to the excessive supply of air. Therefore, the plant pressure rises.

【0020】一方で、容積形圧縮機の放風弁開圧力Pd
h´はターボ圧縮機1の放風弁4の放風弁開圧力Pdh
tよりも低く設定してあるので、次には容積形圧縮機5
または9のどちらかの放風弁(7または11)を開き、
プラントへの空気供給を停止する。このとき、放風弁
(7または11)開に併せて、吸込弁(8または12)
を閉じ、容積形圧縮機5,9の消費動力を最小にするよ
うにする。そして、プラントが空気を消費し、圧縮機吐
出ラインの圧力が低下し、プラント圧力がPdl´に到
達すると、前記容積形圧縮機5または9のどちらか前記
放風弁(7または11)を閉じ、再び圧縮空気をプラン
ト側に供給する。
On the other hand, the blowing valve opening pressure Pd of the positive displacement compressor
h'is the blowoff valve opening pressure Pdh of the blowoff valve 4 of the turbo compressor 1.
Since it is set lower than t, next, the positive displacement compressor 5
Or open the blow valve (7 or 11) of either 9,
Turn off the air supply to the plant. At this time, the suction valve (8 or 12) should be opened along with the opening of the blowoff valve (7 or 11).
Is closed to minimize the power consumption of the positive displacement compressors 5 and 9. Then, when the plant consumes air, the pressure in the compressor discharge line decreases, and the plant pressure reaches Pdl ', either the positive displacement compressor 5 or 9 and the blow-off valve (7 or 11) are closed. , Supply compressed air to the plant side again.

【0021】上述のように、本発明の実施の形態によれ
ば、ターボ圧縮機1の回転数制御による容量調節を容積
形圧縮機5,9の放風弁7,11の開閉による容量調節
よりも優先することができ、容積形圧縮機5,9の放風
弁7,11開閉による容量調節時間を短くすることがで
きる。すなわち、圧縮空気を放風弁7,11を通して捨
てている時間を少なくすることができる。
As described above, according to the embodiment of the present invention, the capacity adjustment by controlling the rotational speed of the turbo compressor 1 is performed by the capacity adjustment by opening and closing the blow valves 7, 11 of the positive displacement compressors 5, 9. Can be prioritized, and the capacity adjustment time by opening and closing the blow valves 7, 11 of the positive displacement compressors 5, 9 can be shortened. That is, it is possible to reduce the time during which the compressed air is discarded through the blowoff valves 7 and 11.

【0022】さらに、ターボ圧縮機1の最小回転数の設
定は次のように行う。回転数制御可能なターボ圧縮機1
は、温度検出器16から取り込んだ吸込温度と基準温度
の比の約1/3乗に比例して定常回転数Nmaxを設定
し、該定常回転数に対して任意の比率で最小運転回転数
Nminを決める。定常回転数をこのようにすることに
より、空気の吸込温度低下時の、ターボ圧縮機1の供給
能力過多を防止し、無駄な放風弁開容量調節運転時間を
低減できる。さらに、サージング発生ラインに対する運
転可能最小回転数を一定の余裕で得ることができ、効率
の良い(適正な回転数変化容量調節範囲を得る)回転数
変化容量調節運転を行うことができる。また、流量計を
設けなくても運転範囲を定義することができる。
Further, the minimum rotation speed of the turbo compressor 1 is set as follows. Turbo compressor 1 with controllable speed
Is set to a steady rotational speed Nmax in proportion to about 1/3 of the ratio of the suction temperature taken from the temperature detector 16 to the reference temperature, and the minimum operating rotational speed Nmin is set at an arbitrary ratio with respect to the steady rotational speed. Decide. By setting the steady-state rotation speed in this manner, it is possible to prevent excessive supply capacity of the turbo compressor 1 when the intake temperature of air is lowered, and reduce useless blow-off valve opening capacity adjustment operation time. Further, it is possible to obtain the drivable minimum rotation speed for the surging generation line with a certain margin, and it is possible to perform the rotation speed change capacity adjustment operation with high efficiency (obtain an appropriate rotation speed change capacity adjustment range). Also, the operating range can be defined without providing a flow meter.

【0023】上記実施の形態は、回転数制御可能なター
ボ圧縮機を1台、容積形圧縮機を2台備えたプラントの
例を説明したが、本発明はこれに限定されるものではな
く、回転数制御可能なターボ圧縮機を2台以上、容積形
圧縮機を2台以上備えたプラントにも適用できる。ま
た、図示して説明しないが、回転数制御可能なターボ圧
縮機を単独で定風圧制御機として採用する場合にも適用
できる。
In the above embodiment, an example of a plant equipped with one turbo compressor capable of controlling the number of revolutions and two positive displacement compressors was explained, but the present invention is not limited to this. It can also be applied to a plant equipped with two or more turbo compressors capable of controlling the rotation speed and two or more positive displacement compressors. Although not shown and described, the present invention can also be applied to a case where a turbo compressor whose rotation speed can be controlled is independently adopted as a constant wind pressure controller.

【0024】すなわち、回転数制御可能なターボ圧縮機
は、吸込温度と基準温度の比の約1/3乗に比例して定
常回転数を求め、該定常回転数に対して任意の比率で最
小運転回転数を求め、前記定常回転数と前記最小運転回
転数との範囲を容量調節運転範囲とし、ターボ圧縮機を
回転数制御によって定風圧制御し、最小回転数に到達
し、さらに需要側の必要流量が少なくても回転数は最小
回転数を保持し、プラント圧力が定風圧制御圧力よりも
高い設定圧力まで上昇するときに、放風弁を開くように
容量調節すれば良い。
That is, in the turbo compressor whose rotation speed can be controlled, the steady rotation speed is obtained in proportion to about 1/3 of the ratio between the suction temperature and the reference temperature, and the steady rotation speed is minimized at an arbitrary ratio. The operating speed is determined, the range of the steady speed and the minimum operating speed is set as the capacity adjusting operating range, the turbo compressor is subjected to constant wind pressure control by the rotational speed control, and the minimum rotational speed is reached. Even if the required flow rate is low, the rotational speed may be kept at the minimum rotational speed, and the capacity may be adjusted so that the blow-off valve is opened when the plant pressure rises to a set pressure higher than the constant air pressure control pressure.

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明によ
れば、経済的な圧縮機構成で、かつアンロード運転状態
(放風弁開運転状態)の運転時間を低減し、トータルの
運転消費動力を低減しうるターボ圧縮機の容量調節方法
およびその装置を提供することができる。
As described above in detail, according to the present invention, the total compressor operation is reduced by the economical compressor structure and by reducing the operation time in the unloading operation state (blow-off valve opening operation state). A method and apparatus for adjusting the capacity of a turbo compressor that can reduce power consumption can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態を示す複数台の圧縮機設
備の系統図である。
FIG. 1 is a system diagram of a plurality of compressor equipments showing an embodiment of the present invention.

【図2】図1の設備におけるターボ圧縮機の定風圧制御
の動作を説明する線図である。
FIG. 2 is a diagram illustrating an operation of constant wind pressure control of a turbo compressor in the equipment of FIG.

【図3】従来の圧縮機の制御装置構成を示す系統図であ
る。
FIG. 3 is a system diagram showing a configuration of a conventional controller of a compressor.

【図4】ターボ圧縮機の定風圧制御の動作を説明する線
図である。
FIG. 4 is a diagram illustrating an operation of constant wind pressure control of the turbo compressor.

【図5】容積形圧縮機の定風圧制御の動作を説明する線
図である。
FIG. 5 is a diagram illustrating an operation of constant wind pressure control of the positive displacement compressor.

【符号の説明】[Explanation of symbols]

1…ターボ圧縮機、2,6,10…駆動機、3…回転数
可変装置、4,7,11…放風弁、8,12…吸込弁、
13…逆止弁、14…レシーバタンク、15…吐出圧力
検出器、16…温度検出器、17…制御装置。
DESCRIPTION OF SYMBOLS 1 ... Turbo compressor, 2, 6, 10 ... Driver, 3 ... Rotation speed variable device, 4, 7, 11 ... Blow-off valve, 8, 12 ... Suction valve,
13 ... Check valve, 14 ... Receiver tank, 15 ... Discharge pressure detector, 16 ... Temperature detector, 17 ... Control device.

フロントページの続き (72)発明者 高橋 直彦 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (72)発明者 福島 康雄 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (72)発明者 吉原 稔 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (56)参考文献 特開 平7−332248(JP,A) 特開 平6−147190(JP,A) 特開 平10−89287(JP,A) 特開 平1−200095(JP,A) (58)調査した分野(Int.Cl.7,DB名) F04D 27/00 F04B 49/00 - 49/10 F04C 29/10 Front Page Continuation (72) Inventor Naohiko Takahashi 603 Kuchitate-cho, Tsuchiura-shi, Ibaraki Hitachi Co., Ltd. Tsuchiura Plant (72) Inventor Yasuo Fukushima 603, Jinmachi-cho, Tsuchiura-shi, Ibaraki Hitachi Co., Ltd. Tsuchiura Plant (72 ) Inventor Minoru Yoshihara 603 Jinrachi-cho, Tsuchiura-shi, Ibaraki Inside the Tsuchiura factory of Hitachi, Ltd. (56) References JP-A-7-332248 (JP, A) JP-A-6-147190 (JP, A) JP-A 10-89287 (JP, A) JP-A-1-200095 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F04D 27/00 F04B 49/00-49/10 F04C 29 / Ten

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも1台の回転数制御可能なター
ボ圧縮機を含む複数台の容積形圧縮機を並列に運転する
プラントにおける圧縮機の容量調節装置において、 前記ターボ圧縮機を定風圧制御するときに、該ターボ圧
縮機の回転数制御圧力を、前記容積形圧縮機の放風弁開
設定圧力よりも低くし、かつ該ターボ圧縮機の放風弁開
設定圧力は前記容積形圧縮機の放風弁開設定圧力よりも
高く設定されると共に、定常回転数と許容最小回転数と
の範囲で前記ターボ圧縮機の回転数を制御し、前記プラ
ント吐出圧力が前記ターボ圧縮機の回転数制御圧力より
上昇もしくは低下した場合にターボ圧縮機の回転数低下
もしくは上昇の指令を送る制御装置を備えたことを特徴
とする圧縮機の容量調節装置。
1. A compressor capacity adjusting device in a plant in which a plurality of positive displacement compressors including at least one rotational speed controllable turbo compressor are operated in parallel, wherein a constant wind pressure control is performed on the turbo compressor. Occasionally, the speed control pressure of the turbo compressor, the lower than HokazebenHiraku set pressure of the displacement type compressor, and HokazebenHiraku set pressure of the turbo compressor of the displacement type compressor It is set higher than the set pressure of the blowoff valve , and the steady speed and the allowable minimum speed
Control the speed of the turbo compressor in the range of
The discharge pressure is lower than the rotational speed control pressure of the turbo compressor.
If it goes up or down, the turbo compressor speed drops
Alternatively , a compressor capacity adjusting device is provided with a control device for sending a command to rise .
【請求項2】 少なくとも1台の回転数制御可能なター
ボ圧縮機を含む複数台の容積形圧縮機を並列に運転する
プラントにおける圧縮機の容量調節方法において、 前記ターボ圧縮機を回転数制御によって定風圧制御し、
吸込温度と基準温度の比の約1/3乗に比例して定常回
転数を求め、該定常回転数に対して任意の比率で求めら
れる許容最小回転数を設定し、該許容最小回転数に到達
し、さらに需要側の必要流量が少なくても回転数は前記
最小回転数を保持し、プラント圧力が定風圧制御圧力よ
りも高い設定圧力まで上昇するときに、前記容積形圧縮
機の放風弁を開くようにしたことを特徴とする圧縮機の
容量調節方法。
2. A compressor capacity adjusting method in a plant in which a plurality of positive displacement compressors including at least one turbo compressor capable of controlling the rotational speed are operated in parallel, wherein the turbo compressor is controlled by the rotational speed. Constant air pressure control,
Steady-state operation in proportion to about 1/3 power of the ratio of suction temperature and reference temperature
Calculate the number of revolutions and calculate it at an arbitrary ratio to the steady number of revolutions.
Allowed to set the minimum number of rotations, to reach to the allowable minimum number of revolutions, further rotational speed even with a small required flow rate of the demand side holds the <br/> minimum rotation speed, the plant pressure constant wind pressure control pressure when raised to a higher setting pressure than the displacement type compression
A method for adjusting the capacity of a compressor, characterized in that a blow valve of the compressor is opened.
【請求項3】 回転数制御可能なターボ圧縮機の容量調
節方法において、 前記ターボ圧縮機は、吸込温度と基準温度の比の約1/
3乗に比例して定常回転数を求め、該定常回転数に対し
て任意の比率で最小運転回転数を求め、前記定常回転数
と前記最小運転回転数との範囲を容量調節運転範囲と
し、前記ターボ圧縮機を回転数制御によって定風圧制御
し、前記最小回転数に到達し、さらに需要側の必要流量
が少なくても回転数は前記最小回転数を保持し、プラン
ト圧力が前記容積形圧縮機の放風弁開設定圧力よりも高
い設定圧力まで上昇するときに、前記ターボ圧縮機の放
風弁を開くようにした ことを特徴とする圧縮機の容量調
節方法。
3. A capacity control of a turbo compressor whose rotation speed can be controlled.
In the node method, the turbo compressor has a ratio of a suction temperature to a reference temperature of about 1 /
Obtain the steady-state rotation speed in proportion to the cube of the cube, and
The minimum operating speed is calculated at an arbitrary ratio by
And the range of the minimum operating speed as
And, constant air pressure control of the turbo compressor by rotation speed control
Then, the minimum speed is reached, and the required flow rate on the demand side
Even if the
Pressure is higher than the blower valve open set pressure of the positive displacement compressor.
When the turbo compressor rises to a preset pressure,
A method for adjusting the capacity of a compressor, characterized in that the wind valve is opened .
JP11454698A 1998-04-24 1998-04-24 Method and apparatus for adjusting compressor capacity Expired - Lifetime JP3406514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11454698A JP3406514B2 (en) 1998-04-24 1998-04-24 Method and apparatus for adjusting compressor capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11454698A JP3406514B2 (en) 1998-04-24 1998-04-24 Method and apparatus for adjusting compressor capacity

Publications (2)

Publication Number Publication Date
JPH11303792A JPH11303792A (en) 1999-11-02
JP3406514B2 true JP3406514B2 (en) 2003-05-12

Family

ID=14640500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11454698A Expired - Lifetime JP3406514B2 (en) 1998-04-24 1998-04-24 Method and apparatus for adjusting compressor capacity

Country Status (1)

Country Link
JP (1) JP3406514B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1015460A3 (en) 2003-04-04 2005-04-05 Atlas Copco Airpower Nv Method for controlling an air system with multiple compressors, steering box applied thereby, and air system that applying this process.
FR2898645B1 (en) * 2006-03-14 2008-08-22 L'air Liquide MULTI-STAGE COMPRESSOR, AIR SEPARATION APPARATUS COMPRISING SUCH A COMPRESSOR AND INSTALLATION
WO2008035817A1 (en) * 2006-09-22 2008-03-27 Teijin Pharma Limited Oxygen concentrator
BE1017600A3 (en) 2007-05-15 2009-01-13 Atlas Copco Airpower Nv METHOD FOR CONTROLLING A TURBO COMPRESSOR.
JP5568517B2 (en) * 2011-06-22 2014-08-06 株式会社神戸製鋼所 Steam-driven compressor
JP5568518B2 (en) * 2011-06-22 2014-08-06 株式会社神戸製鋼所 Steam-driven compressor
CN104179707B (en) * 2014-08-07 2016-05-04 上海英格索兰压缩机有限公司 The control method of air compression system and system

Also Published As

Publication number Publication date
JPH11303792A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
KR101450298B1 (en) Improvements in compressors control
EP0398436B1 (en) Compressor control system to improve turndown and reduce incidents of surging
JP3837278B2 (en) Compressor operation method
US20070189905A1 (en) Multi-stage compression system and method of operating the same
JP2000291449A (en) Gas turbine start method
JP3406514B2 (en) Method and apparatus for adjusting compressor capacity
JP4532327B2 (en) Compressor and operation control method thereof
JP3547314B2 (en) Compressed air production equipment
EP2145113B1 (en) Method for controlling a turbocompressor
JPH1082391A (en) Control device of two-stage screw compressor
US11193489B2 (en) Method for controlling a rotary screw compressor
JPH06193579A (en) Variable capacity compressor
US4976588A (en) Compressor control system to improve turndown and reduce incidents of surging
JP2005016464A (en) Compression device
JP3384894B2 (en) Turbo compressor capacity control method
JPH07113109A (en) Method for controlling blasting flow rate of blower of blast furnace
JP6612412B1 (en) Compressor
JP2004316462A (en) Method and device for controlling displacement of centrifugal compressor
JP2006312900A (en) Compressed gas supply device
JP4506109B2 (en) Compression device
CN113739558B (en) Heat pump unit and control method thereof
JP4496886B2 (en) Operation method of turbo compressor system
JPH04136498A (en) Capacity control device of centrifugal compressor
JP2645766B2 (en) Power recovery system for steam supply line
JPH1089287A (en) Turbocopressor and method for controlling its displacement

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10