JPS6319813A - Vapor growth equipment - Google Patents

Vapor growth equipment

Info

Publication number
JPS6319813A
JPS6319813A JP16406386A JP16406386A JPS6319813A JP S6319813 A JPS6319813 A JP S6319813A JP 16406386 A JP16406386 A JP 16406386A JP 16406386 A JP16406386 A JP 16406386A JP S6319813 A JPS6319813 A JP S6319813A
Authority
JP
Japan
Prior art keywords
gas
flow rate
gas flow
growth
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16406386A
Other languages
Japanese (ja)
Inventor
Motoji Morizaki
森崎 元司
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16406386A priority Critical patent/JPS6319813A/en
Publication of JPS6319813A publication Critical patent/JPS6319813A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate laminating crystal layers of different compositions easily and stably so as to have sharp boundaries by a method wherein 2nd gas flow controllers and valves controlling gas flows are provided and parts of gases are branched in gas supply tubes after 1st gas flow controllers. CONSTITUTION:When a 1.1 mum InGaAsP film which is a barrier layer of a super-lattice structure is grown, a valve 10 of a gas flow branching tube 9 for TEI is closed and a valve 12 of a gas flow branching tube 11 for TEG is opened. On the other hand, a valve 14 of a gas flow branching tube 13 for PH3 is closed and a valve 16 of a gas flow branching tube 15 for AsH3 is opened. The gas flow branching tubes 9, 11, 13 and 15 branch the gas flows in respective gas supply tubes 17, 18, 19 and 20 after 1st gas flow controller 1, 3, 5 and 7. When a 1.3 mum InGaAsP film which is a well layer is grown, the valves 10 and 14 are opened and the valves 12 and 16 are closed. The sharpness between the respective layers of the super-lattice structure which is formed by repeating such switching operations of the valves 10, 12, 14 and 16 is not larger than 15 Angstrom .

Description

【発明の詳細な説明】 産業上の利用分野 本発明は組成物の異なる結晶層を急峻な界面で、安定か
つ簡便に積層することのできる気相成長装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a vapor phase growth apparatus that can stably and easily laminate crystal layers of different compositions at steep interfaces.

従来の技術 半導体装置を製作する場合、必要となる半導体結晶のエ
ピタキシャル成長技術の中に、ガスを原料として用い、
その熱分解反応を利用して結晶成長する気相成長法があ
る。この成長法の特徴として、大面積の成長や多数枚の
ウェハーに一度に成長させるといった量産性がある。第
3図にこのような気相成長法の1例を示す これは原料
に有機金属化合物を用いた有機金属気相成長法(Me 
t a 10rganic Vapor  Phase
 Epitaxy;略してMOVPE法)によりInP
基板上にIn1.、−、Ga工AsyP1−yを成長す
る場合のM○VPE装置のガス系統の概略である。半導
体レーザなどのデバイスや超格子構造を形成する場合、
組成の異なる結晶層を積層する。
Conventional technology When manufacturing semiconductor devices, the epitaxial growth technology for semiconductor crystals that is required involves using gas as a raw material.
There is a vapor phase growth method that uses the thermal decomposition reaction to grow crystals. A feature of this growth method is that it can be mass-produced by growing large areas and growing many wafers at once. Figure 3 shows an example of such a vapor phase growth method. This is a metal organic vapor phase growth method (Me
t a 10rganic Vapor Phase
InP by Epitaxy (abbreviated as MOVPE method)
In1. , -, This is an outline of the gas system of the M○VPE apparatus when growing Ga-based AsyP1-y. When forming devices such as semiconductor lasers or superlattice structures,
Layering crystal layers with different compositions.

気相成長法では、各原料ガスの供給量を調整、制御する
ことによって、組成をいろいろ変化させることができる
。例えば組成Xは、Inの原料であるトリエチルインジ
ウム((C2H5)3In、 TEI )とGaの原料
であるトリエチルガリウム((C2H5)3GaTEG
)の供給量をそれぞれの流量制御装置41および42で
調節することによって、変化させることができる。一方
組成yの方も同様に、Pの原料ガスであるホスフィン(
PH3)とAsの原料ガスであるアルシン(A s H
s )の供給量をそれぞれの流量制御装置43および4
4で調節することによって変化させることができる。し
たがって、組成の異なる結晶を積層する場合、下の層を
成長した後に、それぞれの流量制御装置を調節し、上の
層を成長するための原料ガス供給量にしてから、積層を
始゛めることになる。
In the vapor phase growth method, the composition can be varied in various ways by adjusting and controlling the supply amount of each source gas. For example, composition
) can be varied by adjusting the supply amount with the respective flow control devices 41 and 42. On the other hand, for composition y, phosphine (
PH3) and arsine (A s H
s) is controlled by the respective flow rate controllers 43 and 4.
It can be changed by adjusting 4. Therefore, when stacking crystals with different compositions, after growing the lower layer, adjust each flow rate control device to set the raw material gas supply amount for growing the upper layer, and then start stacking. It turns out.

発明が解決しようとする問題点 ところが組成の異なる結晶を連続して積層する場合、成
長する結晶の組成に応じて原料ガスの供給量を調節、制
御しなければならない。したがって、下の結晶層を成長
した後、その上の結晶層を成長する前に原料ガスの流量
制御装置を調節する時間が必要となる。この間に結晶成
長を連続して行なうと組成が変化し、結晶性の悪い遷移
層ができてしまい、積層した界面の急峻性は非常に悪く
なってしまう。これを防ぐためには、原料ガスの成長炉
への供給を止めて流量調節を行うが、これではでは積層
する層が多くなるにつれて、成長時間が長くなる結果と
なる。特に数十層も積層する超格子構造を形成する場合
は、非常に長時間になってしまう。更に流量調節装置で
もってその都度流量調節するため、超格子構造のように
何回も同じ組成の結晶の積層がある場合、流量調節のく
り返し精度によって、それぞれの結晶の組成にばらつき
が生じる。
Problems to be Solved by the Invention However, when crystals of different compositions are successively stacked, the amount of raw material gas supplied must be adjusted and controlled depending on the composition of the growing crystals. Therefore, after growing the lower crystal layer and before growing the upper crystal layer, time is required to adjust the flow rate control device for the raw material gas. If crystal growth is performed continuously during this period, the composition changes, a transition layer with poor crystallinity is formed, and the steepness of the laminated interface becomes extremely poor. In order to prevent this, the supply of raw material gas to the growth furnace is stopped and the flow rate is adjusted, but this results in a longer growth time as the number of layers increases. In particular, when forming a superlattice structure consisting of several tens of layers, the process takes a very long time. Furthermore, since the flow rate is adjusted each time by a flow rate adjustment device, when crystals of the same composition are stacked many times as in a superlattice structure, the composition of each crystal will vary depending on the repeat accuracy of flow rate adjustment.

本発明はかかる点を鑑みてなされたもので、組成の異な
る結晶を積層する場合、急峻な界面で安定かつ簡便に積
層することのできる気相成長装置を提供することを目的
としている。
The present invention has been made in view of the above, and an object of the present invention is to provide a vapor phase growth apparatus that can stably and easily stack crystals having different compositions at steep interfaces.

問題点を解決するだめの手段 前述の問題点を解決するだめの技術的手段は、気相成長
装置において、第1のガス流量制御装置を備え、成長炉
にガスを供給するガス供給管と、第2のガラス流量制御
装置とガスの流れを制御する弁を備え、前記第1のガス
流量制御装置以降の前記ガス供給管の部分で分岐し、前
記第1のガス供給管を流れるガスの一部を分流する少な
くとも1本以上のガス分流管とを備えていることである
Means for Solving the Problems A technical means for solving the above-mentioned problems is to provide a vapor phase growth apparatus with a gas supply pipe that includes a first gas flow rate control device and supplies gas to the growth furnace; A second glass flow rate control device and a valve for controlling the flow of gas are provided, the gas supply pipe is branched at a portion of the gas supply pipe after the first gas flow rate control device, and a part of the gas flowing through the first gas supply pipe is branched. and at least one gas distribution pipe for dividing the gas flow.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

第1のガス流量制御装置によって一定流量に制御され、
成長炉に供給されるガスの一部を、第2のガス流量制御
装置によって設定されたある流量だけ、弁を開けて分枝
し、分流することによって、成長炉に供給される原料ガ
スの供給量を第1のガス流量制御装置による流量から、
その流量から第2のガス流量制御装置による流量を差し
引いだ流量に変化させることができる。また弁を閉じガ
スの分流を止めることで、前述とは逆のガス流量の変化
も可能である。このため原料ガスの供給量を弁の開閉操
作で変化させることが可能となるので、組成の異なる結
晶を急峻な界面で、安定かつ簡便に積層することができ
る。
controlled to a constant flow rate by a first gas flow rate controller;
Supply of raw material gas to be supplied to the growth furnace by opening a valve and branching a part of the gas supplied to the growth furnace by a certain flow rate set by a second gas flow rate control device. amount from the flow rate by the first gas flow rate controller,
The flow rate can be changed to a value obtained by subtracting the flow rate by the second gas flow rate control device from the flow rate. Furthermore, by closing the valve and stopping the gas flow division, it is also possible to change the gas flow rate in the opposite manner to that described above. Therefore, it is possible to change the supply amount of the raw material gas by opening and closing the valve, so that crystals having different compositions can be stacked stably and easily at a steep interface.

実施例 以下、本発明の一実施例として、MOVPE法により1
.1 pm InGaAsPと1,3 pm InGa
AsPとからなる超格子構造を形成する場合について図
面とともに説明する。なおこの超格子構造は、多重量子
井戸型レーザ(MQWLD)の活性層として用いられ、
通常のInPと1.3μm帯InGaAsPとからなる
MQW−LDよりも電流の流入効率が向上しすぐれた発
光効率を示す。さて、In、Ga。
Example Hereinafter, as an example of the present invention, 1
.. 1 pm InGaAsP and 1,3 pm InGa
The case of forming a superlattice structure made of AsP will be explained with reference to the drawings. This superlattice structure is used as the active layer of a multiple quantum well laser (MQWLD).
The current flow efficiency is improved and the light emitting efficiency is superior to that of an MQW-LD made of ordinary InP and 1.3 μm band InGaAsP. Now, In, Ga.

As、Pの結晶成長用の原料ガスとしては、それぞれト
リエチルインジウム(TEI )、 トリエチルガリウ
ム(TEG)、アルシン(AsH3)、ボスフィン(P
H3)が用いられる。有機金属であるTEI。
Raw material gases for crystal growth of As and P include triethyl indium (TEI), triethyl gallium (TEG), arsine (AsH3), and bosphin (P), respectively.
H3) is used. TEI is an organic metal.

TEGは蒸気圧の比較的高い液体であるため、キャリア
ガス(水素ガス)を通すことによって、蒸気ガスの形で
供給することになる。成長に用いた本発明の一実施例で
あるMOVPE装置のガス系統の概略を第1図に示す。
Since TEG is a liquid with relatively high vapor pressure, it is supplied in the form of vapor gas by passing carrier gas (hydrogen gas) through it. FIG. 1 shows an outline of the gas system of the MOVPE apparatus used for growth, which is an embodiment of the present invention.

次に超格子構造の障壁層である1、1μm I心aAs
 Pと井戸層の1.3μm I nGaAs Pの結晶
成長時の原料ガスの供給量を次表に示す。なお、TEI
、TEGについては、それぞれのバブラー容器に送る水
素ガスの流量で示しである。
Next, a barrier layer with a superlattice structure of 1.1 μm I-core aAs
The following table shows the amount of raw material gas supplied during crystal growth of P and the well layer of 1.3 μm InGaAs P. In addition, TEI
, TEG is indicated by the flow rate of hydrogen gas sent to each bubbler container.

各原料の供給量 そこでまずTEIの第1のガス流量制御装置1の流量を
380CO/ginに調節しておき、第2のガス流量制
御装置2の流量を80CQ/sinとしておく。また、
TEGの第10ガス流量制御装置3の流量を160CC
//jIin 1第2のガス流量制御装置4の流量を5
5cc7ninとしておく。一方PH3の第1のガス流
量制御装置5の流量を19.5Cンi とし、第2のガ
ス流量制御装置6の流量を9.5 QCAin として
、更にA s H3の第1のガス流量制御装置7の流量
を1、4(L/sinとし、第2のガス流量制御装置8
の流量を0.9C□inとしておく。さて超格子構造の
障壁層である1、1μm InGaAsPを成長すると
きは、TEIのガス分流管9の弁10を閉じ、TEGの
ガス分流管11の弁12を開く。一方PH3のガス分流
管13の弁14を閉じ、A s H3のガス分流管15
の弁16を開く。各々のガス分流管9゜11.13,1
5は各々のガス供給管17.18゜19 、20の第1
のガス流量制御装置1 、3.5゜7以降の部分で分岐
2分流している。このため、TEIの供給量は第1のガ
ス流量制御装置で調節された流量(380CQ/’lr
n )のそのものとなるが、TEGの供給量は、弁12
が開いて、ガスが分流管11の方へ分流されるので、第
1のガス流量制御装置で調節された流量から第2のガス
流量制御装置で調節された流量を差し引いた流量(76
C吠’sin = 160−85 )となる。同様にし
てPH3゜A s H3の流量も求めると表に示しだ1
.1 p m InGaAsPの結晶成長の原料供給量
となる。
Supply amount of each raw material First, the flow rate of the first gas flow rate control device 1 of the TEI is adjusted to 380 CO/gin, and the flow rate of the second gas flow rate control device 2 is set to 80 CQ/sin. Also,
The flow rate of TEG's 10th gas flow rate controller 3 is set to 160CC.
//jIin 1 Set the flow rate of the second gas flow rate controller 4 to 5
Set it to 5cc7nin. On the other hand, the flow rate of the first gas flow rate control device 5 of PH3 is set to 19.5 Ci, the flow rate of the second gas flow rate control device 6 is set to 9.5 QCAin, and the first gas flow rate control device of A s H3 7 is set to 1, 4 (L/sin), and the second gas flow rate controller 8
Let the flow rate be 0.9 C□in. Now, when growing 1.1 μm InGaAsP, which is a barrier layer with a superlattice structure, the valve 10 of the TEI gas distribution tube 9 is closed, and the valve 12 of the TEG gas distribution tube 11 is opened. On the other hand, close the valve 14 of the gas distribution pipe 13 of PH3, and close the valve 14 of the gas distribution pipe 15 of A s H3.
Open the valve 16. Each gas distribution pipe 9゜11.13,1
5 is the first of each gas supply pipe 17.18゜19, 20
The gas flow rate control device 1 branches the flow into two parts at 3.5°7 and beyond. Therefore, the supply amount of TEI is adjusted by the flow rate (380CQ/'lr) controlled by the first gas flow rate controller.
n), but the supply amount of TEG is the same as that of valve 12.
is opened and the gas is diverted toward the flow dividing pipe 11, so that the flow rate (76
C'sin = 160-85). In the same way, the flow rate of PH3゜A s H3 is calculated as shown in the table 1
.. This is the raw material supply amount for crystal growth of 1 pm InGaAsP.

次に井戸層である1、3μm InGaAsPの成長に
移るとき、弁10と弁14を開き、弁12と弁16を閉
じる。すると1.1μm InGaAsPの成長の場合
と同様に各原料ガスの供給量をみると表の1.3μmI
 nGaAs P  の結晶成長の原料供給量になって
いることがわかる。このように弁10,12,14゜1
6の開閉操作を繰り返すことによって1.1μmInG
aAsPと1.3pm InGaAsP とからなる超
格子構造が形成される。形成された超格子構造の各層間
の急峻性は15Å以下であり、従来の%以下になった。
Next, when proceeding to the growth of 1.3 μm InGaAsP as a well layer, valves 10 and 14 are opened, and valves 12 and 16 are closed. Then, as in the case of the growth of 1.1 μm InGaAsP, looking at the supply amount of each source gas, it is 1.3 μmI as shown in the table.
It can be seen that the amount of raw material supplied for crystal growth of nGaAs P is the same. In this way valves 10, 12, 14゜1
By repeating the opening and closing operations in step 6, 1.1 μm InG
A superlattice structure consisting of aAsP and 1.3 pm InGaAsP is formed. The steepness between each layer of the formed superlattice structure was less than 15 Å, which was less than % of the conventional value.

なおそれぞれの原料ガスはガス供給管17.18,19
.20を通じ成長炉21へ供給される。基板22は高周
波コイル23による誘導加熱によって成長温度に加熱さ
れたサセプター24に載置されている。また成長炉21
内は減圧ポンプ25により100 Torrに減圧され
る。まだ今回はガス流量制御装置としてマスフローコン
トローラを用いたが、これに限らず任意にガス流量を設
定、制御できるものであればよい。
In addition, each raw material gas is supplied through gas supply pipes 17, 18, 19.
.. It is supplied to the growth furnace 21 through 20. The substrate 22 is placed on a susceptor 24 which is heated to a growth temperature by induction heating by a high frequency coil 23. Also, growth furnace 21
The inside pressure is reduced to 100 Torr by a pressure reduction pump 25. Although a mass flow controller was used as the gas flow rate control device this time, the present invention is not limited to this, and any device that can arbitrarily set and control the gas flow rate may be used.

以上述べてきたように本発明によれば、従来のようにガ
ス流量制御装置の流量をいちいち調節することなく、弁
の開閉操作のみで、組成の異なる結晶の積層が可能とな
る。しだがって流量調節に要する時間も不必要となり省
くことができた。更に結晶層間の界面の急峻性が向上し
た。また流量調節のくり返しによる流量の設定精度の低
下がなくなり、同じ組成の結晶間での組成のバラツキを
約25%低減することができた。しかも流量調節すると
きに生じる調節ミスが全くなくなった。
As described above, according to the present invention, crystals having different compositions can be stacked by simply opening and closing a valve, without adjusting the flow rate of a gas flow rate control device each time as in the conventional case. Therefore, the time required for adjusting the flow rate became unnecessary and could be saved. Furthermore, the steepness of the interface between crystal layers was improved. Furthermore, there was no reduction in the accuracy of flow rate setting due to repeated flow rate adjustments, and compositional variations between crystals of the same composition could be reduced by about 25%. Furthermore, there are no errors in adjustment that occur when adjusting the flow rate.

次に本発明の第2の実施例であるMOVPE 装置のガ
ス系統の概略図を第2図に示す。大部分は第1図で示し
たMOVPE  装置と同じであるので、異なる点につ
いてのみ説明する。TEIおよびTEGのガス分流管9
,11は、それぞれのガス供給管17.18の第1のガ
ス流量制御装置1゜3と結晶成長用原料供給源であるT
EIおよびTEGのバブラー容器37.38との間で分
枝し・分流し、第2のガス流量制御装置2,4と弁10
゜12を備えたあと、再びガス供給管17.18のそれ
ぞれのバブラー容器37.38と成長炉21までの間で
接続2合流している。
Next, FIG. 2 shows a schematic diagram of a gas system of a MOVPE apparatus according to a second embodiment of the present invention. Since most of the components are the same as the MOVPE device shown in FIG. 1, only the different points will be described. TEI and TEG gas flow pipe 9
, 11 are the first gas flow rate control device 1゜3 of each gas supply pipe 17, 18 and T, which is a raw material supply source for crystal growth.
Branching/division between the EI and TEG bubbler containers 37 and 38, and the second gas flow control devices 2 and 4 and the valve 10
12, the gas supply pipes 17, 18 are connected again to the connection 2 between each bubbler container 37, 38 and the growth furnace 21.

したがって弁10.12が開き、ガス分流管9゜11に
分流されたガスは、結晶成長用原料供給源であるTEI
やTEGのバブラー容器37 、38を通らずに、再び
ガス供給管17.18と合流して成長炉21へ供給され
る。このだめ、TEIやTEG側から成長炉へ供給され
るガスの総流量は、原料ガスが変化しても、常に一定で
ある。したがって成長炉内のガスの流量は、TEIやT
EGの原料ガス供給量を変化させても一定となり、流れ
方に変動が生じないため、良好な界面をもつ積層が可能
となる。なおこの実施例では、分流管9゜11の一方を
バブラー容器37.38以降のガス供給管17.18に
接続させ、ガスを合流させたが、直接、成長炉21へ接
続してもよく、また成長炉21へ接続されている他のガ
ス管、例えばガス管31.32に接続してもかまわず効
果は同じである。
Therefore, the valve 10.12 is opened, and the gas diverted to the gas distribution pipe 9.11 is transferred to the TEI, which is the raw material supply source for crystal growth.
The gas does not pass through the bubbler containers 37 and 38 of the TEG, but joins the gas supply pipes 17 and 18 again and is supplied to the growth furnace 21. However, the total flow rate of gas supplied from the TEI or TEG side to the growth furnace is always constant even if the raw material gas changes. Therefore, the gas flow rate in the growth reactor is
Even if the raw material gas supply amount of EG is changed, it remains constant and there is no change in the flow direction, making it possible to stack layers with good interfaces. In this embodiment, one side of the branch pipe 9.11 was connected to the gas supply pipe 17.18 after the bubbler container 37.38 to merge the gases, but it may also be directly connected to the growth furnace 21. Further, the same effect can be achieved even if the gas pipes 31 and 32 are connected to other gas pipes connected to the growth furnace 21, for example, gas pipes 31 and 32.

また、第2図に示しだ実施例のMOVPE装置において
も弁10,12,14.16の操作によって原料ガスの
供給量を変化させることができ、ガス流量制御装置の流
量を調節することなく、組成の異なる結晶の積層が、安
定かつ簡便に行うことができる。
Also, in the MOVPE apparatus of the embodiment shown in FIG. 2, the supply amount of the raw material gas can be changed by operating the valves 10, 12, 14, and 16, without adjusting the flow rate of the gas flow rate control device. Lamination of crystals with different compositions can be performed stably and easily.

以上の説明において、I nGaAs P を成長する
MOVPE装置を用いたが、原料にガスを用いて結晶成
長する気相成長装置であれば、一般のVPE(Vapo
r Phase Epitaxy )装置の場合でも本
発明を適用される。
In the above explanation, a MOVPE apparatus for growing InGaAs P was used, but a general VPE (Vapo
The present invention is also applicable to the case of a (Phase Epitaxy) device.

更に、ガス分流管は説明では1本であったが、異なる組
成の結晶層の数と同数本のガス分流管があり、それぞれ
のガス流量制御装置の流量をあらかじめ設定しておけば
、二つ以上の異なる組成の結晶層の積層の場合でも本発
明と同様の効果が得られ、本発明を適用できる。
Furthermore, although there was only one gas distribution tube in the explanation, there are as many gas distribution tubes as there are crystal layers with different compositions, and if the flow rate of each gas flow rate control device is set in advance, two gas distribution tubes can be used. Even in the case of stacking crystal layers having different compositions as described above, the same effects as the present invention can be obtained and the present invention can be applied.

発明の効果 以上のように本発明によれば、ガス流量制御装置による
ガス流量調節を各結晶層の成長毎に行うことなく、ただ
弁の開閉操作のみで、組成の異なる結晶の積層が可能と
なる。したがって成長途中での流量調節に要する時間、
調節の際の設定のバラツキから生じる組成のバラツキ、
結晶性や膜質の低下を除くことができ、結晶成長工程の
点から、品質、生産性が向上する。
Effects of the Invention As described above, according to the present invention, it is possible to stack crystals with different compositions by simply opening and closing a valve, without having to adjust the gas flow rate using a gas flow rate controller every time each crystal layer grows. Become. Therefore, the time required to adjust the flow rate during growth,
Variations in composition resulting from variations in settings during adjustment,
Deterioration in crystallinity and film quality can be eliminated, and quality and productivity are improved in terms of the crystal growth process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のMOVPE 装置のガス系
統の概略図、第2図は本発明の他の第2の実施例のMO
VPE 装置のガス系統の概略図、第3図は従来のMO
VPE装置のガス系統の概略図である。 1.3,5,7・・・・・・第1のガス流量制御装置、
2.4,6.8・・・・・・第2のガス流量制御装置、
9゜11.13.16・・・・・・ガス分、流管、10
,12゜14.16・・・・・・弁、17,18,19
.20・・・・・・ガス供給管、21・・・・・・成長
炉、31.32・・・・・・他のガス管、37.38・
・・・・・結晶成長用原料供給源。
FIG. 1 is a schematic diagram of a gas system of an MOVPE apparatus according to an embodiment of the present invention, and FIG.
A schematic diagram of the gas system of the VPE equipment, Figure 3 is a conventional MO
FIG. 2 is a schematic diagram of a gas system of a VPE device. 1.3, 5, 7...first gas flow rate control device,
2.4, 6.8... Second gas flow rate control device,
9゜11.13.16...Gas component, flow tube, 10
, 12゜14.16... Valve, 17, 18, 19
.. 20...Gas supply pipe, 21...Growth furnace, 31.32...Other gas pipes, 37.38.
... Raw material supply source for crystal growth.

Claims (4)

【特許請求の範囲】[Claims] (1)第1のガス流量制御装置を備え、成長炉にガスを
供給するガス供給管と、第2のガス流量制御装置とガス
の流れを制御する弁を備え、前記第1のガス流量制御装
置以降の前記ガス供給管部分で分枝し前記ガス供給管を
流れるガスの一部を分流する、少なくとも1本以上のガ
ス分流管とを備えたことを特徴とする気相成長装置。
(1) A first gas flow rate control device, comprising a gas supply pipe for supplying gas to the growth furnace, a second gas flow rate control device and a valve for controlling the flow of gas, and the first gas flow rate control device; A vapor phase growth apparatus comprising: at least one gas branching pipe branching at a portion of the gas supplying pipe after the apparatus and branching off a part of the gas flowing through the gas supplying pipe.
(2)ガスが結晶成長用原料ガスあるいはキャリアガス
あるいはその混合ガスである特許請求の範囲第1項記載
の気相成長装置。
(2) The vapor phase growth apparatus according to claim 1, wherein the gas is a raw material gas for crystal growth, a carrier gas, or a mixed gas thereof.
(3)ガス分流管が、ガス供給管の第1のガス流量制御
装置から結晶成長用原料供給源との間で分枝し、前記結
晶成長用原料供給源から成長炉までの間で再び合流する
ように接続、もしくは成長炉に直接接続、もしくは、成
長炉に接続されている他のガス管に接続されているガス
分流管である特許請求の範囲第1項記載の気相成長装置
(3) The gas distribution pipe branches from the first gas flow rate control device of the gas supply pipe to the crystal growth raw material supply source, and rejoins between the crystal growth raw material supply source and the growth furnace. The vapor phase growth apparatus according to claim 1, which is a gas distribution pipe connected to the growth furnace, directly connected to the growth furnace, or connected to another gas pipe connected to the growth furnace.
(4)結晶成長用原料源が、有機金属のバブラー容器で
ある特許請求の範囲第3項記載の気相成長装置。
(4) The vapor phase growth apparatus according to claim 3, wherein the raw material source for crystal growth is an organometallic bubbler container.
JP16406386A 1986-07-11 1986-07-11 Vapor growth equipment Pending JPS6319813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16406386A JPS6319813A (en) 1986-07-11 1986-07-11 Vapor growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16406386A JPS6319813A (en) 1986-07-11 1986-07-11 Vapor growth equipment

Publications (1)

Publication Number Publication Date
JPS6319813A true JPS6319813A (en) 1988-01-27

Family

ID=15786076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16406386A Pending JPS6319813A (en) 1986-07-11 1986-07-11 Vapor growth equipment

Country Status (1)

Country Link
JP (1) JPS6319813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428227A (en) * 1990-05-23 1992-01-30 Mitsubishi Electric Corp Substrate processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428227A (en) * 1990-05-23 1992-01-30 Mitsubishi Electric Corp Substrate processing

Similar Documents

Publication Publication Date Title
Bedair et al. Atomic layer epitaxy of III‐V binary compounds
JPH01296613A (en) Method of vapor growth of iii-v compound semiconductor
JPH02170413A (en) Compound semiconductor device
JPS6319813A (en) Vapor growth equipment
JPS6319814A (en) Vapor growth equipment
JP3044699B2 (en) Vapor phase growth apparatus and vapor phase growth method
JPH01290221A (en) Semiconductor vapor growth method
JPS593099A (en) Growth method of compound semiconductor crystal
JPH03224215A (en) Organic metal vapor phase deposition device
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JP2988949B2 (en) Metalorganic vapor phase epitaxy
JPS5984417A (en) Iii-v family mixed crystalline semiconductor device
JP2743431B2 (en) Compound semiconductor vapor growth method and apparatus
JPH0265124A (en) Crystal growth of compound semiconductor
JPH03129721A (en) Crystals growth of compound semiconductor
JPH02203519A (en) Growth of compound semiconductor crystal
JPH03278426A (en) Growing method for crystal of compound semiconductor
JPH06204145A (en) Organic metal vapor growth equipment of compound semiconductor
JPS61229321A (en) Vapor growth method
JPS60136308A (en) Vapor growth of compound semiconductor
JPH04254499A (en) Production of compound semiconductor crystal
JPS62144320A (en) Manufacture of super-lattice semiconductor
JPH0626187B2 (en) Semiconductor crystal manufacturing equipment
JPS63164310A (en) Formation of compound semiconductor multiplayered film
JPH04240198A (en) Vapor phase growth method for thin film