JPS6319766A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPS6319766A
JPS6319766A JP16201986A JP16201986A JPS6319766A JP S6319766 A JPS6319766 A JP S6319766A JP 16201986 A JP16201986 A JP 16201986A JP 16201986 A JP16201986 A JP 16201986A JP S6319766 A JPS6319766 A JP S6319766A
Authority
JP
Japan
Prior art keywords
degree
etherification
negative electrode
etherification degree
cmc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16201986A
Other languages
Japanese (ja)
Inventor
Kenichi Shinoda
健一 篠田
Masatake Nishio
西尾 昌武
Takashi Matsuo
隆 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP16201986A priority Critical patent/JPS6319766A/en
Publication of JPS6319766A publication Critical patent/JPS6319766A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Colloid Chemistry (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a preferable gelled negative electrode having high viscosity and to keep high thixotropy by using carboxymethylcellulose having ununiform intermolecular etherification degree and a specific etherification degree as a gelling agent of a negative electrode. CONSTITUTION:Carboxymethylcellulose having ununiform intermolecular etherification degree and a mean etherification degree of 0.5-1.3 is used as a gelling agent of a negative electrode. The CMC having ununiform intermolecular etherification degree is obtained by hightening solvent concentration and retarding dissolution of alkali cellulose to the solvent in a regular production method which etherifies cellulose in a solvent process.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、粒状亜鉛を電解液にゲル状に分散させた負
極を使用するアルカリ電池に関し、特に、負極のゲル化
剤として使用するカルボキシメチルセルロースの改良に
関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an alkaline battery using a negative electrode in which granular zinc is dispersed in an electrolytic solution in the form of a gel, and in particular, the present invention relates to an alkaline battery using a negative electrode in which granular zinc is dispersed in an electrolytic solution in the form of a gel. Regarding the improvement of

(従来の技術) 一般的なアルカリ電池の負極は、水酸化カリウム溶液な
どのアルカリ電解液に粒状亜鉛をゲル状に分散させたも
ので、ゲル化剤としてはカルボキシメチルセルロース(
以下CMCと称す)が使用されている。
(Prior art) The negative electrode of a typical alkaline battery is made by dispersing granular zinc in a gel-like form in an alkaline electrolyte such as a potassium hydroxide solution, and the gelling agent is carboxymethyl cellulose (
(hereinafter referred to as CMC) is used.

(発明が解決しようとする問題点) ゲル化剤としてのCMCのエーテル化度(無水グルコー
ス単位1に対して、カルボキシメチル基何個がエーテル
結合しているかを示す数であり、CMC全体の平均値と
して求められる。)は、粒状亜鉛をアルカリ電解液にゲ
ル状に分散させる際の重要な因子である。CMCのエー
テル化度が大きい程、電解液のアルカリ′f:J度が比
較的低くても高粘度なゲル状負極が得られ、放電性能の
面で好ましい。
(Problems to be Solved by the Invention) Degree of etherification of CMC as a gelling agent (a number indicating how many carboxymethyl groups are ether bonded to 1 anhydroglucose unit, the average of all CMC) ) is an important factor when dispersing granular zinc in an alkaline electrolyte in gel form. The higher the degree of etherification of CMC, the more viscous gel-like negative electrode can be obtained even if the alkaline 'f:J degree of the electrolyte is relatively low, which is preferable in terms of discharge performance.

しかしCMCのエーテル化度が大きい程ゲル状負極のチ
クソトロピーが低下するため、粒状亜鈴が沈降しやすく
なり、電池組立時のゲル状負極の注入作業性が悪くなる
とともに、電池の保存性能が低下する。
However, as the degree of etherification of CMC increases, the thixotropy of the gelled negative electrode decreases, making it easier for granular dumbbells to settle, which impairs the workability of pouring the gelled negative electrode during battery assembly, and reduces battery storage performance. .

従来のCMCは分子内のエーテル化度をできるだけ均一
にするように工夫して生産されている。
Conventional CMC is produced by making the degree of etherification within the molecule as uniform as possible.

ゲル化剤として使用するCMCのエーテル化度をどの程
度に選定するかは電池メーカーの設計事項であり、上述
した相反する二つの面の兼合いで決めており、上記両面
を両立させることはできなかった。
The degree of etherification of CMC used as a gelling agent is a design matter for the battery manufacturer, and is determined by balancing the two conflicting aspects mentioned above, and it is not possible to achieve both of the above. There wasn't.

この発明は上述した従来の問題点に鑑みなされたもので
、その目的は、電池性能上好ましい高粘度のゲル状負極
が得られ、しかもチクソトロピーを高く保ち、ゲル状負
極の注入作業性を良くするとともに、電池の保存性能を
も高めることができるようにした技術を提供することに
ある。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to obtain a gelled negative electrode with a high viscosity that is favorable for battery performance, maintain high thixotropy, and improve the workability of pouring the gelled negative electrode. At the same time, it is an object of the present invention to provide a technology that can also improve the storage performance of batteries.

(問題点を解決するための手段) そこでこの発明で1よ、負極のゲル化剤用カルボキシメ
チルセルロースとして、分子内のエーテル化度が不均一
で、平均的エーテル化度が0.6〜1.3のものを使用
する。
(Means for Solving the Problems) Accordingly, in the present invention, 1. The carboxymethyl cellulose for use as a gelling agent in the negative electrode has a nonuniform degree of etherification within the molecule, and an average degree of etherification of 0.6 to 1. Use item 3.

(作 用) CMC分子内でエーテル化度の大きい部分と小さい部分
とが混在し、エーテル化度が大きい部分の作用で粒状亜
鉛を良好にゲル化でき、エーテル化度の小さい部分の作
用でゲル状負極のチクソトロピーを高く保つことができ
る。
(Function) Within the CMC molecule, parts with a high degree of etherification and parts with a low degree of etherification coexist, and the action of the part with a high degree of etherification allows the granular zinc to gel well, while the action of the part with a low degree of etherification causes it to gel. The thixotropy of the negative electrode can be kept high.

(実施例) まず、分子内のエーテル化度が不均一なCMCの製造方
法について説明する。これは容易で、か性ソーダとモノ
クロール酢酸を用い、セルロースを溶媒法でエーテル化
する通常のCMC製造方法において、溶媒濃度を高クシ
、アルカリセルロースの溶媒への溶解を抑制すればよい
(Example) First, a method for manufacturing CMC having a non-uniform degree of etherification within the molecule will be described. This is easy; in the usual CMC production method in which cellulose is etherified by a solvent method using caustic soda and monochloroacetic acid, the solvent concentration is increased to suppress dissolution of the alkali cellulose in the solvent.

上記の方法で分子内エーテル化度の不均一なCMCを製
造し、そのq、M、Cをエーテル化度の不均一さの程度
によって次の表に示す4種類に分類した。No、1はエ
ーテル化度が比較的均一であり、No、2→N0.3→
N0.4とエーテル化度がより不均一になっている。
CMC having a nonuniform degree of intramolecular etherification was produced by the above method, and its q, M, and C were classified into four types shown in the following table according to the degree of nonuniformity of the degree of etherification. No.1 has a relatively uniform degree of etherification, No.2→N0.3→
N0.4 and the degree of etherification are more uneven.

CMCのエーテル化度比率(%) 以上の4師類のCIVI Cをゲル化剤として用いて、
しR6型のアルカリ・マンガン電池をそれぞれ組立てた
。そして、その4種類の電池(各100個)の放電性能
を比較してみた結果、次の表に示すようになった。
Etherification degree ratio (%) of CMC Using the above four types of CIVI C as a gelling agent,
We assembled R6 type alkaline and manganese batteries. The discharge performance of the four types of batteries (100 each) was compared, and the results are shown in the following table.

放電性能(10Ω連続 20℃) 以上の4種類の電池はいずれも、初度の放電性能として
は従来一般的なLR6型アルカリ・マンガン電池と変わ
りはなく、3ケ月保存後の放電性能においては従来の電
池より明らかな性能向上が認められた。そして、電池組
立時のゲル状負極の注入作業性はNo、1〜No、4と
もに従来より良好であった。
Discharge performance (10Ω continuous, 20℃) All of the above four types of batteries have the same initial discharge performance as conventional LR6 type alkaline manganese batteries, and the discharge performance after 3 months storage is better than that of conventional batteries. A clear improvement in performance was observed compared to batteries. In addition, the workability of pouring the gelled negative electrode during battery assembly was better than the conventional method in all cases No. 1 to No. 4.

(発明の効果) 以上詳細に説明したように、この発明に係るアルカリ電
池では、負極のゲル化剤として分子内のエーテル化度が
不均一で、平均的エーテル化度が036〜1.3のCN
1Cを使用したことにより、粒状亜鉛を良好にゲル状化
した高粘度の負極が(qられ、高い放電性能を実現でき
ると同時に、ゲル状負極のチクソトロピーはあまり低下
せず、電池組立時のゲル状負極の注入作業性がよいとと
もに、電池の保存性能も高く保てる。
(Effects of the Invention) As explained in detail above, in the alkaline battery according to the present invention, the degree of etherification within the molecule is non-uniform as a gelling agent for the negative electrode, and the average degree of etherification is between 0.36 and 1.3. C.N.
By using 1C, a high viscosity negative electrode made of granular zinc well gelatinized can be achieved, achieving high discharge performance, and at the same time, the thixotropy of the gelled negative electrode does not decrease significantly, making it possible to easily gel during battery assembly. The injection workability of the shaped negative electrode is good, and the storage performance of the battery can also be kept high.

Claims (2)

【特許請求の範囲】[Claims] (1)カルボキシメチルセルロースからなるゲル化剤を
用いて粒状亜鉛をアルカリ電解液にゲル状に分散させて
なる負極を使用するアルカリ電池において、上記カルボ
キシメチルセルロースとして、分子内のエーテル化度が
不均一で、平均的エーテル化度が0.6〜1.3のもの
を使用したことを特徴とするアルカリ電池。
(1) In an alkaline battery that uses a negative electrode made by dispersing granular zinc in an alkaline electrolyte in gel form using a gelling agent made of carboxymethyl cellulose, the degree of etherification within the molecule is non-uniform as the carboxymethyl cellulose. An alkaline battery characterized by using an alkaline battery having an average degree of etherification of 0.6 to 1.3.
(2)10〜40%が0.6以下のエーテル化度で、3
0〜70%が0.6〜1.0のエーテル化度で、10〜
40%が1.0以上のエーテル化度のカルボキシメチル
セルロースを使用したことを特徴とする特許請求の範囲
第1項記載のアルカリ電池。
(2) 10 to 40% has a degree of etherification of 0.6 or less, and 3
0-70% with degree of etherification of 0.6-1.0, 10-70%
The alkaline battery according to claim 1, characterized in that 40% of the battery uses carboxymethyl cellulose with a degree of etherification of 1.0 or more.
JP16201986A 1986-07-11 1986-07-11 Alkaline battery Pending JPS6319766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16201986A JPS6319766A (en) 1986-07-11 1986-07-11 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16201986A JPS6319766A (en) 1986-07-11 1986-07-11 Alkaline battery

Publications (1)

Publication Number Publication Date
JPS6319766A true JPS6319766A (en) 1988-01-27

Family

ID=15746512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16201986A Pending JPS6319766A (en) 1986-07-11 1986-07-11 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS6319766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3531501A4 (en) * 2017-09-28 2019-12-04 Maxell Holdings, Ltd. Sheet-shaped air battery, production method therefor, and patch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3531501A4 (en) * 2017-09-28 2019-12-04 Maxell Holdings, Ltd. Sheet-shaped air battery, production method therefor, and patch
US11695175B2 (en) 2017-09-28 2023-07-04 Maxell, Ltd. Sheet-type air cell, method for manufacturing the same, and patch

Similar Documents

Publication Publication Date Title
CA1149866A (en) Electrochemical cells having a gelled anode- electrolyte mixture
US4288913A (en) Method of forming in situ gelled anode
JPS6319766A (en) Alkaline battery
JP4318000B2 (en) Button type battery
CN106229559A (en) A kind of silicate colloid electrolyte and preparation method thereof
JPS6164077A (en) Thin battery
JPWO2020129897A1 (en) Electrodes for non-aqueous electrolyte secondary batteries, their manufacturing methods, and non-aqueous electrolyte secondary batteries
JP2775829B2 (en) Zinc alkaline battery
JP2001307746A (en) Alkaline battery
JP2568590B2 (en) Alkaline battery
JPH05225973A (en) Active material for electrode use of chemical battery, supported by three- dimensional porous support body
TWI750759B (en) Electrode for non-aqueous electrolyte secondary battery, and manufacturing method thereof
CN114784245A (en) Zinc electrode containing organic expanding agent and preparation method thereof
JPH06349484A (en) Manufacture of gelatinous negative electrode for alkaline battery
EP3813153A1 (en) Alkaline battery and method for producing negative-electrode gel for alkaline battery
JPH0685328B2 (en) Manufacturing method of cadmium negative electrode plate for alkaline storage battery
JPS6134228B2 (en)
JPS5925169A (en) Manufacture of negative pole for alkaline primary battery
JPH09147870A (en) Negative electrode plate for lead-acid battery and its manufacture
JPH0582709B2 (en)
JP2023070235A (en) Binder for non-aqueous electrolyte secondary battery electrode, electrode composition for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2021047989A (en) Binder for nonaqueous electrolyte secondary battery, electrode composition for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2021128887A (en) Binder for nonaqueous electrolyte secondary battery, electrode composition for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing binder for nonaqueous electrolyte secondary battery
JPH02216760A (en) Zinc alkaline battery
KR800000822B1 (en) Synthetic method of positive ionizing substances for mecury cell