JPS6134228B2 - - Google Patents
Info
- Publication number
- JPS6134228B2 JPS6134228B2 JP15711279A JP15711279A JPS6134228B2 JP S6134228 B2 JPS6134228 B2 JP S6134228B2 JP 15711279 A JP15711279 A JP 15711279A JP 15711279 A JP15711279 A JP 15711279A JP S6134228 B2 JPS6134228 B2 JP S6134228B2
- Authority
- JP
- Japan
- Prior art keywords
- thickener
- battery
- electrolyte
- cathode
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002562 thickening agent Substances 0.000 claims description 24
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 18
- 239000003792 electrolyte Substances 0.000 claims description 15
- 239000011701 zinc Substances 0.000 claims description 15
- 229910052725 zinc Inorganic materials 0.000 claims description 15
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910001923 silver oxide Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229940068984 polyvinyl alcohol Drugs 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
- H01M6/06—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、アルカリ電池、特にスポンジ状の多
孔性亜鉛からなる陰極を用いるボタン型電池の改
良に関する。
従来のアルカリ電池では、粉末亜鉛を加圧成型
した陰極、あるいは粉末亜鉛と増粘剤を混合した
陰極が多く使用されていた。ところがこのような
陰極を用いると、電池の薄型化あるいは薄膜化が
極めて困難であつた。すなわち厚みが1.6mmある
いは2.0mm等の電池においては、陰極亜鉛粉末秤
量の精度にバラツキが大きく、このため短絡電流
や内部抵抗など特性の一定したものを得ることが
できず、また陰極、陽極の容量比率の逆転による
ガス発生、さらに陰極のかたよりによる電池寸法
の変化等の問題点を生じていた。
この解決方法として、スポンジ状の多孔性亜鉛
陰極を用いる方法が提案されている。しかし、こ
の陰極に保持される電解液量にバラツキが生じる
ため、短絡電流および内部抵抗が変わり、さらに
遊離電解液による漏液などの問題があつた。これ
に対して、粉末の増粘剤を添加しても、多孔性亜
鉛への電解液の均一な分散ができない。これは、
電池の組立て上、粉体のままで陰極表面に均等に
増粘剤を配置するのが困難なことによるものであ
り、増粘剤の偏在により亜鉛に対する電解液の分
散が不均一となる。
本発明は、上記の問題を解決するもので、スポ
ンジ状の多孔性亜鉛に密接してシート状の増粘剤
を設けたことを特徴とする。
この陰極に密接して設けた増粘剤は、シート状
であるから、陰極表面に均等に存在し、従つて電
解液により溶解ないしは膨潤して多孔性亜鉛の細
孔内へほぼ均等に分散され、陰極内に保持される
電解液の分布が均等となり、電池の内部抵抗が安
定するとともに、短絡電流が増大し、さらに耐漏
液性も向上する。
以下本発明を酸化銀電池に適用した実施例によ
り説明する。
第1図はSR1120(直径11.6mm、高さ2.0mm)の
酸化銀電池を示す。1は陽極容器、2は酸化銀
Ag2O粉末に黒鉛粉末を加えた混合物を容器1内
で成型した陽極合剤、3はセパレータ、4はシー
ト状の増粘剤、5はスポンジ状の多孔性亜鉛から
なる陰極、6は封口板、7はパツキングである。
亜鉛陰極5は、スポンジ状の銅多孔体に亜鉛を
メツキして作つたもので、銅多孔体は、例えば樹
脂発泡体に銅をメツキし、これを熱処理して樹脂
を除くことにより得ることができる。
セパレータと陰極との間に介在させたシート状
の増粘剤4は、デンプンを水に溶かした粘稠な液
をローラによりガラス板上に塗布し、乾燥後ガラ
ス板より剥離して一定形状に打ち抜いたもので、
その厚さは0.07〜0.15mmである。この増粘剤は電
池内に注液される電解液量の3重量%相当であ
る。
上記構成の電池をaとし、上記陰極5およびシ
ート状増粘剤4の代わりに、亜鉛粉末に増粘剤と
してカルボキシメチルセルロース粉末を加えた混
合物を成型した陰極を用いた従来の電池をbとす
る。電池bの亜鉛および増粘剤の量は電池aと同
じである。
第2図は、これらの電池の短絡電流の分布を比
較したものである。本発明による電池aの短絡電
流値の平均は約0.20〜0.25A、従来の電池bの0.1
〜0.15Aに比較し約2倍である。
第3図は電池の内部抵抗の分布を比較したもの
で、平均値15Ωの従来品が本発明では平均値8Ω
と半減している。なお電池電圧については差は認
められなかつた。
このように、本発明のシート状増粘剤の採用に
より、陰極亜鉛粒子の表面に電解液が均一に分散
し、かつ均一に保持されるため内部抵抗が減少
し、短絡電流が増加し、しかもバラツキも小さく
なる効果がある。
第4図は、45℃で30日間保存後、6800Ωの抵抗
を負荷として連続放電したときの放電曲線を示
す。本発明の電池は高温保存中の自己消耗が少な
く、従来例に比較すると約15%程度改善されてい
ることがわかる。このように、電池の保存性能の
点においても、シート状増粘剤の採用により、電
解液が多孔性亜鉛の細孔内へ均一に分散し、長期
にわたり安定した状態で保持されることによる効
果が確認された。
次表は、電池a,b各200個を温度40℃、相対
湿度90%の条件下で保存したときの漏液を生じた
電池数を比較したもので、本発明によれば耐漏液
性を向上する上でも効果があることがわかる。
The present invention relates to improvements in alkaline batteries, particularly button-type batteries that use a cathode made of sponge-like porous zinc. Conventional alkaline batteries often use negative electrodes made of pressure-molded zinc powder, or negative electrodes made of a mixture of powdered zinc and a thickener. However, when such a cathode is used, it is extremely difficult to make the battery thinner or thinner. In other words, in batteries with a thickness of 1.6 mm or 2.0 mm, there are large variations in the accuracy of weighing the negative electrode zinc powder, and as a result, it is not possible to obtain constant characteristics such as short circuit current and internal resistance. Problems such as gas generation due to the inversion of the capacity ratio and changes in battery dimensions due to the biasing of the cathode have occurred. As a solution to this problem, a method using a sponge-like porous zinc cathode has been proposed. However, since variations occur in the amount of electrolyte held in the cathode, short-circuit current and internal resistance change, and there are also problems such as leakage due to free electrolyte. On the other hand, even if a powdered thickener is added, the electrolyte cannot be uniformly dispersed in the porous zinc. this is,
This is because when assembling the battery, it is difficult to uniformly arrange the thickener on the surface of the cathode while it is in powder form, and the uneven distribution of the thickener results in uneven dispersion of the electrolyte with respect to zinc. The present invention solves the above problem and is characterized by providing a sheet-like thickener in close contact with sponge-like porous zinc. Since the thickener placed in close proximity to the cathode is in the form of a sheet, it is evenly present on the surface of the cathode, and is therefore dissolved or swollen by the electrolyte and dispersed almost uniformly into the pores of the porous zinc. , the electrolyte held in the cathode is evenly distributed, the internal resistance of the battery is stabilized, the short circuit current is increased, and the leakage resistance is also improved. The present invention will be explained below using examples in which the present invention is applied to a silver oxide battery. Figure 1 shows an SR1120 (diameter 11.6 mm, height 2.0 mm) silver oxide battery. 1 is the anode container, 2 is silver oxide
An anode mixture made of a mixture of Ag 2 O powder and graphite powder molded in container 1, 3 a separator, 4 a sheet-like thickener, 5 a cathode made of sponge-like porous zinc, and 6 a seal. Board 7 is packing. The zinc cathode 5 is made by plating a sponge-like porous copper material with zinc. The porous copper material can be obtained, for example, by plating copper on a resin foam and heat-treating it to remove the resin. can. The sheet-like thickener 4 interposed between the separator and the cathode is made by applying a viscous liquid made by dissolving starch in water onto a glass plate using a roller, and peeling it off from the glass plate after drying to form a certain shape. It was punched out,
Its thickness is 0.07-0.15mm. This thickener is equivalent to 3% by weight of the amount of electrolyte injected into the battery. A battery with the above configuration is designated as a, and a conventional battery using a cathode formed from a mixture of zinc powder and carboxymethylcellulose powder as a thickener in place of the cathode 5 and sheet thickener 4 is designated as b. . The amounts of zinc and thickener in battery b are the same as in battery a. FIG. 2 compares the short circuit current distributions of these batteries. The average short circuit current value of battery a according to the present invention is about 0.20 to 0.25A, while that of conventional battery b is 0.1
It is about twice as large as ~0.15A. Figure 3 compares the distribution of internal resistance of batteries, and shows that the conventional product with an average value of 15Ω has an average value of 8Ω.
It has been halved. Note that no difference was observed in battery voltage. As described above, by employing the sheet-like thickener of the present invention, the electrolyte is uniformly dispersed and held uniformly on the surface of the negative electrode zinc particles, thereby reducing the internal resistance and increasing the short circuit current. This also has the effect of reducing variations. FIG. 4 shows a discharge curve when the battery was stored at 45°C for 30 days and then continuously discharged with a resistance of 6800Ω as a load. It can be seen that the battery of the present invention has less self-depletion during high-temperature storage, which is about 15% improved compared to the conventional example. In this way, in terms of battery storage performance, the use of a sheet-like thickener allows the electrolyte to be uniformly dispersed within the pores of porous zinc and is maintained in a stable state for a long period of time. was confirmed. The following table compares the number of batteries that leaked when 200 each of batteries a and b were stored at a temperature of 40°C and a relative humidity of 90%.According to the present invention, the leakage resistance was It can be seen that it is effective in improving
【表】
第5図は、前記の電池aにおいて、電解液量を
一定とし、これに対するシート状増粘剤の割合を
変えた場合の短絡電流値を比較したものである。
この結果から、電解液量に対する増粘剤の割合
は、0.5〜5重量%が最適である。0.5重量%以下
では、最適値に比較して約2〜3倍の電流値の変
動があり、電流値も小さく、また5重量%以上で
は、0.05A〜0.1Aと最適値に比較して半減するこ
とが確認された。また、0.5重量%以下では、多
孔性亜鉛内に保持される電解液が少なく、保持量
にバラツキが生じ、前述のごとく、電流値の変動
が多くなり、逆に5重量%以上と、極端に増粘剤
が増加すると、電解液の導電性が低下して短絡電
流値が小さくなり、内部抵抗も増加することにな
るのである。
実施例では、増粘剤としてデンプンを用いる例
を示したが、この種アルカリ電池の増粘剤として
知られているカルボキシメチルセルロース、ポリ
ビニルアルコール、アルギン酸ソーダ、グアガ
ム、あるいはポリアクリル酸、ポリアクリル酸ア
ルカリのようなアクリル酸基を有する化合物など
を用いることもできる。
これらの増粘剤をシート状にするには、水に溶
解ないしは膨潤させ、ローラによりガラス板など
に一定厚さに塗布し、乾燥するのが適当であり、
水の代わりにアルカリ水溶液を用いてもよい。
また、実施例では、陽極活物質にAg2Oを用い
たが、AgO、HgO、MnO2などを用いる電池に対
しても効果があることはいうまでもない。
以上のように、本発明は、アルカリ電池の薄型
化、特性の安定化を可能にするものである。[Table] FIG. 5 compares the short circuit current values when the amount of electrolyte is constant and the ratio of the sheet-like thickener to it is varied in the battery a.
From this result, the optimal ratio of the thickener to the amount of electrolyte is 0.5 to 5% by weight. At 0.5% by weight or less, the current value fluctuates about 2 to 3 times compared to the optimal value, and the current value is also small, and at 5% by weight or more, the current value is 0.05A to 0.1A, which is half that of the optimal value. It was confirmed that In addition, if the amount is less than 0.5% by weight, the amount of electrolyte retained in the porous zinc will be small, resulting in variations in the amount retained, and as mentioned above, the current value will fluctuate more.On the other hand, if it is more than 5% by weight, When the thickener increases, the conductivity of the electrolyte decreases, the short circuit current value decreases, and the internal resistance also increases. In the example, starch was used as a thickener, but carboxymethylcellulose, polyvinyl alcohol, sodium alginate, guar gum, polyacrylic acid, and alkali polyacrylate, which are known as thickeners for this type of alkaline battery, may also be used. It is also possible to use compounds having an acrylic acid group such as. To make these thickeners into a sheet, it is appropriate to dissolve or swell them in water, apply them to a fixed thickness on a glass plate, etc. using a roller, and dry them.
An alkaline aqueous solution may be used instead of water. Further, in the examples, Ag 2 O was used as the positive electrode active material, but it goes without saying that the present invention is also effective for batteries using AgO, HgO, MnO 2 and the like. As described above, the present invention enables alkaline batteries to be made thinner and have more stable characteristics.
第1図は本発明の実施例の電池を示す要部縦断
面図、第2図は短絡電流値の分布の比較を示す
図、第3図は内部抵抗値の分布の比較を示す図、
第4図は保存後の放電特性の比較を示す図、第5
図はシート状増粘剤の電解液量に対する割合と電
池の短絡電流値との関係を示す。
2……陽極合剤、3……セパレータ、4……シ
ート状増粘剤、5……陰極。
FIG. 1 is a longitudinal sectional view of a main part showing a battery according to an embodiment of the present invention, FIG. 2 is a diagram showing a comparison of the distribution of short-circuit current values, and FIG. 3 is a diagram showing a comparison of the distribution of internal resistance values.
Figure 4 shows a comparison of discharge characteristics after storage, Figure 5
The figure shows the relationship between the ratio of the sheet thickener to the amount of electrolyte and the short circuit current value of the battery. 2... Anode mixture, 3... Separator, 4... Sheet thickener, 5... Cathode.
Claims (1)
るアルカリ電池において、前記負極に密接してシ
ート状の増粘剤を設けたことを特徴とするアルカ
リ電池。 2 前記増粘剤の量が、電解液量の0.5〜5重量
%である特許請求の範囲第1項記載のアルカリ電
池。[Scope of Claims] 1. An alkaline battery comprising a cathode made of sponge-like porous zinc, characterized in that a sheet-like thickener is provided in close contact with the negative electrode. 2. The alkaline battery according to claim 1, wherein the amount of the thickener is 0.5 to 5% by weight of the amount of the electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15711279A JPS5679853A (en) | 1979-12-03 | 1979-12-03 | Alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15711279A JPS5679853A (en) | 1979-12-03 | 1979-12-03 | Alkaline battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5679853A JPS5679853A (en) | 1981-06-30 |
JPS6134228B2 true JPS6134228B2 (en) | 1986-08-06 |
Family
ID=15642483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15711279A Granted JPS5679853A (en) | 1979-12-03 | 1979-12-03 | Alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5679853A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023228802A1 (en) * | 2022-05-24 | 2023-11-30 | パナソニックIpマネジメント株式会社 | Alkaline dry battery |
CN115148969B (en) * | 2022-07-06 | 2024-07-23 | 大连工业大学 | Preparation method and application of starch film-protected zinc metal anode |
-
1979
- 1979-12-03 JP JP15711279A patent/JPS5679853A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5679853A (en) | 1981-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2028565A (en) | Alkaline primary cells | |
JPS627661B2 (en) | ||
JPS5848361A (en) | Alkaline dry cell | |
JPS6134228B2 (en) | ||
JPH01294360A (en) | Manufacture of sealed lead-acid battery | |
JPH0770315B2 (en) | Non-aqueous electrolyte battery | |
US3533843A (en) | Zinc electrode and method of forming | |
JPH0724215B2 (en) | Dry cell | |
JPS63961A (en) | Organic electrolyte cell | |
JP2568590B2 (en) | Alkaline battery | |
JP2867458B2 (en) | Alkaline battery | |
JPH0560220B2 (en) | ||
JP2022068760A (en) | Positive electrode current collector for lead-acid battery and positive electrode for lead-acid battery and lead-acid battery using the same | |
JPH031442A (en) | Paste form cadmium negative electrode for alkaline storage battery | |
JPH024103B2 (en) | ||
JP2794825B2 (en) | Chemical formation method of nickel hydroxide electrode | |
JPS5947431B2 (en) | alkaline battery | |
JPS5832359A (en) | Alkaline zinc secondary battery | |
JPH08287902A (en) | Alkaline dry battery | |
JPS63241861A (en) | Nickel positive electrode | |
JPH09147870A (en) | Negative electrode plate for lead-acid battery and its manufacture | |
JPS5840779A (en) | Lead storage battery | |
JPS6089073A (en) | Alkaline zinc storage battery | |
JPS59148272A (en) | Silver oxide battery | |
JPS59151754A (en) | Silver oxide battery |