JPS63196912A - Control equipment for nuclear reactor pressure - Google Patents
Control equipment for nuclear reactor pressureInfo
- Publication number
- JPS63196912A JPS63196912A JP62028051A JP2805187A JPS63196912A JP S63196912 A JPS63196912 A JP S63196912A JP 62028051 A JP62028051 A JP 62028051A JP 2805187 A JP2805187 A JP 2805187A JP S63196912 A JPS63196912 A JP S63196912A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- reactor
- target value
- valve opening
- reactor pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 238000005070 sampling Methods 0.000 description 7
- 238000009835 boiling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
Landscapes
- Control Of Fluid Pressure (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
本発明は、沸騰水型原子力発電所の原子炉圧力を制御す
るための原子炉圧力制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Application Field) The present invention relates to a reactor pressure control device for controlling reactor pressure in a boiling water nuclear power plant.
(従来の技術)
従来、沸騰水型原子力発電所の原子炉を停止するには、
まず原子炉からタービンへの主蒸気配管に設けられた主
止弁を全閉する1次に、原子炉圧力制御装置を用いて、
原子炉からタービンをバイパスして復水器へ向かう蒸気
配管に設けられたバイパス弁を制御し、原子炉からの主
蒸気を直接復水器へ送って原子炉圧力を定格圧力から除
々に減圧し、制御棒を操作することにより原子炉を停止
していた。(Conventional technology) Conventionally, in order to shut down the reactor of a boiling water nuclear power plant,
First, the main stop valve installed in the main steam piping from the reactor to the turbine is fully closed, and then the reactor pressure control device is used to
It controls the bypass valve installed in the steam pipe that bypasses the turbine and goes from the reactor to the condenser, and sends the main steam from the reactor directly to the condenser, gradually reducing the reactor pressure from the rated pressure. , the reactor was shut down by operating the control rods.
このとき、原子炉の圧力容器には機械的な熱応力の制約
があり、炉水温度の急激な変化は好ましくない。At this time, the reactor pressure vessel is subject to mechanical thermal stress constraints, and rapid changes in reactor water temperature are undesirable.
このため、原子炉圧力制御装置は炉水温度の変化率を一
定範囲内に保ちながら減圧制御を行なっていた。For this reason, the reactor pressure control system performs pressure reduction control while keeping the rate of change in reactor water temperature within a certain range.
(発明が解決しようとする問題点)
しかしながら、従来の原子炉圧力制御装置は、原子炉圧
力を検出するための圧力検出器としてブルドン管と差動
トランスを使用しており、定格圧力付近で線形の検出特
性を持たせているため、10kg / cd g以下の
低圧力領域では非線形の検出特性となっている。このた
め、低圧力領域での原子炉圧力を正しく検出することが
できず、10 kg / cl g以下は制御範囲外と
なっており、運転員による手動操作にて減圧制御を行な
わなければならない、ところが、低圧力領域ではバイパ
ス弁の操作量も多く、運転員による長時間にわたる手動
操作では負担が大きく、炉水温度の変化率を一定範囲内
に保つ減圧制御が菫かしいという問題点があった。(Problem to be solved by the invention) However, conventional nuclear reactor pressure control equipment uses a Bourdon tube and a differential transformer as a pressure detector to detect reactor pressure, and it is linear near the rated pressure. Since it has a detection characteristic of 10 kg/cdg or less, it has a nonlinear detection characteristic in a low pressure region of 10 kg/cdg or less. For this reason, the reactor pressure in the low pressure region cannot be detected correctly, and pressures below 10 kg/cl g are out of the control range, so depressurization must be controlled manually by operators. However, in the low-pressure region, the amount of operation of the bypass valve is large, and long-term manual operation by operators is a heavy burden, and depressurization control to maintain the rate of change in reactor water temperature within a certain range is problematic. .
そこで本発明は、原子炉圧力がto kg / aJ
g以下の低圧力領域でも炉水温度の変化率を一定範囲内
に保ちながら自動的に減圧制御を行なうことのできる原
子炉圧力制御装置を提供することを目的とする。Therefore, in the present invention, the reactor pressure is to kg/aJ
It is an object of the present invention to provide a reactor pressure control device that can automatically perform pressure reduction control while keeping the rate of change in reactor water temperature within a certain range even in a low pressure region of less than g.
[発明の構成]
(問題点を解決するための手段)
本発明は、バイパス弁オプニングジャッキと、低圧力領
域の原子炉圧力を正しく検出するために、原子炉圧力を
検出する圧力検出器の低圧力領域の非線形特性を線形特
性に補正する非線形補償要素と、炉水温度を入力して炉
水温度と飽和蒸気圧の関係より所定の時間間隔毎の原子
炉圧力目標値を算出するための圧力目標値′!E呂手段
とを設けて、非線形補償要素からの補正された原子炉圧
力が圧力目標値算出手段の算出する原子炉圧力目標値に
追従すべくバイパス弁オプニングジャッキを用いてバイ
パス弁を制御するものである。[Structure of the Invention] (Means for Solving the Problems) The present invention provides a bypass valve opening jack and a pressure detector for detecting the reactor pressure in order to correctly detect the reactor pressure in the low pressure region. A nonlinear compensation element that corrects nonlinear characteristics in the low pressure region to linear characteristics, and a system that inputs the reactor water temperature and calculates the reactor pressure target value at each predetermined time interval from the relationship between the reactor water temperature and saturated steam pressure. Pressure target value′! A bypass valve opening jack is provided to control the bypass valve so that the corrected reactor pressure from the nonlinear compensation element follows the reactor pressure target value calculated by the pressure target value calculation means. It is something.
(作用)
これにより、原子炉圧力が10kg/cdg以下の低圧
力領域においても、自動的に炉水温度の変化率を一定範
囲内に保ちつつ減圧制御を行なうことができる。(Function) Thereby, even in a low pressure region where the reactor pressure is 10 kg/cdg or less, pressure reduction control can be performed while automatically maintaining the rate of change in reactor water temperature within a certain range.
(実施例)
本発明の一実施例による原子炉圧力制御装置を沸騰水型
原子力発電所に適用したシステム構成を第1図に示す。(Embodiment) FIG. 1 shows a system configuration in which a reactor pressure control device according to an embodiment of the present invention is applied to a boiling water nuclear power plant.
原子炉1からの蒸気は主蒸気配管2を通り、一方は主出
弁3を介して発電機4に直結された蒸気タービンSへ送
られる。もう一方はタービンバイパス弁6を介して復水
器7へ送られる。蒸気タービン5の出口蒸気は復水器7
で冷却されて復水となって復水管8を通り復水ポンプ9
により給水加熱器10に送られる。復水はこの給水加熱
器10により加熱され給水ポンプ11により再び原子炉
1に送られる。Steam from the nuclear reactor 1 passes through a main steam pipe 2, and one side is sent to a steam turbine S directly connected to a generator 4 via a main outlet valve 3. The other part is sent to the condenser 7 via the turbine bypass valve 6. The outlet steam of the steam turbine 5 is sent to the condenser 7
The water is cooled and becomes condensate, which passes through the condensate pipe 8 to the condensate pump 9.
The water is sent to the feed water heater 10 by. The condensate is heated by the feedwater heater 10 and sent to the reactor 1 again by the feedwater pump 11.
一方、原子炉1内の原子炉圧力および炉水温度はそれぞ
れ圧力検出器12および温度検出器13により検出され
る。圧力検出器12からの原子炉圧力Pは原子炉圧力制
御袋[14内のサンプリング周期毎に信号を入力するサ
ンプラー15Aを介して原子炉圧力Pを補正するための
非線形補償要素16に入力される。温度検出器13から
の炉水温度Tは同じく原子炉圧力制御装置14内のサン
プラー15Aを介して圧力目標値算出手段17に入力さ
れる。この圧力目標値算出手段17は入力した炉水温度
Tより目標圧力変化率F’DtI−算出するための関数
発生器18と、サンプラー15Aがサンプリングを開始
したとき、すなわち制御開始時の原子炉圧力Pを初期値
とし。On the other hand, the reactor pressure and reactor water temperature inside the nuclear reactor 1 are detected by a pressure detector 12 and a temperature detector 13, respectively. The reactor pressure P from the pressure detector 12 is input to a nonlinear compensation element 16 for correcting the reactor pressure P via a sampler 15A that inputs a signal every sampling period in the reactor pressure control bag [14]. . The reactor water temperature T from the temperature detector 13 is also input to the pressure target value calculation means 17 via the sampler 15A in the reactor pressure control device 14. This pressure target value calculation means 17 includes a function generator 18 for calculating the target pressure change rate F'DtI- from the input reactor water temperature T, and a reactor pressure when the sampler 15A starts sampling, that is, when the control starts. Let P be the initial value.
これに関数発生器18の算出した目標圧力変化率PDを
サンプリング周期毎に加算し加算結果を原子炉圧力目標
値PAとして出力する積分器19よりなる。It consists of an integrator 19 that adds the target pressure change rate PD calculated by the function generator 18 to this at every sampling period and outputs the addition result as the reactor pressure target value PA.
この原子炉圧力目標値PAと、前述した非線形補償要素
16からの補正された原子炉圧力PCは、加算器20に
入力され、その偏差はA制御要素21、B*制御要素2
2およびサンプラー15Aと連動してサンプリング周期
毎に信号を出力するサンプラー15Bを介してバイパス
弁制御袋W123へ弁開度要求信号aとなって出力され
る。ここで、A制御要素21は加lfX器20からの偏
差をバイパス弁制御装置23への弁開度要求信号aに変
換するためのものであり、8制御要素22はその変化が
大きい場合あるいは一定範囲内でない場合に所定の制限
を与えるためのものである。This reactor pressure target value PA and the corrected reactor pressure PC from the nonlinear compensation element 16 described above are input to an adder 20, and the deviations are calculated by A control element 21, B*control element 2
2 and the sampler 15B, which outputs a signal every sampling period in conjunction with the sampler 15A, is output as a valve opening request signal a to the bypass valve control bag W123. Here, the A control element 21 is for converting the deviation from the lfX device 20 into a valve opening request signal a to the bypass valve control device 23, and the 8 control element 22 is for converting the deviation from the lf This is to provide a predetermined limit if the value is not within the range.
バイパス弁制御袋!!23内のバイパス弁オプニングジ
ャッキ開度設定器24は原子炉圧力制御3A置14から
の弁開度要求信号aを入力してバイパス弁6の弁開度目
標値a′を算出するためのものである。Bypass valve control bag! ! The bypass valve opening jack opening setting device 24 in 23 is for inputting the valve opening request signal a from the reactor pressure control 3A 14 and calculating the valve opening target value a' of the bypass valve 6. It is.
このバイパス弁オプニングジャッキ開度設定器24によ
り算出された弁開度目標値a′は、パイパス弁6の弁開
度信号すを入力したC制御要素25からの実際の弁開度
b′と共に加算器26に入力される。The valve opening target value a' calculated by the bypass valve opening jack opening setting device 24 is combined with the actual valve opening b' from the C control element 25 which inputs the valve opening signal of the bypass valve 6. It is input to the adder 26.
加算器26はこれら入力した弁開度目標値a′および実
際の弁開度b′の偏差をとるためのものであり、その偏
差はバイパス弁オプニングジャッキ開度制御器27に入
力されて制御信号Cとなってバイパス弁6に出力される
。The adder 26 is used to calculate the deviation between the input valve opening target value a' and the actual valve opening b', and the deviation is input to the bypass valve opening jack opening controller 27 for control. The signal becomes signal C and is output to the bypass valve 6.
以上の構成で、原子炉1が通常に運転されているときは
、バイパス弁6は閉じており、主止弁3が開いている。With the above configuration, when the nuclear reactor 1 is normally operated, the bypass valve 6 is closed and the main stop valve 3 is open.
これにより、原子炉1からの主蒸気は主蒸気配管2を通
り、主止弁3を通って蒸気タービン5を駆動し1発電機
4を回転させて発電機出力を得ている。As a result, main steam from the nuclear reactor 1 passes through the main steam pipe 2, passes through the main stop valve 3, drives the steam turbine 5, rotates the generator 4, and obtains a generator output.
この状態から原子炉1を停止するときは、発電機4と系
統を遮断し、主止弁3を閉じて蒸気タービン5への主蒸
気の供給を遮断し、蒸気タービン5を停止する。When stopping the nuclear reactor 1 from this state, the generator 4 and the system are cut off, the main stop valve 3 is closed, the supply of main steam to the steam turbine 5 is cut off, and the steam turbine 5 is stopped.
次に、図示せぬ従来の原子炉圧力制御装置を用いてバイ
パス弁6を除々に開き原子炉1からの主蒸気を復水器7
へ送り、炉水温度Tの変化率を一定範囲内(−55℃/
H以下)に保ちながら定格圧力10kg/c+Jgまで
減圧する。Next, the bypass valve 6 is gradually opened using a conventional reactor pressure control device (not shown), and the main steam from the reactor 1 is transferred to the condenser 7.
and keep the rate of change of reactor water temperature T within a certain range (-55℃/
Reduce the pressure to the rated pressure 10kg/c+Jg while maintaining the pressure at 10kg/c+Jg.
さて、原子炉圧力Pが10kg/c+Jgとなったとき
、原子炉圧力制御袋!!14を起動する。すると、サン
プラー15^が所定のサンプリング周期で圧力検出器1
2からの原子炉圧力Pおよび温度検出器13からの炉水
温度Tを原子炉圧力制御装置内に入力する。Now, when the reactor pressure P becomes 10kg/c+Jg, the reactor pressure control bag! ! 14. Then, the sampler 15^ detects the pressure detector 1 at a predetermined sampling period.
The reactor pressure P from 2 and the reactor water temperature T from the temperature detector 13 are input into the reactor pressure control system.
圧力目標値算出手段17内の関数発生器18は、第2図
に示すように、現在の炉水温度T1を入力し、サンプリ
ング周期Δを秒後の炉水温度T2をT2=T1+ΔtX
(目標降温率)として算出する。さらに。As shown in FIG. 2, the function generator 18 in the pressure target value calculation means 17 inputs the current reactor water temperature T1, and calculates the reactor water temperature T2 after the sampling period Δ in seconds as T2=T1+ΔtX.
(Target cooling rate). moreover.
炉水温度Tと原子炉1の飽和圧力との関係より炉水温度
がTI、T2の時の原子炉圧力PI、P2を求め、目標
圧力変化率PDをPD=P 2−P 1により算出し、
これを積分器19に出力する。積分器19は、原子炉圧
力制御袋!!14が時刻t1で起動したときの原子炉圧
力P1を初期値とし、入力した目標圧力変化率PD(=
Pz Pt)を加算し、これを圧力目標値PA(=P
2)として出力する。Reactor pressures PI and P2 when the reactor water temperature is TI and T2 are determined from the relationship between the reactor water temperature T and the saturation pressure of the reactor 1, and the target pressure change rate PD is calculated using PD=P2-P1. ,
This is output to the integrator 19. Integrator 19 is a reactor pressure control bag! ! 14 is started at time t1 as the initial value, and the input target pressure change rate PD (=
Pz Pt) and convert this to the pressure target value PA (=P
Output as 2).
一方、非線形補償要素16は圧力検出器12の検出する
原子炉圧力Pが10kg/cjg以下の場合、非線形特
性となり正しい原子炉圧力が検出されないため、第3図
に示すような非線形関数により、入力した圧力検出器1
2からの原子炉圧力Pの線形化を行ない、補正した原子
炉圧力PCを出力する。On the other hand, when the reactor pressure P detected by the pressure detector 12 is less than 10 kg/cjg, the nonlinear compensation element 16 has a nonlinear characteristic and the correct reactor pressure is not detected. Pressure detector 1
The reactor pressure P from 2 is linearized and the corrected reactor pressure PC is output.
加算器20は積分器19からの圧力目標値PAと非線形
補償要素16からの補正した原子炉圧力PCとの偏差を
A制御要素21に出力する。へ制御要素21はこれをバ
イパス弁6への弁開度要求信号aに変換する一方、8制
御要素22はこれに所定の制限を加え、サンプラー15
Bを介して弁開度要求信号aをバイパス弁制御装置23
に出力する。バイパス弁オプニングジャッキ制御装!!
!23内のバイパス弁オプニングジャッキ関度設定器2
4はこの弁σば度要求償号aに基づいてバイパス弁6の
弁開度目標値a′を算出する。加算器26はこの弁開度
目標値a′とC制御要素25からの実際の弁開度b′を
入力して、その偏差分をバイパス弁オプニングジャッキ
開度制御器27に出力する。バイパス弁オプニングジャ
ッキ開度制御器27はこれに基づいて制御信号Cを出力
してバイパス弁6を操作し、原子炉1からバイパス弁6
を介して復水II7へ送る主蒸気を制御し、原子炉圧力
PをΔを秒間にP+よりP2まで減圧する。Adder 20 outputs the deviation between pressure target value PA from integrator 19 and reactor pressure PC corrected from nonlinear compensation element 16 to A control element 21 . The control element 21 converts this into a valve opening request signal a to the bypass valve 6, while the 8 control element 22 applies a predetermined limit to this and sends it to the sampler 15.
The valve opening request signal a is sent to the bypass valve control device 23 via B.
Output to. Bypass valve opening jack control system! !
! Bypass valve opening jack setting device 2 in 23
4 calculates a target valve opening value a' of the bypass valve 6 based on this valve σ degree requirement compensation code a. The adder 26 inputs this valve opening target value a' and the actual valve opening b' from the C control element 25, and outputs the deviation thereof to the bypass valve opening jack opening controller 27. Based on this, the bypass valve opening jack opening degree controller 27 outputs a control signal C to operate the bypass valve 6, and the bypass valve 6 is removed from the reactor 1.
The main steam sent to condensate II7 is controlled, and the reactor pressure P is reduced from P+ to P2 in Δ seconds.
これにより、Δし秒後の飽和蒸気圧によって定まる炉水
温度TをT2にすることができる。As a result, the reactor water temperature T determined by the saturated steam pressure after Δ seconds can be set to T2.
一般に、n回目のサンプリング周期において、炉水温度
がTnならば目標とするΔL秒後の炉水温度Tn+tを
Tn * r =Tn+Δし×(目標降温率)とし、炉
水温度jn◆1に対応する原子炉圧力Pn++を求め、
目標圧力変化率PDti−PD:Pn+ t−Pnとし
、原子炉圧力目標値PAをPA−P++ΣPD=Pn+
+とする。このように算出した原子炉圧力目標値PAを
目標値として、バイパス弁6バイパス弁オプニングジャ
ッキ制御装@23により調節して、非線形補償要素16
からの補正された原子炉圧力PCをフィードバック制御
することにより、Δし秒後に炉水温度TをTn++とす
ることができる。Generally, in the n-th sampling period, if the reactor water temperature is Tn, the target reactor water temperature Tn+t after ΔL seconds is Tn * r = Tn+Δ×(target cooling rate), which corresponds to the reactor water temperature jn◆1. Find the reactor pressure Pn++,
Target pressure change rate PDti-PD: Pn+ t-Pn, reactor pressure target value PA is PA-P++ΣPD=Pn+
+ Using the reactor pressure target value PA calculated in this way as a target value, the bypass valve 6 is adjusted by the bypass valve opening jack control device @23, and the nonlinear compensation element 16 is adjusted.
By feedback-controlling the corrected reactor pressure PC from , the reactor water temperature T can be brought to Tn++ after Δ seconds.
以上のように本実施例によれば、低圧力領域において、
炉水温度Tの変化率を一定範囲内に保ちながら、自動的
に原子炉の減圧制御を行なうことができる。As described above, according to this embodiment, in the low pressure region,
It is possible to automatically perform depressurization control of the reactor while keeping the rate of change of the reactor water temperature T within a certain range.
尚、本実施例では、 10kg/cシg以下の減圧制御
について説明したが、従来の原子炉圧力制御装置をまっ
たく使用せず定格圧力より10 kg / aJ g以
下までの減圧制御もすべてこの原子炉圧力制御袋ffi
!14に行なわせることももちろん可能である。In addition, in this example, depressurization control of 10 kg/c sig or less was explained, but depressurization control from rated pressure to 10 kg/aJ g or less without using any conventional reactor pressure control device can also be performed entirely using this atomic control system. Furnace pressure control bag ffi
! Of course, it is also possible to have 14 perform the process.
[発明の効果]
以上のように本発明によれば、10 kg / d g
以下の低圧力領域においても炉水温度変化率を一定範囲
内に保ちながら自動的に減圧制御を行なうことができ、
原子炉停止時の運転員による長時間に渡る減圧操作をな
くし、プラントの稼動率向上に大rjJに貢献する原子
炉圧力制御装置が得られる。[Effect of the invention] As described above, according to the present invention, 10 kg/dg
It is possible to automatically perform depressurization control while maintaining the rate of change in reactor water temperature within a certain range even in the following low pressure regions.
It is possible to obtain a reactor pressure control device that eliminates the long-term depressurization operation by an operator when the reactor is shut down, and contributes to a large rjJ in improving the operating rate of the plant.
第1図は本発明の一実施例による原子炉圧力制御装置を
沸騰水型原子力発電所に適用したシステム構成図、第2
図はプラント停止時の原子炉圧力と炉水温度の特性変化
説明図、第3図は第1図の非線形補償要素の入出力特性
説明図である。
1・・・原子炉、2・・・主蒸気配管、3・・・主止弁
、4・・・発電機、5・・・蒸気タービン、6・・・バ
イパス弁、7・・・復水器、8・・・復水管、9・・・
復水ポンプ、lO・・・給水加熱器、11・・・給水ポ
ンプ、12・・・圧力検出器、13・・・温度検出器、
14・・・原子炉圧力制御装置、15A、15b・・・
サンプラー。
16・・・非線形補償要素、17・・・圧力目標値算出
手段、18・・・関数発生器、19・・・積分器、20
.26・・・加算器、21,22.25・・・制御要素
、23・・・バイパス弁オプニングジャッキ制御装置、
24・・・バイパス弁オプニングジャッキ開度設定器、
27・・・バイパス弁オプニングジャッキ開度制御器。
代理人 弁理士 紋 1) 誠
第1図
第2図Fig. 1 is a system configuration diagram in which a reactor pressure control device according to an embodiment of the present invention is applied to a boiling water nuclear power plant;
The figure is an explanatory diagram of characteristic changes in reactor pressure and reactor water temperature during plant shutdown, and FIG. 3 is an explanatory diagram of input/output characteristics of the nonlinear compensation element shown in FIG. 1. 1... Nuclear reactor, 2... Main steam piping, 3... Main stop valve, 4... Generator, 5... Steam turbine, 6... Bypass valve, 7... Condensate Container, 8... Condensate pipe, 9...
Condensate pump, lO... Feed water heater, 11... Water feed pump, 12... Pressure detector, 13... Temperature detector,
14... Reactor pressure control device, 15A, 15b...
sampler. 16... Nonlinear compensation element, 17... Pressure target value calculation means, 18... Function generator, 19... Integrator, 20
.. 26... Adder, 21, 22. 25... Control element, 23... Bypass valve opening jack control device,
24...Bypass valve opening jack opening setting device,
27...Bypass valve opening jack opening controller. Agent Patent Attorney Crest 1) Makoto Figure 1 Figure 2
Claims (1)
配管に設けられたバイパス弁の開度を制御して、炉水温
度の変化率を一定範囲内に保ちながら原子炉の減圧制御
を行なう原子炉圧力制御装置において、検出した炉水温
度より原子炉圧力目標値を算出する圧力目標値算出手段
と、原子炉圧力を検出する圧力検出器の非線形特性を補
正するための非線形補償要素と、この非線形補償要素で
補正された原子炉圧力値と前記圧力目標値算出手段によ
り算出された原子炉圧力目標値との偏差に応じて前記バ
イパス弁を制御するバイパス弁オプニングジャッキ制御
装置とを備えることを特徴とする原子炉圧力制御装置。A nuclear reactor that controls the opening of the bypass valve installed in the steam pipe that bypasses the turbine and goes from the reactor to the condenser, thereby controlling the pressure reduction of the reactor while keeping the rate of change in reactor water temperature within a certain range. The reactor pressure control device includes a pressure target value calculation means for calculating a reactor pressure target value from the detected reactor water temperature, a nonlinear compensation element for correcting the nonlinear characteristics of a pressure detector for detecting the reactor pressure, and and a bypass valve opening jack control device that controls the bypass valve according to the deviation between the reactor pressure value corrected by the nonlinear compensation element and the reactor pressure target value calculated by the pressure target value calculation means. A nuclear reactor pressure control device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62028051A JPH0833774B2 (en) | 1987-02-12 | 1987-02-12 | Reactor pressure control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62028051A JPH0833774B2 (en) | 1987-02-12 | 1987-02-12 | Reactor pressure control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63196912A true JPS63196912A (en) | 1988-08-15 |
JPH0833774B2 JPH0833774B2 (en) | 1996-03-29 |
Family
ID=12237954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62028051A Expired - Lifetime JPH0833774B2 (en) | 1987-02-12 | 1987-02-12 | Reactor pressure control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0833774B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007507713A (en) * | 2003-09-30 | 2007-03-29 | ローズマウント インコーポレイテッド | Process pressure sensor calibration |
CN103165197A (en) * | 2011-12-15 | 2013-06-19 | 韩国电力技术株式会社 | Method and apparatus for controlling output of pressure setting signal to automatically control steam bypass control system, and method and apparatus for automatically controlling steam bypass control system by using the pressure setting signal |
-
1987
- 1987-02-12 JP JP62028051A patent/JPH0833774B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007507713A (en) * | 2003-09-30 | 2007-03-29 | ローズマウント インコーポレイテッド | Process pressure sensor calibration |
CN103165197A (en) * | 2011-12-15 | 2013-06-19 | 韩国电力技术株式会社 | Method and apparatus for controlling output of pressure setting signal to automatically control steam bypass control system, and method and apparatus for automatically controlling steam bypass control system by using the pressure setting signal |
CN103165197B (en) * | 2011-12-15 | 2015-09-30 | 韩国电力技术株式会社 | Control the method and apparatus of the output of pressure signalization |
Also Published As
Publication number | Publication date |
---|---|
JPH0833774B2 (en) | 1996-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20040031699A (en) | A method of and control system for controlling a nuclear reactor outlet temperature | |
CN110689973B (en) | Nuclear power station primary loop depressurization control method under heat transfer pipe rupture accident | |
JPS6337844B2 (en) | ||
JPS63196912A (en) | Control equipment for nuclear reactor pressure | |
JPS629413A (en) | Controller for power plant | |
JP5733929B2 (en) | Water supply equipment | |
JP3519179B2 (en) | Reactor pressure controller | |
JP2558700B2 (en) | Plant warming controller | |
JP2758245B2 (en) | Drain water level control device for feed water heater | |
JPH0616382Y2 (en) | Temperature rise control device for coolant in pressurizer | |
JPS6239646B2 (en) | ||
JPH0652049B2 (en) | Adjustable valve warming control method and apparatus | |
JPH02240599A (en) | Pressure controller for nuclear reactor | |
JPH0241719B2 (en) | ||
JPS6132403Y2 (en) | ||
JPH0335922Y2 (en) | ||
JPH0843589A (en) | Test device and test method for main steam control valve | |
JPH1163481A (en) | Method and apparatus for controlling pressure of fuel gas in gas fired boiler | |
JPH0979508A (en) | Feed water controller for steam generating plant | |
JPH0318160B2 (en) | ||
JPH1031090A (en) | Reactor output control device | |
JPS634160B2 (en) | ||
JPS6337918B2 (en) | ||
JPH0196403A (en) | Warming device for turbine regulation valve | |
JPS63302105A (en) | Turbine governor warming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |