JPS63196373A - Computer for automatic measurement for grinder control and statistical process adjustment of grinder - Google Patents
Computer for automatic measurement for grinder control and statistical process adjustment of grinderInfo
- Publication number
- JPS63196373A JPS63196373A JP63025552A JP2555288A JPS63196373A JP S63196373 A JPS63196373 A JP S63196373A JP 63025552 A JP63025552 A JP 63025552A JP 2555288 A JP2555288 A JP 2555288A JP S63196373 A JPS63196373 A JP S63196373A
- Authority
- JP
- Japan
- Prior art keywords
- grinding
- workpiece
- measurement
- signal
- amplitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 title claims description 59
- 238000000034 method Methods 0.000 title claims description 33
- 238000002872 Statistical quality control Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000002452 interceptive effect Effects 0.000 claims description 4
- 238000003754 machining Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 2
- 238000003860 storage Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/02—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/10—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B7/00—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
- B24B7/10—Single-purpose machines or devices
- B24B7/16—Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings
- B24B7/17—Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings for simultaneously grinding opposite and parallel end faces, e.g. double disc grinders
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、特に連続加工シーケンスにより工作物を研削
するための研削盤の研削盤制御及び統計的プロセス調整
のための自動測定用計算機に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an automatic measuring computer for grinding machine control and statistical process adjustment of a grinding machine, in particular for grinding workpieces in a continuous machining sequence.
[従来の技術及び発明が解決しようとする問題点コ研削
盤においては、たとえば複数の被測定部品の連続研削な
どの場合に生産流れの中でそれぞれの工作物を測定する
、又は軸嵌合部を研削する円筒研削盤などの場合に個々
の工作物の研削加工面を生産プロセスの中で測定する測
定制御部が知られている。この測定制御部は、絶えず研
削盤を監視し、要求される工作物の寸法許容差に対して
研削盤を制御することを目的として工作物に関する測定
データを収集する。[Problems to be solved by the prior art and the invention] In a grinding machine, for example, in the case of continuous grinding of a plurality of parts to be measured, it is necessary to measure each workpiece in the production flow, or to measure the shaft fitting part. A measurement control unit is known that measures the grinding surface of each workpiece during the production process, such as in the case of a cylindrical grinder that grinds. This measurement control constantly monitors the grinding machine and collects measurement data on the workpiece for the purpose of controlling the grinding machine to the required dimensional tolerances of the workpiece.
この場合、統計的品質管理を目的として手動のプロセス
後測定手段又は測定装置を使用することも知られており
、正確なnl量値を確保するために、移動中の工作物に
ついての動的測定工程の代わりに、静止している工作物
に関する静的なn1定方法が適用される。In this case, it is also known to use manual post-process measuring means or measuring devices for statistical quality control purposes, and dynamic measurements on moving workpieces to ensure accurate nl quantity values. Instead of a process, a static n1 constant method for a stationary workpiece is applied.
しかしながら、プロセス後測定手段又は測定装置の場合
には、測定制御部とは異なり、測定データの収集場所は
直接の生産工程から遠く離れており、特に連続研削にお
いては、それに続く測定値収集を伴なう測定工程方法は
抽出検査でなければ不可能であり、時間もかかるので不
利である。さらに、その後に行なわれる加工装置及びプ
ロセス後’413定装置における測定制御に要するコス
トが比較的高いという欠点もある。However, in the case of post-process measuring means or measuring devices, unlike the measurement control, the point of collection of the measurement data is far away from the direct production process and, especially in continuous grinding, is accompanied by subsequent measurement value collection. This measurement process method is only possible by sampling inspection, and is disadvantageous because it takes time. A further disadvantage is that the cost required for subsequent measurement control in processing equipment and post-processing equipment is relatively high.
連続研削の場合に、プロセス後n1定装置を研削盤組込
みの測定制御部の代わりに、研削盤をプロセス後に制御
するためにも利用したならば、あらゆる工作物について
、研削盤とプロセス後測定装置との間に、測定値の受取
り及び反応の遅延に起因する品質確保面の問題が起こる
。従って、特に性能の高い連続平面研削においては、研
削工具の直後に工作物を解放して、研削盤内で送りなが
ら工作物をn1定することが不可欠であり、これにより
、研削盤の調整システムは研削工具の消耗を許容限界内
で直ちに制御することができる。In the case of continuous grinding, if the post-process n1 constant device is also used to control the grinding machine after the process instead of the measurement control part built into the grinding machine, then the grinding machine and the post-process measuring device can be used for all workpieces. During this process, quality assurance problems arise due to delays in receiving and responding to measured values. Therefore, especially in high-performance continuous surface grinding, it is essential to release the workpiece immediately after the grinding tool and adjust the workpiece to n1 while feeding it in the grinding machine, thereby improving the adjustment system of the grinding machine. The wear of the grinding tool can be immediately controlled within acceptable limits.
調整技術の上で必要とされる急速な反応と、プロセス制
御のための4−1定システムを仕上げ場所のすぐ近くに
配置する構成は、確率的信号(不規則信号)によるn1
定誤差の影響を増大させる。経験によれば、このような
信号は連続平面研削及び連続心なし円筒研削の場合に特
に多く見られる。切削性能が高く且つ大量の工作物を研
削する極端な状況では、確率的信号は工作物の仕上げ許
容差を広げ、ばらつきを大きくする結果を招く。The rapid reaction required on the regulating technology and the arrangement of the 4-1 constant system for process control in close proximity to the finishing area are due to the stochastic signals (irregular signals)
Increases the influence of constant errors. Experience has shown that such signals are particularly common in continuous surface grinding and continuous centerless cylindrical grinding. In extreme situations where cutting performance is high and a large number of workpieces are being ground, stochastic signals can result in wider workpiece finishing tolerances and greater variations.
研削に特有の確率的信号は、元来、測定値収集の際の妨
害作用によって発生するものである。The stochastic signals characteristic of grinding are primarily caused by disturbances during measurement acquisition.
このような不規則信号プロセスは信頼しうる測定値を必
要とする。そのため、連続研削プロセスにおいては、研
削盤制御のための測定制御及び要求される統計的プロセ
ス調整を実行するために、測定信号評価、検出及び確率
的n1定誤差信号の排除のための高精度の方法が必要で
ある。Such irregular signal processes require reliable measurements. Therefore, in continuous grinding processes, high precision for measurement signal evaluation, detection and elimination of stochastic n1 constant error signals is required to carry out measurement control and required statistical process adjustment for grinding machine control. A method is needed.
連続用ニジーケンス(連続法)により工作物を研削する
場合、西ドイツ特許第2949427号によれば、工作
物ごとに、除去される値と、最適のプロセス従属可変調
整値又はフィードバック値が研削工具に関して発生され
る。この場合、各工作物の最小値の選択や、調整インタ
ーバル間の全ての最小値の和の平均値の形成等の詳細値
は、プロセス従属調整量を得るために使用される。西ド
イツ特許第3314318号には、研削盤の所定場所に
挿入するのに適し、高速動的測定工程を実行し、側方か
らの力及び冷却剤の作用による負荷を受けやすい測定走
査器システムの適用が記載されている。When grinding workpieces with the continuous Nisiekens (continuous method), according to German patent no. be done. In this case, details such as the selection of the minimum value for each workpiece and the formation of the average value of the sum of all minimum values during the adjustment interval are used to obtain the process-dependent adjustment variable. German Patent No. 3314318 describes the application of a measuring scanner system which is suitable for insertion into a grinding machine at a given location, performs fast dynamic measuring processes and is susceptible to loads due to lateral forces and coolant action. is listed.
[問題点を解決するための手段]
これらの公知の構成を考慮した上で、本発明の目的は、
研削盤調整制御のための所定場所に高速測定コンピュー
タを使用することにより、確率的誤差信号を迅速に事前
選別して、工作物ごとの測定信号評価と共に、研削盤の
平坦調整及び統計的品質管理をさらに可能にすることで
ある。[Means for Solving the Problems] In consideration of these known configurations, the purpose of the present invention is to:
By using a high-speed measuring computer in place for grinding machine adjustment control, stochastic error signals can be rapidly prescreened for workpiece-by-workpiece measurement signal evaluation as well as grinding machine flatness adjustment and statistical quality control. The goal is to make it even more possible.
測定データの迅速デジタル事前選別と、高い機械的限界
周波数を有する高速nj定走査器とを伴なう、特に連続
用ニジーケンスにより工作物を研削するための研削盤の
研削盤制御及び統計的プロセス調整のための自動測定用
計算機は、高速計算機との組合せで、高い電子走査速度
により、工作物の表面が、走査休止期間、研削粒、研削
等級及び振動等の研削プロセスにおける研削加工に特有
の妨害信号を同時に伴なって走査され、工作物の開始点
のトリガ信号と工作物の終端点のトリガ信号との間に自
然に形成される可変信号ウィンドウにより、工作物の測
定時間範囲が決定され、同時に、その測定継続時間につ
いて、振幅−厚さ線図が数値の形態で記憶装置を有する
計算機において形成され、選択された最小の振幅値は信
号ウィンドウの下限を表わし、選択されたレベルを有す
る振幅は信号ウィンドウの上限を表わし、それにより、
妨害信号として位置づけられる信号ウィンドウの外の全
ての確率的振幅が選別されることと、両面の研削が同時
に実施される場合、工作物の厚さ寸法に関する有効信号
は信号ウィンドウ振幅の中間値により表わされ、工作物
の平行度偏差は上方信号ウィンドウ振幅及び下方信号つ
4ンドゥ振幅により表わされ、その後に始めてそれ以降
の統計的品質管理計算に使用されることを特徴とする。Grinding machine control and statistical process adjustment of grinding machines, especially for grinding workpieces with continuous grinding, with rapid digital pre-screening of measurement data and high-speed NJ constant scanners with high mechanical limit frequencies The automatic measuring calculator for the machine, in combination with a high-speed calculator, allows the high electronic scanning speed to ensure that the surface of the workpiece is free from disturbances specific to the grinding process, such as scanning pauses, grinding particles, grinding grades and vibrations. A measurement time range of the workpiece is determined by a variable signal window that is simultaneously scanned with the signals and is naturally formed between a trigger signal at the start point of the workpiece and a trigger signal at the end point of the workpiece; At the same time, for that measurement duration, an amplitude-thickness diagram is formed in a computer with a storage in numerical form, the selected minimum amplitude value representing the lower limit of the signal window, the amplitude with the selected level represents the upper limit of the signal window, so that
If all stochastic amplitudes outside the signal window are screened out, which are located as interfering signals, and grinding on both sides is carried out simultaneously, the effective signal for the thickness dimension of the workpiece is represented by the intermediate value of the signal window amplitude. It is characterized in that the parallelism deviation of the workpiece is represented by an upper signal window amplitude and a lower signal window amplitude and is only then used for further statistical quality control calculations.
自動測定用計算機の使用により、さらに、次のような応
用能力が得られる。The use of automatic measurement calculators also provides the following application capabilities:
複数の測定走査器を利用する調整工程、和、差及び平行
度のB1定、測定範囲、測定走査器の行程範囲、限界値
の数値による範囲の事前設定、調整信号出力、及び統計
的特性値、工作物の個数、中間値、分散、標準偏差の設
定、あるいは、現場での個々の測定値の連続図形表示を
実行するためのソフトウェアに応じた多言語のスクリー
ン表示付き操作者コントロール。この場合、ローリング
プロセスの最終値をそれぞれ同時に表示できる。Adjustment process using multiple measuring scanners, B1 constants of sum, difference and parallelism, measuring range, travel range of measuring scanners, pre-setting of numerical limit ranges, adjusting signal output, and statistical characteristic values. Operator control with multilingual screen display depending on the software for setting the number of workpieces, intermediate values, variance, standard deviation or continuous graphical display of individual measured values on site. In this case, the final values of the rolling process can each be displayed simultaneously.
移動型補助モニターを使用すると、たとえば搬送路の途
中で測定走査器をリモートコントロールすることができ
る。所定の生産量に関する記録文書作成のためのプリン
タ端末装置との差込み接続部を設けることも可能である
。さらに、データ接続部を介して、プロセスデータを中
央製造管理部へ連続的に伝送することができる。Using a mobile auxiliary monitor, it is possible, for example, to remotely control the measuring scanner during the transport path. It is also possible to provide a plug connection with a printer terminal for the production of documentation for a given production volume. Furthermore, the process data can be continuously transmitted to the central production control via the data connection.
装置内においては、機能性の自己制御のための周期的検
査ルーチンを適用することができる。また、温度測定用
外部センサを使用して、たとえば測定走査器の保持部に
ついて、熱によるドリフト作用を報知することができ、
この情報は修正係数として自動測定用計算機により利用
される。Within the device, periodic test routines can be applied for self-control of functionality. In addition, external temperature sensors can be used to signal thermal drift effects, for example in the holding part of a measuring scanner;
This information is used by the automatic measurement calculator as a correction factor.
構成は特に連続加工シーケンスにより工作物を研削する
ための研削盤のマイクロプロセッサに基づく測定制御手
段を中心としており、1llJ定信号は計算機において
自動的に評価されるが、確率的に妨害信号はあらかじめ
排除される。評価は、研削プロセスの品質管理、研削結
果の記録文書作成及び中央管理部のコンピュータへの品
質データ並びに生産データの報知を目的として、統計的
計算規則に従って実行される。多機能であるため、特に
研削プロセスにおける「管理」機能があるため、本発明
による測定制御では自動測定用計算機は重要な役割をに
なう。The configuration is centered around a microprocessor-based measurement control means of a grinding machine for grinding workpieces in particular in a continuous machining sequence, in which the 1llJ constant signal is automatically evaluated in a computer, while the probabilistic interference signal is be excluded. The evaluation is carried out according to statistical calculation rules for the purpose of quality control of the grinding process, documentation of the grinding results and communication of quality and production data to a central control computer. Due to its multifunctionality, especially its "management" function in the grinding process, the automatic measurement computer plays an important role in the measurement control according to the invention.
本発明においては、測定走査器が加工部の近傍に配置さ
れることによって起こる、いかにしても避けがたい確率
的妨害信号と、その結果、1l)I定値収集で生じる測
定誤差が統計的計算プロセスに導入されるのではなく、
あらゆる管理サイクルアルゴリズム及び統ニドアルゴリ
ズムの適用前に、以下の実施例において説明するように
、数値測定信号が特別に選別評価され、妨害信号が排除
されることがきわめて重要である。In the present invention, the unavoidable stochastic interference signals caused by the placement of the measuring scanner in the vicinity of the processing part and the resulting measurement errors caused by 1l) I constant value acquisition are statistically calculated. rather than being introduced into the process.
Before applying any control cycle algorithm and control algorithm, it is very important that the numerical measurement signals are specially screened and evaluated to eliminate interfering signals, as will be explained in the examples below.
[実 施 例] 以下、添付の図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
第1図は、平坦な工作物4及び5等々を連続して研摩す
るための2つの研摩ディスク2及び3を有する両面平面
研削盤におけるDj定ステーション1を例として示して
おり、この測定ステーション1は上方測定走査器A1と
、下方測定走査器B1とを具備する。工作物は、たとえ
ば研削盤の回転穴あき板6に入れる等この送り手段によ
り引張られない状態で測定ステーション1を通るように
案内される。2つの研摩ディスク2及び3から出た直後
の工作物5について2つの測定走査器A1及びB1によ
り得られたn1定値は、両面平面研削盤の双方の研摩デ
ィスク調整システムに対する急速な制御反応を生じさせ
るので、工作物の許容差限界内で研削工具の消耗を急速
に調整することができる。同様に、2本の研削スピンド
ル7及び8の熱による長さの変化をフィードバック制御
することができる。FIG. 1 shows by way of example a Dj constant station 1 in a double-sided surface grinding machine with two abrasive discs 2 and 3 for successively grinding flat workpieces 4 and 5, etc. comprises an upper measuring scanner A1 and a lower measuring scanner B1. The workpiece is guided through the measuring station 1 without tension by this feeding means, for example into a rotary perforated plate 6 of a grinding machine. The n1 constant values obtained by the two measuring scanners A1 and B1 for the workpiece 5 immediately after leaving the two abrasive discs 2 and 3 result in a rapid control reaction for both abrasive disc adjustment systems of the double-sided surface grinding machine. This allows the wear of the grinding tool to be adjusted rapidly within the tolerance limits of the workpiece. Similarly, the heat-induced length changes of the two grinding spindles 7 and 8 can be feedback-controlled.
急速な反応を得るためには、測定走査器を研削盤の工作
場所の近傍に配置するのが有利であるが、この場合、確
率的な性質をもつ妨害作用によるn1定誤差が起こる。In order to obtain a rapid reaction, it is advantageous to arrange the measuring scanner in the vicinity of the working area of the grinding machine, but in this case n1 constant errors occur due to interference effects of a stochastic nature.
たとえば、工作物4.5の引張られていない状態にある
送り搬送部(穴あき板)6でも、冷却剤や、工作物の下
方の削りくず10によって、研削盤のテーブル9の上方
における工作物の高さ位置にばらつきを生じさせる。2
つの測定走査器A1及びB1の信号は計算機において加
算され、それにより、工作物の高さ位置のばらつきは測
定法に基づいて補正される。For example, even in the untensioned feed conveyor (perforated plate) 6 of the workpiece 4.5, the workpiece above the table 9 of the grinding machine is affected by the coolant and by the shavings 10 below the workpiece. This causes variations in the height position. 2
The signals of the two measuring scanners A1 and B1 are summed in a computer, so that variations in the height position of the workpiece are corrected on the basis of the measuring method.
そこで、第2図は、工作物の測定開始時と測定終了時と
における加速力、並びに第1図に示されるような工作物
の表面上の研削粒11に起因する妨害信号を含めて、工
作物の厚さに関する和信号5−A1+81の変化を概略
的に示す。本発明によれば、辺I、 II、 m、
IVを有する自然に形成される信号ウィンドウにより、
測定信号の評価に可能になる。さらに、たとえば毎秒a
ooo回といった比較的高速の走査と、毎秒500ia
mの工作物送り運動とにより、工作物の表面は1ミリメ
ートルにつき6回走査されることになる。従って、測定
軌跡の中には曲線Sで示すような高さプロファイルが記
録され、個々の数値は計算機に記憶される。プログラム
可能なトリガ閾値Vは工作物によって異なるTAからT
Eまでの測定バッチを決定するので、工作物と工作物の
間では、トリガ閾値を下回る測定信号は有効とならない
。Therefore, Fig. 2 shows the acceleration force at the start and end of the measurement of the workpiece, as well as the disturbance signal caused by the abrasive grains 11 on the surface of the workpiece as shown in Fig. 1. Fig. 4 schematically shows the variation of the sum signal 5-A1+81 with respect to the thickness of the object. According to the invention, the sides I, II, m,
Due to the naturally formed signal window with I.V.
It becomes possible to evaluate the measurement signal. Furthermore, for example, every second a
Relatively fast scans of ooo times and 500ia per second
With a workpiece feed movement of m, the workpiece surface is scanned six times per millimeter. Therefore, a height profile as shown by the curve S is recorded in the measurement trajectory, and the individual numerical values are stored in the computer. Programmable trigger threshold V varies from TA to T depending on the workpiece.
Since measurement batches up to E are determined, no measurement signal below the trigger threshold is valid between workpieces.
計算機においては、測定開始時のトリガ閾値TAから測
定終了時のトリガ閾値TEに至るまでの走査範囲にわた
る複数の測定信号に同等に100%のシェアが設定され
る。In the computer, a 100% share is equally set for a plurality of measurement signals over a scanning range from the trigger threshold TA at the start of the measurement to the trigger threshold TE at the end of the measurement.
TAの後の、たとえば10%−限界Iと、TBの前の、
たとえば10%−眼界■といったプログラム可能な限界
を設定することにより、その後の測定信号評価に対して
は80%の測定範囲が残される。After TA, e.g. 10%-limit I and before TB,
By setting a programmable limit, for example 10%-eye circle ■, 80% of the measurement range is left for subsequent measurement signal evaluation.
これによって、加速力に伴なって発生された誤りた21
11定信号は排除される。As a result, the erroneous 21
11 constant signals are excluded.
下方信号ウィンドウ限界■は、80%の評価範囲におけ
る最小数値により決定される。妨害信号は80%の評価
範囲の中では常に最小値を上回っているので、このよう
に選択された最小の数値は工作物の厚さに関する許容測
定量となる。The lower signal window limit ■ is determined by the smallest value in the 80% evaluation range. Since the disturbance signal is always above the minimum value within the 80% evaluation range, the minimum value thus selected becomes the permissible measurement for the thickness of the workpiece.
発生しうると思われる最小値誤差は範囲から外れた開始
領域及び終了領域にのみ現われる可能性がある。The minimum value error that is likely to occur may appear only in the start and end regions that are outside the range.
上方信号ウィンドウ限界■は、80%の評価範囲゛
における最大数値により決定される。たとえば研削粒1
1のような、より大きな妨害信号は排除される。The upper signal window limit■ is the 80% evaluation range゛
determined by the maximum value in . For example, grinding grain 1
Larger jamming signals, such as 1, are rejected.
測定誤差■は、研削後の平坦な面の非常にわずかな傾斜
に対して異常な傾斜があることにより検出することがで
きる。激しい上昇と、それに続く激しい降下とを伴なう
信号列は、平坦方研削平面に関する妨害信号を表わす確
実な指標である。Measurement error (2) can be detected by the presence of an abnormal slope relative to the very slight slope of the flat surface after grinding. A signal train with a sharp rise followed by a sharp fall is a reliable indicator of a disturbance signal for a flat grinding plane.
走査シーケンスにおけるそれぞれ2つの測定信号の数値
をその都度比較していくことにより、この差は傾斜の尺
度となる。許容しつる傾斜に関して計算パラメータをあ
らかじめ与えておくことにより、異物の妨害信号を急速
に選別することができる。最大値と最小値との差は、工
作物の双方の研削面に起こりうる平行度偏差の尺度とな
る。By comparing in each case the values of the two measurement signals in the scanning sequence, this difference becomes a measure of the slope. By giving calculation parameters in advance regarding the allowable slope of the vine, interference signals of foreign objects can be rapidly screened out. The difference between the maximum and minimum values is a measure of the possible parallelism deviation of both grinding surfaces of the workpiece.
平行度の限界値をあらかじめ与えておくことにより、信
号は、2つの研摩ディスクに関する自動平坦調整サイク
ルを開始するための研削盤制御に使用される。By predetermining the parallelism limit, the signal is used in the grinding machine control to initiate an automatic flattening cycle for the two abrasive discs.
計算機能と、?#1定走査器信号の和11)J定、自動
的に測定を開始するためのトリガ閾値、表面を断面とし
てとらえるための高速走査、四方で設定される信号ウィ
ンドウ限界、及び工作物ごとの傾斜の差計価との組合せ
作用により、研削プロセスの調整をさらに続行し、統計
的にデータ表示をする前に、研削プロセスに特有の妨害
値は除去される。Calculation function? #1 Sum of constant scanner signals 11) J-constant, trigger threshold to automatically start measurements, fast scan to capture the surface as a cross-section, signal window limits set on all sides, and tilt per workpiece In combination with the differential values, the interfering values specific to the grinding process are removed before further adjustment of the grinding process and statistical data display.
ff11図の測定ステーション1の熱による長さ変化を
補正するために、装置に組込まれた温度センサ12を使
用して動作温度をその都度測定し、自動測定用計算機に
その結果を送る。In order to compensate for the thermally induced length changes of the measuring station 1 in FIG.
自動測定用計算機には、様々に変化する動作温度Δtに
よって決定される厚さ寸法ΔSの変化を連続的に考慮し
た修正テーブルが記憶されている。The automatic measurement calculator stores a correction table that continuously takes into account the changes in the thickness dimension ΔS determined by the variously varying operating temperatures Δt.
最後に、第3図には、n1定走査器から始まり、利用可
能な周辺装置及び通信用の端末装置をも含む本発明によ
る自動n1定用計算機1の全体構成が概略的に示されて
いる。Finally, FIG. 3 schematically shows the overall configuration of an automatic n1 regular computer 1 according to the invention, starting from an n1 constant scanner and also including available peripheral devices and communication terminals. .
測定走査器A1及びB1のための入力端子2及び3は、
複数箇所にわたる測定出力に対して、たとえばKFZ結
合部の平行度測定の場合のように、An、Bnまで、す
なわち、ソフトウェアに応じて和測定、差測定及び比較
測定の実行のために結合されるn個の測定走査器に対応
して拡張されることができる。Input terminals 2 and 3 for measurement scanners A1 and B1 are:
For measurement outputs over several locations, for example in the case of parallelism measurements of KFZ connections, up to An, Bn, i.e. combined for carrying out summation, difference and comparison measurements depending on the software. It can be expanded to accommodate n measurement scanners.
入力端子4はアナログセンサ、たとえば温度による影響
の補正のために設けられでいる。また、入力端子5は研
削盤制御部の直接点報知に使用され、出力端子6は研削
盤制御部への直接信号伝送のために使用される。出力端
子7はアナログ測定信号を、たとえば高速記録用端末装
置へ伝送するために使用され、出力端子8は外部工作物
カウンタ用であり、出力端子9はたとえばリモートコン
トロールのための外部スクリーン用である。Input terminal 4 is provided for compensating analog sensors, for example temperature effects. Further, the input terminal 5 is used for direct point notification of the grinding machine control section, and the output terminal 6 is used for direct signal transmission to the grinding machine control section. Output terminal 7 is used for transmitting the analog measurement signal, for example to a high-speed recording terminal, output terminal 8 is for an external workpiece counter, and output terminal 9 is for an external screen, for example for remote control. .
接続箇所lOは統計的り測定結果を文書の形で作成する
ためのプリンタ端末装置用として設けられ、接続箇所L
1は研、削盤制御部との信号交換及びデータ通信、目標
値と実原値との差の測定技術により検出された量だけ調
整システムを操作する作業、研削プロセスの制御、及び
たとえばあらかじめ与えられている最大値と最小値との
平行度偏差値の差を上回った場合の平坦調整サイクルの
開始のために設けられている。The connection point IO is provided for a printer terminal device for creating statistical measurement results in the form of a document, and the connection point L
1 includes the grinding, the signal exchange and data communication with the grinding machine control, the operation of operating the adjustment system by the amount detected by the technique of measuring the difference between the target value and the actual original value, the control of the grinding process, and the control of the grinding process, e.g. This is provided for starting a flatness adjustment cycle when the difference in parallelism deviation values between the maximum and minimum values set is exceeded.
接続箇所12は、統計的品質管理の規定に従って生産量
及び生産品質を連続して報知するための上位コンピュー
タ、たとえば中央生産管理部との信号交換及びデータ通
信のために設けられている。Connection point 12 is provided for signal exchange and data communication with a higher-order computer, for example a central production control department, for continuous reporting of production quantity and production quality in accordance with the regulations of statistical quality control.
時間的に間隔をおいて、たとえば測定が実行されていな
い時間に、自動測定用計算機を自動的に監視するために
、自動測定用計算機の検査プログラムをホストコンピュ
ータから開始することができる。In order to automatically monitor the automatic measuring calculator at time intervals, for example during times when no measurements are being carried out, a test program for the automatic measuring calculator can be started from the host computer.
第1図は、両面平面研削盤における測定ステーションを
示す図、
第2図は、妨害信号を含めて工作物の厚さに関する和信
号の変化を概略的に示す図、及び第3図は、本発明によ
る自動測定用計算機の全体構成を概略的に示す図である
。
1・・・測定ステーション(自動測定用計算機)2.3
・・・研摩ディスク 4.5・・・工作物AI、Bl
・・・測定走査器
ほか1名1 shows a measuring station in a double-sided surface grinding machine; FIG. 2 schematically shows the variation of the sum signal with respect to the thickness of the workpiece, including the interference signal; and FIG. 1 is a diagram schematically showing the overall configuration of an automatic measurement computer according to the invention. 1...Measuring station (automatic measurement calculator) 2.3
...Abrasive disc 4.5...Workpiece AI, Bl
...Measurement scanner and 1 other person
Claims (2)
的限界周波数を有する高速測定走査器とを伴なう、特に
連続加工シーケンスにより工作物を研削するための研削
盤の研削盤制御及び統計的プロセス調整のための自動測
定用計算機において、高速計算機との組合せで、高い電
子走査速度により、工作物の表面は、走査休止期間、研
削粒、研削等級及び振動等の研削プロセスにおける研削
加工に特有の妨害信号を同時に伴なって走査され、工作
物の開始点のトリガ信号と工作物の終端点のトリガ信号
との間に自然に形成される可変信号ウィンドウにより、
工作物の測定時間範囲が決定され、同時に、その測定継
続時間について、数値の形態の振幅−厚さ線図が記憶装
置を有する計算機で形成され、選択された最小の振幅値
は信号ウィンドウの下限を表わし、選択されたレベルを
有する振幅は、信号ウィンドウの上限を表わし、それに
より、妨害信号として位置づけられる、信号ウィンドウ
の外の全ての確率的振幅は選別されることを特徴とする
自動測定用計算機。(1) Grinding machine control and statistical control of grinding machines, especially for grinding workpieces with continuous machining sequences, with rapid digital pre-screening of measurement data and high-speed measuring scanners with high mechanical limit frequencies In automatic measurement calculator for process adjustment, in combination with high-speed calculator, high electronic scanning speed allows the surface of the workpiece to be characterized by grinding machining characteristics in the grinding process, such as scanning pause period, grinding grains, grinding grade and vibration. due to the variable signal window naturally formed between the trigger signal at the start point of the workpiece and the trigger signal at the end point of the workpiece.
The measurement time range of the workpiece is determined, and at the same time, for its measurement duration, an amplitude-thickness diagram in numerical form is formed in a computer with a storage, the selected minimum amplitude value being the lower limit of the signal window. for automatic measurements, characterized in that the amplitude with the selected level represents the upper limit of the signal window, whereby all stochastic amplitudes outside the signal window are screened out, which are positioned as interfering signals. calculator.
さ寸法に関する有効信号は信号ウィンドウ振幅の中間値
により表わされ、工作物の平行度偏差は上方信号ウィン
ドウ振幅及び下方信号ウィンドウ振幅により表わされ、
その後に始めてそれ以降の統計的品質管理計算に使用さ
れることを特徴とする特許請求の範囲第1項記載の自動
測定用計算機。(2) When grinding on both sides is carried out simultaneously, the effective signal regarding the thickness dimension of the workpiece is represented by the intermediate value of the signal window amplitude, and the parallelism deviation of the workpiece is the upper signal window amplitude and the lower signal window amplitude. is expressed by
The automatic measurement calculator according to claim 1, wherein the automatic measurement calculator is used for subsequent statistical quality control calculations only after that.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3703429.4 | 1987-02-05 | ||
DE3703429A DE3703429A1 (en) | 1987-02-05 | 1987-02-05 | Computer for automatic control of grinding machine - defines signal window with help of memory to isolate disturbances due to interference |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63196373A true JPS63196373A (en) | 1988-08-15 |
JP2935115B2 JP2935115B2 (en) | 1999-08-16 |
Family
ID=6320259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63025552A Expired - Lifetime JP2935115B2 (en) | 1987-02-05 | 1988-02-05 | Automatic measuring computer for grinder control and statistical process adjustment of grinders. |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2935115B2 (en) |
DE (1) | DE3703429A1 (en) |
IT (1) | IT1215800B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0413845B1 (en) * | 1989-08-24 | 1993-04-28 | Carl Schenck Ag | Method for the early detection of damage to machine elements |
US5058434A (en) * | 1990-02-27 | 1991-10-22 | Carl Schenck Ag | Process for early detection of damage to machine parts |
DE4316313C1 (en) * | 1993-05-15 | 1994-12-08 | Alexander Bromme | Method and arrangement for monitoring the quality of the grinding process |
DE102015203052B4 (en) * | 2015-02-20 | 2024-04-04 | Elgan-Diamantwerkzeuge Gmbh & Co. Kg | Honing process for form honing |
CN110900338A (en) * | 2019-12-10 | 2020-03-24 | 浙江理工大学 | Control method for automatic grinding of workpiece |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2949427C2 (en) * | 1979-12-08 | 1983-12-29 | Diskus Werke Frankfurt Am Main Ag, 6000 Frankfurt | Measurement control device for grinding machines, in particular surface grinding machines for grinding workpieces in a continuous machining sequence |
DE3314318C1 (en) * | 1983-04-20 | 1984-10-04 | Diskus Werke Frankfurt Am Main Ag, 6000 Frankfurt | Measurement sensor with inductive measurement system for grinding machines |
-
1987
- 1987-02-05 DE DE3703429A patent/DE3703429A1/en active Granted
-
1988
- 1988-02-04 IT IT8819317A patent/IT1215800B/en active
- 1988-02-05 JP JP63025552A patent/JP2935115B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE3703429A1 (en) | 1988-08-18 |
IT8819317A0 (en) | 1988-02-04 |
JP2935115B2 (en) | 1999-08-16 |
DE3703429C2 (en) | 1990-01-25 |
IT1215800B (en) | 1990-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7457715B1 (en) | Enhanced flexible process optimizer | |
CN100368149C (en) | Numerically controlled machine tool | |
US5857812A (en) | Process and device for detecting and compensating for jointing and wear errors in fine drilling | |
US20040221699A1 (en) | Slitter apparatus with compensating device for slitter blades | |
US4967365A (en) | Method and apparatus for adaptive control of the trajectory of a working process | |
CN109269425B (en) | System and method for the detection of bands for band sawtooth abrasion loss | |
Kim et al. | Process monitoring of centerless grinding using acoustic emission | |
JPS63196373A (en) | Computer for automatic measurement for grinder control and statistical process adjustment of grinder | |
EP2077929B1 (en) | Pre-and post-process bore gaging using a honing feed system equipped with feed force sensing | |
US6205371B1 (en) | Method and apparatus for detecting machining flaws, especially caused by grinding machines | |
Mehta et al. | Measurement and analysis of tool wear using vision system | |
TW202420000A (en) | Method for monitoring a machining process in a machine tool | |
CN114918031A (en) | Method and system for controlling equipment parameters in high-pressure roller mill | |
CN115972096A (en) | Method for controlling removal amount distribution of double-sided polishing equipment | |
Krehel’ et al. | The contactless measuring of the dimensional attrition of the cutting tool and roughness of machined surface | |
Boaron | Desenvolvimento e validação de um método dinâmico, baseado em emissão acústica, para a caracterização em processo de rebolos convencionais | |
CN112098417B (en) | Device and method for online monitoring of surface passivation state of asphalt polishing disc in annular polishing | |
JP2565032Y2 (en) | Dress interval control device for grinder | |
JPH09295256A (en) | Coil spring end face grinding system | |
CN115401597A (en) | Health damage prediction system of steel ball grinding machine | |
US4703587A (en) | Method and relevant apparatus for controlling machine tools | |
TW202245970A (en) | Health prediction and diagnosis system for a grinder | |
RU2080982C1 (en) | Pneumatic gage for active control of conical rollers | |
SU1158267A1 (en) | Method and apparatus for automatic controlling of diagnostics of rolling mill equipment | |
JP2000155023A (en) | Plate thickness measuring device for steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080604 Year of fee payment: 9 |