JPS6319628A - Driving method for liquid crystal display device - Google Patents

Driving method for liquid crystal display device

Info

Publication number
JPS6319628A
JPS6319628A JP16360786A JP16360786A JPS6319628A JP S6319628 A JPS6319628 A JP S6319628A JP 16360786 A JP16360786 A JP 16360786A JP 16360786 A JP16360786 A JP 16360786A JP S6319628 A JPS6319628 A JP S6319628A
Authority
JP
Japan
Prior art keywords
liquid crystal
potential
voltage
signal
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16360786A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kaneko
好之 金子
Toshihisa Tsukada
俊久 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16360786A priority Critical patent/JPS6319628A/en
Publication of JPS6319628A publication Critical patent/JPS6319628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To reduce a DC voltage component by making a voltage waveform impressed to a signal line asymmetrical about the potential of a substrate where a transparent conductor film is formed. CONSTITUTION:There is capacity Cgs between the gate, and source and drain of an MIS type FET. The DC voltage component between upon the Cgs is reduced by making the signal voltage waveform asymmetrical about the potential of a counter electrode. Namely, the signal voltage waveform generally varies between + or -VD about the potential VC of the counter electrode, but signal voltage waveforms are so set to VC+VD1 and VC-VD2, where VD1>0, VD2>0, and VD1>VD2. Those driving voltage waveforms are obtained by setting a signal waveform applied to a liquid crystal layer asymmetrically in advance and operate in such a direction that a drop in the potential at a contact L due to the influence of the Cgs is relaxed. Consequently, the DC voltage component applied to liquid crystal is reducible a liquid crystal display device which has high performance and high reliability is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアクティブマトリクス形液晶表示装置の駆動方
法に係り、特に中間表示に好適で、信頼性を向上させる
のに好適なアクティブマトリクス方式液晶表示装置の駆
動方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for driving an active matrix type liquid crystal display device, and is particularly suitable for an intermediate display and for improving reliability. This invention relates to a method for driving a device.

〔従来の技術〕[Conventional technology]

液晶表示装置の高精細化のためにアクティブマトリクス
方式が活発に研究されている6第2図にアクティブマト
リクス方式の等価回路を示す。互いに直交する複数の行
配線1(走査線と呼ぶ)と複数の列配線2(信号線と呼
ぶ)との各交点に能動素子としてFET3を配置し、F
ET3のソース・ドレインの片方を信号線2に、もう一
方を液晶4に、ゲート電極を走査線1に接続する。液晶
4は上記FET3と上記配線をつくりこんだ基板と対向
する全面に透明導電体膜(対向電極と呼ぶ)を形成した
基板との間にはさまれ、電気的には容量を形成する。対
向電極は一定電位に保たれる。
The active matrix method is being actively researched to improve the definition of liquid crystal display devices.6 FIG. 2 shows an equivalent circuit of the active matrix method. An FET 3 is arranged as an active element at each intersection of a plurality of row wirings 1 (referred to as scanning lines) and a plurality of column wirings 2 (referred to as signal lines) that are orthogonal to each other, and
One of the source and drain of the ET3 is connected to the signal line 2, the other to the liquid crystal 4, and the gate electrode to the scanning line 1. The liquid crystal 4 is sandwiched between the FET 3 and a substrate on which a transparent conductive film (referred to as a counter electrode) is formed on the entire surface facing the substrate on which the wiring is formed, and forms an electrical capacitor. The counter electrode is kept at a constant potential.

通常は1周期毎に同一振幅で対向電極に対して極性が反
転するような交流電圧を信号線に印加して、液晶に加わ
るこの交流信号の実効値があるしきい値を越えると液晶
は配向し、−偏光方向の光を通過させる。FET3とし
てはTe、Cd5a、a−8i 、 polysi等を
半導体にもついわゆるT F T(Thin Fil+
m Transistor )が用いられる。
Normally, an alternating current voltage is applied to the signal line with the same amplitude and the polarity is reversed with respect to the counter electrode every cycle, and when the effective value of this alternating current signal applied to the liquid crystal exceeds a certain threshold, the liquid crystal becomes oriented. and - allows light in the polarization direction to pass through. The FET3 is a so-called TFT (Thin Fil+
m Transistor ) is used.

動力性を説明する。従来の駆動方法では同図に示すよう
な印加電圧関係をとる。ゲートに正の電圧が加わるとT
PT3はオンとなり、ドレイン電流が流れて液晶の容量
4に電荷が注入され、やがて接点りの電位VLCはデー
タVoと等しくなる。
Explain dynamism. In the conventional driving method, the applied voltage relationship is as shown in the figure. When a positive voltage is applied to the gate, T
PT3 is turned on, a drain current flows, charge is injected into the capacitor 4 of the liquid crystal, and the potential VLC at the contact point eventually becomes equal to the data Vo.

(TPTのオン電流が低いとゲートに正電圧が印加され
ている時間tsの間にLの電位がVoに達しない。この
時には正負波形が対称ではなくなり液晶に直流電圧成分
が加わる事になる。)次にゲート電位はOないし負とな
り、TPTはオフとなり、液晶に蓄積された電荷は液晶
の抵抗RLC,容量CLC,TPTのオフ抵抗ROFF
で決まる時定数で徐々に放電される。通常この時定数を
大きくするように設計する。他の画素の選択が終了し、
−周期経過すると、ゲート電圧が再び正となり、TPT
はオンとなる。今度は−vDの電位が信号線に加わり、
電荷が接点りから信号線に加わり、電荷が接点りから信
号線側に放電され、やがて接点りの電位も−Voとなる
。ゲート電圧が負又は0になると先と同じように徐々に
この電位が減衰してゆく、これによって第3図に示した
ように液晶には、正負・交互に反転した電圧が印加され
る。
(If the on-current of the TPT is low, the potential of L will not reach Vo during the time ts during which a positive voltage is applied to the gate. At this time, the positive and negative waveforms will not be symmetrical and a DC voltage component will be applied to the liquid crystal. ) Next, the gate potential becomes O or negative, TPT is turned off, and the charge accumulated in the liquid crystal is transferred to the liquid crystal's resistance RLC, capacitance CLC, and TPT's off resistance ROFF.
It is gradually discharged with a time constant determined by . Usually, the design is made to increase this time constant. After selecting other pixels,
- After a period, the gate voltage becomes positive again and TPT
is turned on. This time, a potential of -vD is applied to the signal line,
Charge is added to the signal line from the contact, the charge is discharged from the contact to the signal line, and soon the potential of the contact also becomes -Vo. When the gate voltage becomes negative or 0, this potential gradually attenuates as before, and as a result, a voltage that is alternately reversed between positive and negative is applied to the liquid crystal as shown in FIG.

またデータがOvであれば液晶にもOvがかかる。Further, if the data is Ov, Ov is also applied to the liquid crystal.

これの変形として第4図に示したように液晶の対向電極
に直流電圧Vcを印加し、データをV。
As a modification of this, as shown in FIG. 4, a DC voltage Vc is applied to the opposite electrode of the liquid crystal, and the data is set to V.

+ V c 、 −V o + V cとVc を中心
として士VoO値をとらせる方法もある。(鵜飼他ra
−3i薄膜トランジスタによるアクティブマトリクスG
HLCDの試作」電子通信学会技術研究報告IE82−
69) 〔発明が解決しようとする問題点〕 しかし、一般にMIS形FETにおいてはゲートとソー
ス・ドレイン間に容量(Cgsと呼ぶ)が存在する。こ
のCgsがスタガ構造と呼ばれる通常のTPTの構造で
は大きくならざるを得ない。第5図はスタガ構造TPT
の断面図である。5は絶縁性基板、6がゲート電極、7
,8はソース・ドレイン電極、9が半導体層、10がゲ
ート絶縁膜である。ゲートとソース・ドレイン間には重
なり部分が存在する・一般にこの重なり部分の幅1よ2
〜10μm程度であり、Ctsとしては0.05〜0.
2 p F  となる。一方、一画素に接続される液晶
の容量CLcは画素の大きさにもよるが、0.1〜1p
Fであり、CzsとCLcは同程度となっている。この
ように大きなCgsが存在すると、液晶にかかる電圧に
ゲート電圧パルスがもれこむ。(池田他r a −S 
i薄膜トランジスターを用いた液晶ディスプレイ」電子
通信学会技術研究報告CPM83−22)第6図を用い
て説明する。まずゲートに正電圧パルスが印加されると
、接点りの電位はパルス高さVtに応じて C1B + CLC たけ高くなる。TPTはオンになるので、この電位を出
発点にしてLの電位は高くなってゆき、先の場合と同様
、Voにおちつく。ゲートパルスが立下がると接点りの
電位は C,、+CLC だけ低くなる。この後、TPTはオフ状態であるので電
位は保持される。先の場合と同様、CL、CIC□、 
ROFF 、 CL(!で決まる時定数で徐々に放電さ
れる。−周期して信号が−Voとなった時にも同様の事
がおきる。その結果、第6図に示すように液晶にかかる
電圧は正負非対称となり、液晶に常に直流電圧成分が加
わる事になる。このようにDC電圧成分が液晶に印加さ
れると、配向劣化を招き寿命の点で問題となっていた。
There is also a method in which the VoO value is centered around +Vc, -Vo+Vc and Vc. (Ukai et al.
-Active matrix G using 3i thin film transistors
“Prototype production of HLCD” Institute of Electronics and Communication Engineers technical research report IE82-
69) [Problems to be Solved by the Invention] However, in general, a MIS type FET has a capacitance (referred to as Cgs) between the gate and the source/drain. This Cgs inevitably becomes large in a normal TPT structure called a staggered structure. Figure 5 shows staggered structure TPT.
FIG. 5 is an insulating substrate, 6 is a gate electrode, 7
, 8 are source/drain electrodes, 9 is a semiconductor layer, and 10 is a gate insulating film. There is an overlap between the gate and the source/drain.Generally, the width of this overlap is 1 to 2.
~10μm, and Cts is 0.05~0.
2 pF. On the other hand, the capacitance CLc of the liquid crystal connected to one pixel is 0.1 to 1 p, depending on the size of the pixel.
F, and Czs and CLc are at the same level. When such a large Cgs exists, a gate voltage pulse leaks into the voltage applied to the liquid crystal. (Ikeda et al.
"Liquid Crystal Display Using Thin Film Transistors" Technical Research Report CPM83-22, Institute of Electronics and Communication Engineers) This will be explained using FIG. 6. First, when a positive voltage pulse is applied to the gate, the potential at the contact becomes as high as C1B + CLC in accordance with the pulse height Vt. Since TPT is turned on, the potential of L increases from this potential as a starting point and settles at Vo as in the previous case. When the gate pulse falls, the potential at the contact point decreases by C, +CLC. After this, since TPT is in an off state, the potential is held. As in the previous case, CL, CIC□,
It is gradually discharged with a time constant determined by ROFF, CL (!).A similar thing occurs when the signal becomes -Vo after a - period.As a result, the voltage applied to the liquid crystal becomes as shown in Figure 6. The positive and negative asymmetry results, and a DC voltage component is always applied to the liquid crystal.If a DC voltage component is applied to the liquid crystal in this way, it causes alignment deterioration, which poses a problem in terms of service life.

本発明の目的は上述したcgsによる直流電圧成分を減
少させる駆動方法を提供し、高性能、高信頼性の液晶表
示装置を実現することにある。
An object of the present invention is to provide a driving method for reducing the DC voltage component caused by the above-mentioned CGS, and to realize a liquid crystal display device with high performance and high reliability.

〔問題点を解決するための手段〕 上記のようなCgsによる直流電圧成分は、信号電圧波
形を対向電極の電位に対して非対称にすることで低減さ
れる。即ち、一般的に信号電圧波形は対向電極の電位V
Cを中心に±vDの値をとらせるが、これらにかわって
信号電圧波形をV c +Vote Vc −Vo2但
しvDl>O及びVow>OかつVox>Vowなる条
件を満たすように定めればよい。
[Means for solving the problem] The DC voltage component caused by Cgs as described above can be reduced by making the signal voltage waveform asymmetric with respect to the potential of the counter electrode. That is, generally the signal voltage waveform is equal to the potential V of the counter electrode.
Although the value of ±vD is taken with C as the center, the signal voltage waveform may instead be determined to satisfy the following conditions: V c +Vote Vc -Vo2, where vDl>O, Vow>O, and Vox>Vow.

この駆動波形を用いることにより液晶層に印加される直
流電圧成分の低減という上記の目的は達成される。
By using this drive waveform, the above objective of reducing the DC voltage component applied to the liquid crystal layer can be achieved.

〔作用〕[Effect]

上記の駆動電圧波形は液晶層に加わる信号波形を予め非
対称に設定したものであり、接点りの電゛位がCtsの
影響で低下するのを緩和する方向に作用するので、液晶
層に実際に印加される電圧の直流成分が低減される。
The above driving voltage waveform is a signal waveform applied to the liquid crystal layer that is set asymmetrically in advance, and acts in the direction of alleviating the drop in the potential of the contact due to the influence of Cts, so it is actually applied to the liquid crystal layer. The DC component of the applied voltage is reduced.

〔実施例〕〔Example〕

加える電圧をVer Vol、 Vc −Vow、 V
oz> O。
The applied voltage is Ver Vol, Vc -Vow, V
oz>O.

Voz>Oy Voz>Vozという関係にとッテイる
The relationship is Voz>Oy Voz>Voz.

Cts、 CLC,RLC,ROFFで決まる時定数が
一周期に比べて長いとすればVn工=Vozの状態にお
ける直流電圧成分は、およそ Cts + CLO で与えられるので、 Voz−Vozの値としてはCt
s Cas + CLO 程度を与えてやればよい0本発明は、Cgs+ Ct、
c。
If the time constant determined by Cts, CLC, RLC, and ROFF is longer than one cycle, the DC voltage component in the state of Vn = Voz is approximately given by Cts + CLO, so the value of Voz - Voz is Ct
s Cas + CLO The present invention provides Cgs + Ct,
c.

Vg 、 Vo 、 Vat、 Vow、 Vc (7
)具体的な値に特に限定されないが、例えばCLc=0
.2pF。
Vg, Vo, Vat, Vow, Vc (7
) Although not particularly limited to a specific value, for example, CLc=0
.. 2pF.

Cgs=0.04pF、−Vz=16V、Vc=7V。Cgs=0.04pF, -Vz=16V, Vc=7V.

Voz = 8 V 、 Vnz= 5 V ニ設定す
ると印加される直流電圧成分は−0,3v程度となり、
対称的な信号波形であるVo=5Vの時の直流電圧成分
−1,7Vに比べて115以下に低減することができる
When Voz = 8 V and Vnz = 5 V, the applied DC voltage component will be about -0.3 V,
The DC voltage component can be reduced to 115 or less compared to -1.7V when Vo=5V, which is a symmetrical signal waveform.

(実施例2)。(Example 2).

上記実施例1において信号線に印加される電圧の、無信
号に対応する部分の値はVcで、対向型Vaなる値Vc
oを無信号状態として信号波形をVco+ VDI、 
VCO−Vo2e Vot> O+ Voz> O+V
a工>Vowなる条件の値に設定することにより、尚−
層の直流電圧成分の低減を図ることが′できる。
In the first embodiment, the value of the voltage applied to the signal line corresponding to no signal is Vc, and the value of the opposing type Va is Vc.
With o as no signal state, the signal waveform is Vco + VDI,
VCO-Vo2e Vot> O+ Voz> O+V
By setting the value of the condition that a-work>Vow, -
It is possible to reduce the DC voltage component of the layer.

また上記実施例1及び実施例2においてはVoz)O#
 VDt>0.VDt>Vowなル関係カ必要テアりそ
の大きさは特に限定しない、即ち本発明がアナログ信号
波形に対しても有効であることは言うまでもない。
In addition, in the above Example 1 and Example 2, Voz)O#
VDt>0. It goes without saying that the magnitude of the necessary tear in the relationship VDt>Vow is not particularly limited; that is, the present invention is also effective for analog signal waveforms.

〔発明の効果〕〔Effect of the invention〕

本発明によれば液晶表示装置の構造をかえる事なく、液
晶にかかる直流電圧成分を減少でき、高性能、高信頼性
を有する液晶表示装置が得られる。
According to the present invention, the DC voltage component applied to the liquid crystal can be reduced without changing the structure of the liquid crystal display, and a liquid crystal display having high performance and high reliability can be obtained.

図、第2図は液晶表示装置の平面等価回路、第3図、第
4図、及び第6図は従来の駆動方法を説明するための図
、第5図は従来のTPTを示す断面図である。
2 are planar equivalent circuits of a liquid crystal display device, FIGS. 3, 4, and 6 are diagrams for explaining conventional driving methods, and FIG. 5 is a cross-sectional view showing a conventional TPT. be.

1・・・走査線、2・・・信号線、3・・・TFT、4
・・・液晶。
1...Scanning line, 2...Signal line, 3...TFT, 4
···liquid crystal.

5・・・絶縁性基板、6・・・ゲート電極、7,8・・
・ソーン Vc f−β  第 1 図CC) Ver>Vθ2ンθ 不 1 邑(b) VC 21邑 1図  (d) V9+ >Voz  >l)、   Vto  > V
cて2図 1、吏食線 2  イ舅優テ秀4し 3、 丁F丁 4 液り 下 3 図(リ シメ31°′ to、  ケ゛−トf邑余東用( 可 6 図(す
5... Insulating substrate, 6... Gate electrode, 7, 8...
・Sohn Vc f-β Fig. 1 CC) Ver>Vθ2nθ Not 1 (b) VC 21 Fig. 1 (d) V9+ >Voz >l), Vto > V
c te 2 fig.

Claims (1)

【特許請求の範囲】[Claims] 1、複数の信号線と、前記信号線と直交する複数の走査
線とを備え、両線の交点の近傍に能動素子を形成した基
板と、透明導電体膜を形成した基板とを有し、前記両基
板は液晶を介して対向し、前記能動素子を用いて液晶に
加える電圧を制御する液晶表示装置の駆動方法において
、前記信号線に印加する電圧波形を前記透明導電体膜を
形成した基板の電位に対して非対称となるようにしたこ
とを特徴とする液晶表示装置の駆動方法。
1. A substrate including a plurality of signal lines and a plurality of scanning lines orthogonal to the signal lines, with an active element formed near the intersection of both lines, and a substrate formed with a transparent conductor film, In a method for driving a liquid crystal display device in which the two substrates face each other with a liquid crystal interposed therebetween, and the active element is used to control the voltage applied to the liquid crystal, the voltage waveform applied to the signal line is controlled by the substrate on which the transparent conductor film is formed. 1. A method for driving a liquid crystal display device, characterized in that the potential is asymmetric with respect to the potential of the liquid crystal display device.
JP16360786A 1986-07-14 1986-07-14 Driving method for liquid crystal display device Pending JPS6319628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16360786A JPS6319628A (en) 1986-07-14 1986-07-14 Driving method for liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16360786A JPS6319628A (en) 1986-07-14 1986-07-14 Driving method for liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS6319628A true JPS6319628A (en) 1988-01-27

Family

ID=15777144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16360786A Pending JPS6319628A (en) 1986-07-14 1986-07-14 Driving method for liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS6319628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640174A (en) * 1993-07-29 1997-06-17 Hitachi, Ltd. Method of driving an active matrix liquid crystal display panel with asymmetric signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748788A (en) * 1980-08-06 1982-03-20 Matsushita Electric Ind Co Ltd Matrix type liquid crystal display unit
JPS6160660A (en) * 1984-08-31 1986-03-28 Nippon Chemiphar Co Ltd Benzimidazole derivative, its preparation, and antitumor agent containing it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748788A (en) * 1980-08-06 1982-03-20 Matsushita Electric Ind Co Ltd Matrix type liquid crystal display unit
JPS6160660A (en) * 1984-08-31 1986-03-28 Nippon Chemiphar Co Ltd Benzimidazole derivative, its preparation, and antitumor agent containing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640174A (en) * 1993-07-29 1997-06-17 Hitachi, Ltd. Method of driving an active matrix liquid crystal display panel with asymmetric signals

Similar Documents

Publication Publication Date Title
US10115369B2 (en) Active matrix substrate, and display device including the active matrix substrate
US9817276B2 (en) Liquid crystal display device
JP2708006B2 (en) Thin film integrated circuit
JPS5875194A (en) Matrix display and driving method
US10657917B2 (en) Shift register and display device including same
JPH09269511A (en) Liquid crystal device, its driving method and display system
KR970002986B1 (en) Liquid crystal display element of active arrangement structure
JPH07181927A (en) Image display device
JPH07311390A (en) Liquid crystal display device
JP2943665B2 (en) Liquid crystal display
KR960014824B1 (en) Active matrix liquid crystal display apparatus
US7859502B2 (en) Array substrate operable in dual-pixel switching mode, display apparatus having the same and method of driving the display apparatus
JPH1039277A (en) Liquid crystal display device, and driving method therefor
JPH06104434A (en) Film transistor element and active matrix display and image sensor
JPS6319628A (en) Driving method for liquid crystal display device
JPH0544195B2 (en)
JPH0470611B2 (en)
JPH04318512A (en) Thin film transistor type liquid crystal display device
JPH01291216A (en) Active matrix type liquid crystal display device
JP3434352B2 (en) Display device
JPS6225731A (en) Driving method for liquid crystal display device
JP3637909B2 (en) Driving method of liquid crystal device
JPH09236790A (en) Liquid crystal display device and its drive method
JPS62247569A (en) Semiconductor device
JP3327287B2 (en) Active matrix type liquid crystal display