JPS63196268A - Transformant cell capable of being subjected to passage multiplication in serum-free medium, breeding thereof and production of protein by said cell - Google Patents

Transformant cell capable of being subjected to passage multiplication in serum-free medium, breeding thereof and production of protein by said cell

Info

Publication number
JPS63196268A
JPS63196268A JP62029121A JP2912187A JPS63196268A JP S63196268 A JPS63196268 A JP S63196268A JP 62029121 A JP62029121 A JP 62029121A JP 2912187 A JP2912187 A JP 2912187A JP S63196268 A JPS63196268 A JP S63196268A
Authority
JP
Japan
Prior art keywords
serum
cell
cells
free medium
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62029121A
Other languages
Japanese (ja)
Inventor
Norio Noda
野田 規夫
Takamune Yasuda
安田 尊宗
Osamu Odawara
修 小田原
Hajime Kawarada
川原田 肇
Kiyoshi Watanabe
清 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP62029121A priority Critical patent/JPS63196268A/en
Publication of JPS63196268A publication Critical patent/JPS63196268A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To produce useful protein such as gamma interferon, by cultivating a transformant cell having a transduced gene to code the useful protein, capable of being subjected to passage multiplication, in a serum-free medium. CONSTITUTION:A gene to code useful protein such as gamma interferon, tissue polasminogen activator, lymphotoxin, etc., is transduced to a host cell such as CHO cell, HeLa cell, etc., capable of being subjected to passage multiplication and the gene is selected in the serum-free medium to breed a transformant cell capable of being subjected to passage multiplication. Then the transformant cell is cultivated in the serum-free medium to produce the useful protein.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は有用蛋白質をコードする遺伝子が導入され、有
用蛋白質を生産する無血清培地で継代増殖可能な形質転
換細胞、およびその細胞の育種方法、ならびにその細胞
を用いた有用蛋白質の生産方法に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to transformed cells into which a gene encoding a useful protein has been introduced and which can be subcultured in a serum-free medium to produce the useful protein, and the breeding of such cells. The present invention relates to a method and a method for producing useful proteins using the cells.

「従来技術」 動物細胞の大量培養はウィルス、ワクチンの製造のため
、ならびに白血球やハイブリドーマよりインターフェロ
ンやモノクローナル抗体生産等のために実施されてきた
。また、近年遺伝子組み換え技術の進展にともない、大
腸菌や枯草菌等の細菌を宿主として生産される蛋白質と
は異なり、グリコシレーシランや各種の修飾等、生体中
に存在する天然の型として生産される等の多くの利点を
有していることから、動物細胞を宿主とした有用蛋白質
の生産が注目され、大量培養技術の重要性が高まってい
る。
"Prior Art" Mass culture of animal cells has been carried out for the production of viruses and vaccines, as well as for the production of interferons and monoclonal antibodies from leukocytes and hybridomas. In addition, with the recent advances in genetic recombination technology, unlike proteins produced using bacteria such as Escherichia coli and Bacillus subtilis, proteins are produced as natural forms that exist in living organisms, such as glycosylated silanes and various modifications. Because of these many advantages, the production of useful proteins using animal cells as hosts is attracting attention, and the importance of large-scale culture technology is increasing.

動物細胞大量培養による有用物質生産上の問題点の1つ
に、動物細胞の到達密度が低いことが挙げられる。この
点の解決法の1つとして、培地潅流による高密度培養法
があり、種々の装置が開発されている(W、R,Tol
bertら、インビトロ(InVitro) 、17巻
、10号、885頁、1981年、特開昭6O−948
2)、また、培地中の律速成分を探索し、律速アミノ酸
等を補足することにより、細胞密度の向上をはかる試み
もなされている(特開昭6O−54677)。
One of the problems in producing useful substances by mass culturing animal cells is that the density of animal cells reached is low. One solution to this problem is a high-density culture method using medium perfusion, and various devices have been developed (W, R, Tol
bert et al., InVitro, Vol. 17, No. 10, p. 885, 1981, JP-A-6O-948.
2), attempts have also been made to improve cell density by searching for rate-limiting components in the culture medium and supplementing rate-limiting amino acids, etc. (Japanese Patent Laid-Open No. 60-54677).

第2の問題点は、動物細胞の生育には糖、アミノ酸、ビ
タミン、核酸等を含む基礎培地に5〜20%の血清を必
要とすることである。血清は高価であり培地コストの大
半を占めるだけでなく、多種多用の蛋白質が含まれ、目
的蛋白質の精製を複雑にする。更に、血清はロフト毎に
品質が異なり、細胞増殖への影響も大きく、ウィルスや
マイコプラズマの汚染源となる可能性も考えられる。
The second problem is that the growth of animal cells requires 5 to 20% serum in a basal medium containing sugars, amino acids, vitamins, nucleic acids, etc. Serum is not only expensive and accounts for most of the cost of the culture medium, but also contains a wide variety of proteins, which complicates the purification of the target protein. Furthermore, the quality of serum differs depending on the loft, and it has a large effect on cell proliferation, and it is also possible that it may become a source of virus and mycoplasma contamination.

一方、血清の役割は細胞にホルモンや成長因子を供給す
るという観点から、無血清化の試みも多くなされている
〔G、5atOsアナリテイカル・バイオケミストリー
(Analytical Bioche+eistry
)  102巻、255頁、1980年〕、無血清培養
に使用されているホルモンや成長因子としては、ハイド
ロコーチシン、′T3、インスリン、トランスフェリン
、上皮細胞成長因子、繊維芽細胞成長因子、血小板由来
成長因子等が挙げられるが、種類および作用については
細胞成長因子(日本組織培養学会線、朝食書店1984
年)に詳しく記載されている。また、新たな成長因子の
探索もなされており、成牛血清より抽出された成長促進
因子(特開昭58−206528)、馬血清由来の成長
促進因子(特開昭6l−63281)および植物細胞由
来の成長因子(「発酵と工業」43巻、11号、107
6頁、1985年)等が報告されている。
On the other hand, since the role of serum is to supply hormones and growth factors to cells, many attempts have been made to eliminate serum [G, 5atOs Analytical Biochemistry
) Vol. 102, p. 255, 1980], hormones and growth factors used in serum-free culture include hydrocortiscin, 'T3, insulin, transferrin, epidermal growth factor, fibroblast growth factor, platelet-derived For example, growth factors, etc., but the types and actions are described in Cell Growth Factors (Japanese Society for Tissue Culture, Line, Breakfast Shoten 1984).
(2013) is detailed in the following. In addition, new growth factors are being searched for, including a growth promoting factor extracted from adult bovine serum (Japanese Patent Application Laid-Open No. 58-206528), a growth promoting factor derived from horse serum (Japanese Patent Application Publication No. 61-63281), and Growth factors derived from ``Fermentation and Industry'' Vol. 43, No.
6, 1985) etc. have been reported.

無血清培養のため必要とされる成長因子は、個々の細胞
により異なり、種々成長因子を組み合わせた無血清培地
が数多く報告されている0例えばCHO細胞はインスリ
ン、トランスフェリン、セレン〔インビトロ、セルラー
・アンド・デベロップメンタル・バイオロジー(In 
Vitro、 Ce1lular& Developm
ental Biology) 21巻、10号、58
8真、1985年)、He1a細胞はインスリン、ハイ
ドロコーチシン、トランスフェリン、上皮細胞成長因子
、繊維芽細胞成長因子〔プロシーディンゲス・オブ・ナ
ショナルアカデミ−・オブ・サイエンス(Proc、 
Natl、^cad、 Sci、USA)  75巻、
2号、901頁、1978年)、BHK細胞はインスリ
ン、繊維芽細胞成長因子、ファイプロネクチン、トラン
スフェリン、オレイン酸〔ジャーナル・オプ・セルラー
・フィジオロジ−(Jo−urnal or Ce1l
ular Physiology)  114巻、21
5頁、1983年〕の組み合わせによる無血清培地が報
告されている。有用蛋白質生産細胞を無血清培地で培養
した例としてモノクローナル抗体生産マウスハイブリド
ーマ(特開昭58−63385)やインターフェロン−
α産生ヒトバーキット腫瘍由来ナマルバ細胞の馴養によ
る無血清化(「組織培養」9巻、286頁、1983年
)等が知られている。これらは、いづれも融合細胞やい
わゆる自発生産細胞の例である。一方、遺伝子組み換え
技術により、いかなる細胞でも有用蛋白質の生産が可能
となってきている。例えば、L細胞を宿主としたインタ
ーフェロン−βの生産(Proc。
The growth factors required for serum-free culture differ depending on the individual cells, and many serum-free media containing various growth factors have been reported.For example, CHO cells require insulin, transferrin, selenium [in vitro, cellular and・Developmental Biology (In
Vitro, Celural & Developom
21, No. 10, 58
8 Shin, 1985), He1a cells are treated with insulin, hydrocortiscin, transferrin, epidermal growth factor, and fibroblast growth factor [Proceedings of the National Academy of Sciences (Proc.
Natl, ^cad, Sci, USA) 75 volumes,
2, p. 901, 1978), BHK cells contain insulin, fibroblast growth factor, phipronectin, transferrin, and oleic acid [Journal of Cellular Physiology (Journal of Cellular Physiology).
ular Physiology) Volume 114, 21
5, 1983] has been reported. Examples of useful protein-producing cells cultured in a serum-free medium include monoclonal antibody-producing mouse hybridoma (Japanese Patent Application Laid-open No. 58-63385) and interferon-producing cells.
It is known that α-producing human Burkitt's tumor-derived Namalva cells are made serum-free by acclimatization (Tissue Culture, Vol. 9, p. 286, 1983). These are all examples of fused cells and so-called spontaneously producing cells. On the other hand, genetic recombination technology has made it possible to produce useful proteins in any type of cell. For example, production of interferon-β using L cells as hosts (Proc.

Natl、 Acad、 Sci、 USA  79巻
、5166頁、1982年〕、CHO細胞を宿主とした
インターフェロン−γ〔ジャーナル・オブ・インターフ
ェロン6リサーチ(Journal of Tnter
4eron Re5earc−h)  4巻、461頁
、1984年〕やTPAの生産(特開昭59−4232
1)およびC127細胞を宿主としたヒト成長ホルモン
の生産(Proc。
Natl, Acad, Sci, USA Vol. 79, p. 5166, 1982], interferon-γ using CHO cells as host [Journal of Interferon 6 Research (Journal of Interferon 6 Research)
4eron Re5earc-h) vol. 4, p. 461, 1984] and TPA production (JP-A-59-4232)
1) and production of human growth hormone using C127 cells as hosts (Proc.

Natl、 Acad、 Sci、 USA80巻、3
97頁、1983年〕等動物細胞を用いた有用蛋白質の
多くの生産例がある。しかし、これら遺伝子組み換え技
術により作製した生産株の培養には、すべて血清が使用
されており、前記の如く、コスト、精製面等に問題を有
しており、無血清培地での培養が望まれる。しかし、形
質転換株の取得後、無血清化に際しては更に多くの時間
と労力を必要とするとともに、無血清化も困難である場
合も推定され、形質転換した有用蛋白質生産細胞の無血
清培地での培養は実施されていない。
Natl, Acad, Sci, USA vol. 80, 3
97, 1983], there are many examples of production of useful proteins using animal cells. However, serum is used for culturing these production strains created using genetic recombination technology, and as mentioned above, there are problems in terms of cost and purification, so culturing in serum-free media is desired. . However, after obtaining a transformed strain, it requires more time and effort to make it serum-free, and it is estimated that it may be difficult to make it serum-free. Culture has not been carried out.

「本発明が解決しようとする問題点」 遺伝子組み換え技術による動物細胞を宿主とした有用蛋
白質の生産では、生産性の増大をはかるための種々の試
みがなされている0例えば、CHO細胞でのメソトレキ
セート(MTX)耐性によるジヒドロ葉酸還元酵素(d
 h f r”)遺伝子の増幅法により、目的蛋白質が
細胞106個当たり50μgの生産が報告されている(
特開昭59−42321)、Lかし、動物細胞を用いた
物質生産では、単に生産性の向上をはかる育種ではなく
、無血清培養可能な生産細胞を選択することも同様に重
要である。
"Problems to be Solved by the Present Invention" In the production of useful proteins using animal cells as hosts using genetic recombination technology, various attempts have been made to increase productivity. (MTX) resistance due to dihydrofolate reductase (d
h f r”) gene amplification method, it has been reported that 50 μg of the target protein can be produced per 106 cells (
In the production of substances using animal cells, it is equally important to select production cells that can be cultured without serum, rather than simply breeding to improve productivity.

血清中には多種多様の成分が含まれており、血清培地で
継代されている細胞は同−株であっても全てのクローン
が同じ要求性を有しているとは限らず、また無血清化し
た細胞を宿主とし有用蛋白質をコードする遺伝子を導入
しても、血清培地で選択iれば、選択中に要求性が変化
し、血清要求性を生じることが推定される。特に、現在
高生産株の育種法としてよく用いられているメソトロキ
セート(MTX)によるジヒドロ葉酸還元酵素(dhf
r)遺伝子の増幅法ではメソトレキセートの濃度を段階
的に上げて選択するため、血清要求性を有する細胞とな
る確立は高いと思われる。
Serum contains a wide variety of components, and even if the cells that are passaged in a serum medium are of the same strain, not all clones have the same requirements, and some cells may not have the same requirements. Even if a gene encoding a useful protein is introduced into a serum-containing cell as a host, if selection is performed in a serum medium, it is presumed that the auxotrophy will change during the selection and a serum auxotrophy will occur. In particular, dihydrofolate reductase (dhf) is treated with mesotroxate (MTX), which is currently often used as a breeding method for high-producing strains.
r) In the gene amplification method, the concentration of methotrexate is increased stepwise for selection, so there is a high probability that cells will become serum-requiring.

事実、高生産株取得後宿主細胞を無血清化しうる条件で
は高生産株の無血清化は困難であった。
In fact, it was difficult to make a high-producing strain serum-free under conditions that would allow host cells to become serum-free after obtaining a high-producing strain.

「問題点を解決するための手段」 本発明者らは上記実情に鑑み、有用蛋白質を生産し、か
つ無血清培養可能な細胞を得るために鋭意検討した結果
、宿主細胞を無血清化しうる成長因子の添加と選択に適
した基礎培地を探索し、無血清培地で細胞の選択を行っ
た結果、無血清培養可能な生産株を取得しうろことが明
らかになった。
"Means for Solving the Problems" In view of the above circumstances, the present inventors have conducted intensive studies to obtain cells that produce useful proteins and can be cultured without serum. As a result of searching for a basal medium suitable for addition of factors and selection, and selecting cells in a serum-free medium, it became clear that a production strain that could be cultured without serum could be obtained.

無血清培地に使用する成長因子は特に限定されず、細胞
の種類により、インスリン等単独の場合や、他にトラン
スフェリン、繊維芽細胞成長因子、上皮細胞成長因子、
血小板由来成長因子等を組み合わせても可能である。ま
た、糖、アミノ酸、ビタミン、核酸等を含む基礎培地は
、動物細胞用の一般的な培地であるMEM培地、ダルベ
ツコ変法MEM培地、199培地、RPM11640培
地、ハムF12培地、MCDB培地等の単独もしくは混
合培地が使用されるが、細胞の選択条件によっては、基
礎培地の検討を必要とする0例えば、メントレキセート
(MEX)により、ジヒドロ葉酸還元酵素(dhfr)
遺伝子増幅をはかる場合、一般的には核酸不含のαME
M培地がよく用いられるが、無血清培地による選択の場
合、核酸不含で、かつ細胞の増殖良好な基礎培地の使用
により、好結果を得ることができる。基礎培地の種類、
組成については〔メソフシ・イン・エンザイモロジ−(
Method in Enzymologys^cad
emic press 58巻、62頁、1979年〕
に詳しく記載されている。
The growth factors used in the serum-free medium are not particularly limited, and depending on the cell type, insulin may be used alone, or transferrin, fibroblast growth factor, epidermal growth factor,
It is also possible to use a combination of platelet-derived growth factors and the like. In addition, the basal medium containing sugars, amino acids, vitamins, nucleic acids, etc. can be used alone, such as MEM medium, Dulbecco's modified MEM medium, 199 medium, RPM11640 medium, Ham's F12 medium, MCDB medium, etc., which are general mediums for animal cells. Alternatively, a mixed medium is used, but depending on the cell selection conditions, it is necessary to consider the basal medium. For example, dihydrofolate reductase (dhfr) can be
When performing gene amplification, αME, which does not contain nucleic acids, is generally used.
M medium is often used, but when selecting with a serum-free medium, good results can be obtained by using a basal medium that does not contain nucleic acids and has good cell proliferation. type of basal medium,
Regarding the composition [Mesofushi in Enzymology (
Method in Enzymology^cad
emic press vol. 58, p. 62, 1979]
is described in detail.

形質転換細胞を選別するに必要な蛋白質をコードする遺
伝子としては、大腸菌由来のEcogptをコードする
遺伝子(R,C,Mulligan+ P、Berg、
+ Proc。
Genes encoding proteins necessary for selecting transformed cells include the gene encoding Ecogpt derived from Escherichia coli (R, C, Mulligan + P, Berg,
+Proc.

Natl、 Acad、 Set、 USA、 78巻
、2072頁、1981年〕、細菌のトランスポゾン(
Tn)5由来のNeo遺伝子(P、J、5outher
r++ P、Berg、  (ジャーナル・オブ・モレ
キュラー・アンド・アプライド・ジエネテイクス(Jo
urnal of Mo1eculer a−nd A
pplied genetics) 1巻、327頁、
1982年〕、チミジンキナーゼ(tk)欠損宿主に対
するヘルペスウィルス由来のtk遺伝子CM、Wigl
erら、セル(Cell) 、11i8.223頁、1
977年〕、その他形質転換株を選別可能ならばいかな
る遺伝子でも使用可能である。同様にジヒドロ葉酸還元
酵素(dhfr)をコードする遺伝子はマウスdhfr
cDNA以外に他の動物由来の遺伝子でも、染色体由来
の遺伝子であっても何らさしつかえない。
Natl, Acad, Set, USA, vol. 78, p. 2072, 1981], bacterial transposons (
Tn) 5-derived Neo gene (P, J, 5other
r++ P, Berg, (Journal of Molecular and Applied Genetics (Jo)
urnal of Moleculer a-and A
pplied genetics) Volume 1, Page 327,
1982], herpesvirus-derived tk gene CM for thymidine kinase (tk)-deficient hosts, Wigl
er et al., Cell, 11i8.223, 1
[977], any other gene can be used as long as it is possible to select a transformed strain. Similarly, the gene encoding dihydrofolate reductase (dhfr) is mouse dhfr.
In addition to cDNA, genes derived from other animals or genes derived from chromosomes are acceptable.

動物細胞へのDNA導入法としてはリン酸カルシウム法
CMJiglerら、Ce1l 、 11巻、223頁
、1977年〕、マイクロインジェクション法(W、F
、Andersonら、Proc、 Natl、 Ac
ad、 Sci、 USA。
Methods for introducing DNA into animal cells include the calcium phosphate method (CM Jigler et al., Ce1l, vol. 11, p. 223, 1977), the microinjection method (W, F
, Anderson et al., Proc. Natl., Ac.
ad, Sci, USA.

77巻、5399頁、1980年〕、細胞融合法(W、
5choffner ら、Proc Natl、 Ac
ad、 Sci、 USA、77巻、2163頁、19
80年〕等が用いられる。
77, p. 5399, 1980], cell fusion method (W,
5choffner et al., Proc Natl., Ac.
ad, Sci, USA, vol. 77, p. 2163, 19
1980] etc. are used.

「発明の効果」 本発明により得られた無血清培養可能なを用蛋白質生産
細胞は、実施例に示す如く大量培養も可能であり、また
CHO細胞等のように通常血清培地では付着して生育す
る細胞が、白血球由来細胞と同様に浮遊状態で生育する
ため、大量培養では浮遊培養可能な細胞が得られること
が判明した。
"Effects of the Invention" The serum-free cultureable protein-producing cells obtained by the present invention can be cultured in large quantities as shown in the examples, and like CHO cells, they can adhere and grow in normal serum media. It was found that cells that can be cultured in suspension can be obtained in large-scale culture because these cells grow in suspension, similar to leukocyte-derived cells.

また、本発明により、無血清培養可能な有用蛋白質生産
細胞が確実に取得でき、実施例に示す如く、培養上清中
の有用蛋白質は高純度で得られ、産業上、コスト、精製
面でより有利な方法を提供するものである。
Furthermore, according to the present invention, useful protein-producing cells that can be cultured without serum can be reliably obtained, and as shown in the examples, useful proteins in the culture supernatant can be obtained with high purity, which is advantageous in terms of industrial, cost, and purification. This provides an advantageous method.

「実施例」 以下、本発明を実施例を挙げて説明する。"Example" Hereinafter, the present invention will be explained by giving examples.

本発明の具体例としてCHO細胞を記載するが、工業的
に有用な可能性をもつ細胞として、BHK。
Although CHO cells will be described as a specific example of the present invention, BHK is a cell that has the potential to be industrially useful.

Vero、CEM、ナマルバ等その他多数の細胞があり
、本発明は例示細胞に限定されるわけではない。さらに
有用蛋白質の例として、インターフェロン−γ、ティッ
シュプラスミノーゲンアクティベーター、リンフォトキ
シンを実施例として記載するが、勿論代表例であり、例
えばエリスロボエチン、インターロイキン−2、インタ
ーフシロン−β、コロニー刺激因子、その他であっても
何らさしつかえない。
There are many other cells such as Vero, CEM, Namalva, etc., and the invention is not limited to the illustrative cells. Furthermore, as examples of useful proteins, interferon-γ, tissue plasminogen activator, and lymphotoxin are described as examples, but of course they are representative examples, such as erythroboetin, interleukin-2, interfusilon-β, There is nothing wrong with stimulating factors or anything else.

実施例1:インターフェロンーT生産形質転換株の取得 宿主細胞は基礎培地MCDB302/ダルベツコMEM
I/1の混合培地(MD培地)にインスリン5μg /
 m 1を加えた無血清培地に馴養したCHO−K I
細胞を用いた。Ecogpt遺伝子、dhf r遺伝子
、インターフェロン−T遺伝子をもつベクターpsVe
dhfr−r2 (特願昭6O−260450) 、D
NA100μgを細胞数lXl0’個のCHO細胞にリ
ン酸カルシウム法でトランスフェクションした。インス
リン5μg/ m 1を含むMD培地で細胞数1×10
S個/mlに調製し、25μg / m j!のミコフ
ェノール酸、25(Jug/mA!のキサンチン、0.
1μg/mj2のアミノブチリン、5μg / m I
tのチミジンおよび25μg / m Jのアデニンを
加え、コーニング社製96We 11マルチプレート(
No、25860)に100.c+j!/Wel1分注
し、37℃、5%CO,インキュベークー中で培養した
。細胞が生育したWellの上演中のインターフェロン
−γ活性を測定し、無血清培養可能なインターフェロン
1500u/mj!産生する形質転換株を取得した。
Example 1: Obtaining interferon-T producing transformed strain Host cells were prepared using basal medium MCDB302/Dulbetsuko MEM
Insulin 5μg/1/1 mixed medium (MD medium)
CHO-K I acclimated to serum-free medium supplemented with m1
using cells. Vector psVe containing Ecogpt gene, dhfr gene, and interferon-T gene
dhfr-r2 (patent application Sho 6O-260450), D
100 μg of NA was transfected into 1×10′ CHO cells by the calcium phosphate method. Cell number 1 × 10 in MD medium containing 5 μg/m insulin
S cells/ml, 25 μg/m j! of mycophenolic acid, 25 (Jug/mA! of xanthine, 0.
Aminobutyrin at 1 μg/mj2, 5 μg/m I
Add t thymidine and 25 μg/m J adenine and place in a Corning 96We 11 multiplate (
No. 25860) 100. c+j! /Wel1, and cultured in an incubator at 37° C. and 5% CO. The interferon-γ activity of the wells in which the cells were grown was measured, and interferon 1500 u/mj, which can be cultured without serum! A producing transformed strain was obtained.

インターフェロン−T活性の検定はFL細胞に対するシ
ンドビスウィルスの細胞変性効果の阻害によって調べ(
特開昭59−119648号参照)、標準インターフェ
ロンサンプル(Gg23901−530)を用いて行っ
た。
Assay for interferon-T activity was determined by inhibition of the cytopathic effect of Sindbis virus on FL cells (
(see JP-A-59-119648) and a standard interferon sample (Gg23901-530).

実施例2:無血清培養可能なインターフェロン−T高生
産株の取得 実施例1で得られた無血清培養可能な形質転換株を、メ
ソトレキセート(MTX)500 nMを含むMD培地
(+インスリン5μg / m 1 )で、細胞数10
″〜104個/mlに調製し、96Wel+マルチプレ
ートに100μj!/We11分注シ、37℃、5%C
Otインキュベーター中で培養した。3〜4日後にMT
X500nMを含む無血清培地を100μj!/Wel
l添加し、以後3日毎MTX耐性株が生育するまで10
0μm/Well培地交換を行った。出現したMTX耐
性株のインターフェロン生産量を測定し、更にMTX 
ta度1500nMで上記と同様に耐性株を取得した。
Example 2: Obtaining a serum-free culturable interferon-T high producing strain The serum-free culturable transformant obtained in Example 1 was cultured in MD medium containing 500 nM methotrexate (MTX) (+5 μg/m insulin). 1), the number of cells is 10
''~104 cells/ml, dispense 100μj!/We11 into 96Well+multiplate, 37℃, 5%C
Cultured in an Ot incubator. MT after 3-4 days
100 μj of serum-free medium containing 500 nM of X! /Wel
10 minutes until the MTX-resistant strain grows every 3 days.
The medium was replaced at 0 μm/well. The interferon production amount of the MTX-resistant strains that appeared was measured, and further MTX
Resistant strains were obtained in the same manner as above at a concentration of 1500 nM.

インターフェロン−γアッセイの結果、無血清培養可能
なインターフェロン−γ30万U/m!以上の生産株C
HO−590株を取得した(第1図)。
As a result of interferon-γ assay, interferon-γ can be cultured without serum at 300,000 U/m! The above production strains C
HO-590 strain was obtained (Figure 1).

実施例3:培養上清中のインターフェロン−γの純度 実施例2で得られたインターフェロン−γ生産株CHO
−590を血清、無血清培地で培養し、培養5日目のイ
ンターフェロン−γ、蛋白質を測定し比活性を求め、ま
た培養上清のSDSポリアクリルアミド電気泳動を行っ
た。蛋白定量はBioradプロテインアフセイキット
を用いた。
Example 3: Purity of interferon-γ in culture supernatant Interferon-γ producing strain CHO obtained in Example 2
-590 was cultured in serum and serum-free medium, interferon-γ and protein were measured on the 5th day of culture to determine specific activity, and the culture supernatant was subjected to SDS polyacrylamide electrophoresis. A Biorad protein assay kit was used for protein quantification.

実施例4:大量培養 実施例2に示したインターフェロン生産細胞CHO−5
90株のミニジャー培養を行った。種細胞は37℃、5
%CO,インキュベーター中で作製した。容fi3Jの
ミニジャーにインスリン5μg / m 1含有RDF
培地(RPM11640/ダルベツコ変法MEM/ハム
F+t=2/1/1)をl1分注し、種細胞を接種した
Example 4: Mass culture interferon producing cells CHO-5 shown in Example 2
Ninety strains were cultured in mini jars. Seed cells at 37°C, 5
% CO in an incubator. RDF containing insulin 5μg/m1 in a fi3J mini jar
A medium (RPM11640/Dulbetzko's modified MEM/Ham's F+t=2/1/1) was dispensed into 11 portions, and seed cells were inoculated.

CHO−590株は浮遊培養可能であり、温度37℃、
p H7,0で培地潅流培養を行った。培地潅流速度は
細胞密度向上にともない増加させた(第2図)。
CHO-590 strain can be cultured in suspension at a temperature of 37°C.
Medium perfusion culture was performed at pH 7.0. The medium perfusion rate was increased as the cell density increased (Figure 2).

実施例5:無血清培養可能なリンフォトキシン高生産株
の取得 Ecogpt遺伝子dhfr遺伝子リンフォトキシン遺
伝子をもつベクターpsVeLTdhfr(特願昭61
−23637)DNAGCHO細胞にリン酸カルシウム
法でトランスフェクションした。無血清培地を用い実施
例1と同様に形質転換株を選択した。細胞が生育したW
ellの培養上清中のリンフォトキシン活性を測定し、
リンフォトキシン産生形質転換株を取得した。
Example 5: Obtaining a strain with high lymphotoxin production that can be cultured without serum
-23637) DNA GCHO cells were transfected by the calcium phosphate method. Transformants were selected in the same manner as in Example 1 using a serum-free medium. Cells grew W
measuring lymphotoxin activity in the culture supernatant of ELL,
A lymphotoxin-producing transformed strain was obtained.

形質転換株を実施例2と同様に無血清培地中でメソトレ
キセート(MTX)選択を行った。MTX250nMで
得られた増幅株を更にMTXIOoonMで選択するこ
とにより、リンフォトキシン18万u / m j!の
無血清培養可能な細胞株が得られた。
The transformed strain was subjected to methotrexate (MTX) selection in the same manner as in Example 2 in a serum-free medium. By further selecting the amplified strain obtained with MTX 250 nM using MTXIOoonM, lymphotoxin 180,000 u/m j! A cell line that can be cultured without serum was obtained.

実施例6:無血清培養可能なティッシュプラスミノーゲ
ンアクティベーター(T P A)高生産株の取得 Ecogpt遺伝子、dhfr遺伝子、TPA遺伝子を
もつベクターpSVePA−3(特願昭6l−9748
1)DNAを、CHO細胞ニリン酸カルシウム法でトラ
ンスフエフシランした。実施例1と同様に無血清培地で
選択し、TPA活性の測定によりTPA産生形質転換株
を得た。
Example 6: Obtaining a high-producing tissue plasminogen activator (TPA) strain that can be cultured without serum. Vector pSVePA-3 containing Ecogpt gene, dhfr gene, and TPA gene (Patent application No. 61-9748)
1) DNA was transfected using the calcium diphosphate method in CHO cells. Selection was made in a serum-free medium in the same manner as in Example 1, and TPA-producing transformants were obtained by measuring TPA activity.

形質転換株を実施例2と同様に、無血清培地中でMTX
選択を行った。MTX?n度250nM。
The transformed strain was treated with MTX in a serum-free medium in the same manner as in Example 2.
Made a choice. MTX? n degree 250 nM.

750nM、2000nMでの3回の増幅により、TP
A1400u/m1を産生ずる無血清培養株が得られた
TP was amplified three times at 750 nM and 2000 nM.
A serum-free culture producing A1400 u/ml was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCHO−590株の無血清培地の生育およびI
FN−r産生曲線、第2図はCHO−590株を用いた
ミニジャー培養でのIFN−γの生産曲線である。
Figure 1 shows the growth of CHO-590 strain in serum-free medium and I
FN-r production curve. FIG. 2 is a production curve of IFN-γ in mini jar culture using CHO-590 strain.

Claims (1)

【特許請求の範囲】 1、有用蛋白質をコードする遺伝子が導入された、無血
清培地で継代増殖可能な形質転換細胞。 2、宿主細胞が無血清培地で継代増殖可能な細胞である
特許請求の範囲第1項記載の細胞。 3、宿主細胞がCHO、Hela細胞、もしくはこれら
の細胞から派生した細胞である特許請求の範囲第1項又
は第2項記載の細胞。 4、有用蛋白質がインターフェロン−γ、ティッシュプ
ラスミノゲンアクティベーターもしくはリンフォトキシ
ンである特許請求の範囲第1項、第2項又は第3項記載
の細胞。 5、有用蛋白質をコードする遺伝子が導入された細胞を
、無血清培地で選択することにより無血清培地で継代増
殖可能な形質転換細胞を育種する方法。 6、宿主細胞が無血清培地で継代増殖可能な細胞である
特許請求の範囲第5項記載の方法。 7、宿主細胞がCHO、Hela細胞、もしくはこれら
の細胞から派生した細胞である特許請求の範囲第5項又
は第6項記載の方法。 8、有用蛋白質がインターフェロン−γ、ティッシュプ
ラスミノゲンアクティベーターもしくはリンフォトキシ
ンである特許請求の範囲第5項、第6項又は第7項記載
の方法。 9、有用蛋白質をコードする遺伝子が導入された、無血
清培地で継代増殖可能な形質転換細胞を無血清培地で培
養し有用蛋白質を生産する方法。 10、宿主細胞が無血清培地で継代増殖可能な細胞であ
る特許請求の範囲第9項記載の方法。 11、宿主細胞がCHO、Hela細胞、もしくはこれ
らの細胞から派生した細胞である特許請求の範囲第9項
又は第10項記載の方法。 12、有用蛋白質がインターフェロン−γ、ティッシュ
プラスミノゲンアクティベーターもしくはリンフォトキ
シンである特許請求の範囲第9項、第10項又は第11
項記載の方法。
[Claims] 1. A transformed cell into which a gene encoding a useful protein has been introduced and which can be subcultured in a serum-free medium. 2. The cell according to claim 1, wherein the host cell is a cell that can be subcultured in a serum-free medium. 3. The cell according to claim 1 or 2, wherein the host cell is a CHO cell, a Hela cell, or a cell derived from these cells. 4. The cell according to claim 1, 2, or 3, wherein the useful protein is interferon-γ, tissue plasminogen activator, or lymphotoxin. 5. A method for breeding transformed cells that can be subcultured in a serum-free medium by selecting cells into which a gene encoding a useful protein has been introduced in a serum-free medium. 6. The method according to claim 5, wherein the host cell is a cell that can be subcultured in a serum-free medium. 7. The method according to claim 5 or 6, wherein the host cell is a CHO cell, a Hela cell, or a cell derived from these cells. 8. The method according to claim 5, 6, or 7, wherein the useful protein is interferon-γ, tissue plasminogen activator, or lymphotoxin. 9. A method of producing a useful protein by culturing in a serum-free medium a transformed cell into which a gene encoding a useful protein has been introduced and which can be subcultured in a serum-free medium. 10. The method according to claim 9, wherein the host cells are cells that can be subcultured in a serum-free medium. 11. The method according to claim 9 or 10, wherein the host cell is a CHO cell, a Hela cell, or a cell derived from these cells. 12. Claims 9, 10, or 11, wherein the useful protein is interferon-γ, tissue plasminogen activator, or lymphotoxin.
The method described in section.
JP62029121A 1987-02-10 1987-02-10 Transformant cell capable of being subjected to passage multiplication in serum-free medium, breeding thereof and production of protein by said cell Pending JPS63196268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62029121A JPS63196268A (en) 1987-02-10 1987-02-10 Transformant cell capable of being subjected to passage multiplication in serum-free medium, breeding thereof and production of protein by said cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62029121A JPS63196268A (en) 1987-02-10 1987-02-10 Transformant cell capable of being subjected to passage multiplication in serum-free medium, breeding thereof and production of protein by said cell

Publications (1)

Publication Number Publication Date
JPS63196268A true JPS63196268A (en) 1988-08-15

Family

ID=12267474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62029121A Pending JPS63196268A (en) 1987-02-10 1987-02-10 Transformant cell capable of being subjected to passage multiplication in serum-free medium, breeding thereof and production of protein by said cell

Country Status (1)

Country Link
JP (1) JPS63196268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029388A (en) * 1988-03-09 1990-01-12 Ajinomoto Co Inc Production of physiologically active protein
EP0481791A3 (en) * 1990-10-17 1992-07-08 The Wellcome Foundation Limited Culture medium for cho-cells and adapted cho-cells
JP2011068694A (en) * 1996-12-24 2011-04-07 Biogen Idec Ma Inc Stable liquid interferon formulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942321A (en) * 1982-05-05 1984-03-08 ジエネンテツク・インコ−ポレイテツド Human tissue plasminogen activating factor
JPS59139324A (en) * 1982-12-30 1984-08-10 バイオ レスポンス,インコ−ポレイティド Serum non-dependable cell line and establishment
JPS6188875A (en) * 1984-10-05 1986-05-07 Kanegafuchi Chem Ind Co Ltd Human interferon-gamma
JPS6214783A (en) * 1985-07-10 1987-01-23 Kanegafuchi Chem Ind Co Ltd Human tissue plasminogen activation factor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942321A (en) * 1982-05-05 1984-03-08 ジエネンテツク・インコ−ポレイテツド Human tissue plasminogen activating factor
JPS59139324A (en) * 1982-12-30 1984-08-10 バイオ レスポンス,インコ−ポレイティド Serum non-dependable cell line and establishment
JPS6188875A (en) * 1984-10-05 1986-05-07 Kanegafuchi Chem Ind Co Ltd Human interferon-gamma
JPS6214783A (en) * 1985-07-10 1987-01-23 Kanegafuchi Chem Ind Co Ltd Human tissue plasminogen activation factor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029388A (en) * 1988-03-09 1990-01-12 Ajinomoto Co Inc Production of physiologically active protein
JP2576200B2 (en) * 1988-03-09 1997-01-29 味の素株式会社 Method for producing bioactive protein
EP0481791A3 (en) * 1990-10-17 1992-07-08 The Wellcome Foundation Limited Culture medium for cho-cells and adapted cho-cells
JPH0670757A (en) * 1990-10-17 1994-03-15 Wellcome Found Ltd:The Medium
JP2011068694A (en) * 1996-12-24 2011-04-07 Biogen Idec Ma Inc Stable liquid interferon formulation

Similar Documents

Publication Publication Date Title
JP4306813B2 (en) New method for culturing animal cells
US6180401B1 (en) Polypeptide production in animal cell culture
EP2459697B1 (en) Method of producing a polypeptide or virus of interest in a continuous cell culture
Alvarez-Mon et al. A potential role for adrenocorticotropin in regulating human B lymphocyte functions.
US6413746B1 (en) Production of proteins by cell culture
WO2008009642A1 (en) Cell culture media
CN104718296B (en) Expression vector comprising chimeric cytomegalovirus promoter and enhancer sequence
EP0239292B1 (en) Production of proteins by cell culture
EP0659880B1 (en) Medium for culturing animal cells or antibody-producing cells
EP0287075B1 (en) Process for the construction of an animal cell line for the production of human beta-interferon
WO1998006822A1 (en) Culture medium and use of the same
JPS63196268A (en) Transformant cell capable of being subjected to passage multiplication in serum-free medium, breeding thereof and production of protein by said cell
CN104195173B (en) Glutamine synthelase efficient expression vector with double expression boxes
CN109576212B (en) Culture method of seed cells in high-density inoculation culture and application thereof
US5019499A (en) Method of producing peptides by transforming myeloma cells with a recombinant plasmid
Broad et al. Production of recombinant proteins in serum-free media
Babaeipour et al. Bench-scale Overproduction and Purification of recombinant GCSF in Escherichia coli fed-batch process
JP2859679B2 (en) New cell line
Chow et al. Structural-Functional Studies of Human Transferrin by Using in vitro Mutagenesis1
JP2749011B2 (en) Cells that can be subcultured in serum-free medium and method for obtaining the same
US11186858B1 (en) Methods for increasing biosimilarity
Lucki-Lange et al. Conditions for the production of recombinant IL-2 in stirred suspension culture using a protein free medium
EA013263B1 (en) Process for preparing interferon beta
CN107849526A (en) The method for adjusting recombinant protein production pattern
Zhang et al. Production of granulocyte-macrophage colony stimulating factor (GM-CSF) by high cell density fermentation of secretory recombination Escherichia coli