JPH029388A - Production of physiologically active protein - Google Patents
Production of physiologically active proteinInfo
- Publication number
- JPH029388A JPH029388A JP17014288A JP17014288A JPH029388A JP H029388 A JPH029388 A JP H029388A JP 17014288 A JP17014288 A JP 17014288A JP 17014288 A JP17014288 A JP 17014288A JP H029388 A JPH029388 A JP H029388A
- Authority
- JP
- Japan
- Prior art keywords
- gene
- cells
- plasmid
- buf
- physiologically active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 86
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000013612 plasmid Substances 0.000 claims abstract description 58
- 101150074155 DHFR gene Proteins 0.000 claims abstract description 22
- 108010022394 Threonine synthase Proteins 0.000 claims abstract description 6
- 102000004419 dihydrofolate reductase Human genes 0.000 claims abstract description 6
- 241000699802 Cricetulus griseus Species 0.000 claims abstract description 4
- 230000002950 deficient Effects 0.000 claims abstract description 4
- 230000001131 transforming effect Effects 0.000 claims abstract description 4
- 210000004027 cell Anatomy 0.000 claims description 110
- 238000013019 agitation Methods 0.000 claims description 27
- 102000004889 Interleukin-6 Human genes 0.000 claims description 24
- 108090001005 Interleukin-6 Proteins 0.000 claims description 24
- 108010002350 Interleukin-2 Proteins 0.000 claims description 14
- 102000000588 Interleukin-2 Human genes 0.000 claims description 13
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 claims description 8
- 230000004069 differentiation Effects 0.000 claims description 7
- 102000055277 human IL2 Human genes 0.000 claims description 3
- VUDQSRFCCHQIIU-UHFFFAOYSA-N 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one Chemical compound CCCCCC(=O)C1=C(O)C(Cl)=C(OC)C(Cl)=C1O VUDQSRFCCHQIIU-UHFFFAOYSA-N 0.000 abstract description 2
- 101000942967 Homo sapiens Leukemia inhibitory factor Proteins 0.000 abstract description 2
- 102100032352 Leukemia inhibitory factor Human genes 0.000 abstract description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 abstract description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 238000000502 dialysis Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 abstract 1
- 235000011130 ammonium sulphate Nutrition 0.000 abstract 1
- 238000004587 chromatography analysis Methods 0.000 abstract 1
- 238000005185 salting out Methods 0.000 abstract 1
- 239000012634 fragment Substances 0.000 description 22
- 239000000725 suspension Substances 0.000 description 19
- 239000002609 medium Substances 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 16
- 108091008146 restriction endonucleases Proteins 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 8
- 230000012010 growth Effects 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 238000000246 agarose gel electrophoresis Methods 0.000 description 6
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 102000039446 nucleic acids Human genes 0.000 description 6
- 150000007523 nucleic acids Chemical class 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000000975 bioactive effect Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000012258 culturing Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 206010000871 Acute monocytic leukaemia Diseases 0.000 description 3
- 102000012410 DNA Ligases Human genes 0.000 description 3
- 108010061982 DNA Ligases Proteins 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 208000035489 Monocytic Acute Leukemia Diseases 0.000 description 3
- 230000001464 adherent effect Effects 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 238000004007 reversed phase HPLC Methods 0.000 description 3
- 239000006152 selective media Substances 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 244000309466 calf Species 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004114 suspension culture Methods 0.000 description 2
- 229920001864 tannin Polymers 0.000 description 2
- 239000001648 tannin Substances 0.000 description 2
- 235000018553 tannin Nutrition 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 1
- 208000002109 Argyria Diseases 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- -1 BUF-3 Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 102100021392 Cationic amino acid transporter 4 Human genes 0.000 description 1
- 101710195194 Cationic amino acid transporter 4 Proteins 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 101001033279 Homo sapiens Interleukin-3 Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 206010024305 Leukaemia monocytic Diseases 0.000 description 1
- 101100278853 Mus musculus Dhfr gene Proteins 0.000 description 1
- 101001043827 Mus musculus Interleukin-2 Proteins 0.000 description 1
- 101001033276 Mus musculus Interleukin-3 Proteins 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- BKAYIFDRRZZKNF-VIFPVBQESA-N N-acetylcarnosine Chemical compound CC(=O)NCCC(=O)N[C@H](C(O)=O)CC1=CN=CN1 BKAYIFDRRZZKNF-VIFPVBQESA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 101710193790 Tax1-binding protein 3 Proteins 0.000 description 1
- 102100036221 Tax1-binding protein 3 Human genes 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- UFFSXJKVKBQEHC-UHFFFAOYSA-N heptafluorobutyric anhydride Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(=O)OC(=O)C(F)(F)C(F)(F)C(F)(F)F UFFSXJKVKBQEHC-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N hydrochloric acid Substances Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000004073 interleukin-2 production Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000003519 mature b lymphocyte Anatomy 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 201000006894 monocytic leukemia Diseases 0.000 description 1
- 210000003924 normoblast Anatomy 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000007447 staining method Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、チャイニーズ・ハムスターオパリーノヒド口
葉酸還元酵素欠損株(以下CHOdhfr−と略する)
細胞を生産宿主として用い、これを浮遊攪拌培養するこ
とによる生理活性タンパク質を効率よく大量に生産させ
る方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Chinese hamster opalinohyde stomatofolate reductase-deficient strain (hereinafter abbreviated as CHOdhfr-).
The present invention relates to a method for efficiently producing large quantities of physiologically active proteins by using cells as production hosts and carrying out suspension agitation culture.
従来技術
従来、 CIOdhfr″″細胞は、タンパク質の生産
宿主として広く用いられているが1本細胞がその生育(
増殖)K支持体を必要とする付着細胞であるため本細胞
を大、tK暗培養、生理活性タン/4’り質を多量に取
得することは困難であった。マイクロビーズの上に細胞
を生育させ浮遊攪拌系で物質を生産させる方法が開発さ
れたが、!ィクロビーズ上に均一に細胞が生育しない等
の問題点があり実用化は行われなかった。また、ファイ
バー状の支持体に細胞を生育させる高密度培養装置が開
発されたが、その培養液量の制限より物質の大量生産に
は応用されていない。Prior Art Conventionally, CIOdhfr"" cells have been widely used as protein production hosts, but a single cell has been used for its growth (
Proliferation) Since these cells are adherent cells that require a K support, it was difficult to culture the cells in the dark at tK or to obtain a large amount of bioactive protein/4' protein. A method has been developed to grow cells on microbeads and produce substances in a floating agitation system, but! It was not put into practical use due to problems such as cells not growing uniformly on the microbeads. In addition, a high-density culture device for growing cells on a fibrous support has been developed, but it has not been applied to mass production of substances due to limitations in the amount of culture solution.
目的遺伝子を有するプラスミド(DHFR遺伝子を含む
)で形質転換したCHOdhfr−細胞を大量培養し、
生理活性タンパク質を大量に生産させる場合に一番問題
となっているのは生育(増殖)K増殖支持体を必要とす
る点である。従って本発明の課題は増殖支持体を用いず
に形質転換した細胞を浮遊攪拌系で大量培養して目的と
する生理活性物質を大量に生産する方法の提供である。CHOdhfr cells transformed with a plasmid containing the target gene (containing the DHFR gene) are cultured in large quantities,
The biggest problem when producing large quantities of physiologically active proteins is the need for growth (proliferation) K proliferation supports. Therefore, an object of the present invention is to provide a method for producing a target physiologically active substance in large quantities by culturing transformed cells in a floating agitation system in large quantities without using a growth support.
本発明者は上記課題を解決するために鋭意検討を重ねた
結果、生育(増殖)k支持体を必要とするCHOdhf
r’″細胞及び目的遺伝子を有するプラスミドで形質転
換した〇HOdhfr−細胞が浮遊攪拌培養下で生育で
きることを見い出し本発明を完成した。As a result of extensive studies to solve the above problems, the present inventors have discovered that CHOdhf, which requires a growth (proliferation) support,
The inventors have completed the present invention by discovering that 〇HOdhfr- cells transformed with r''' cells and a plasmid containing a target gene can be grown under suspension agitation culture.
即ち1本発明は生理活性タン/4り質をコードする遺伝
子及びdhfr遺伝子を発現可能な状態で有するプラス
ミドをCHOdbfr−細胞に形質転換して得られた細
胞を浮遊1拌培饗し、培養液中に目的生理活性タンパク
質を生産させ、そして、目的生理活性タン・母り質を取
得することを特徴とする生理活性タンパク質の製造法で
ある。That is, 1 the present invention involves transforming CHOdbfr- cells with a plasmid having a gene encoding a physiologically active protein and a dhfr gene in an expressible state, suspending the obtained cells in a suspension culture, and adding the culture solution This is a method for producing a physiologically active protein, which is characterized by producing the desired physiologically active protein in the protein and obtaining the desired physiologically active protein and matrix.
本発明を更に詳細に説明する。The present invention will be explained in more detail.
まず、浮遊攪拌培養可能なCHOdhfr−細胞(この
場合既に、生理活性タンパク質をコードする遺伝子及び
dhfr遺伝子を発現可能な状態で有するプラスミドで
本細胞を形質転換した細胞並びに。First, CHOdhfr- cells that can be cultured in suspension with agitation (in this case, these cells have been transformed with a plasmid that has a gene encoding a physiologically active protein and a dhfr gene in an expressible state);
生理活性タンノ4り質をコードする遺伝子及びdhfr
遺伝子を発現可能な状態で有するプラスミドにより、ま
だ形質転換されていない細胞のどちらを用いてもよい。Gene and dhfr encoding physiologically active protein
Any cell that has not yet been transformed with a plasmid carrying the gene in an expressible state may be used.
)の取得方法としては、以下のように行えばよい。) can be obtained as follows.
支持体表面で細胞を生育させた後、核酸を含むC1−M
EM培地(GIBCO社、カタログ4410−1900
)(10%牛血清を含む)K出来るだけ低密度(1−4
X 10’個/ml ) Kなるように細胞を懸濁し、
浮遊1拌培饗を行う。After growing cells on the support surface, C1-M containing nucleic acid
EM medium (GIBCO, catalog 4410-1900
) (contains 10% bovine serum) K as low density as possible (1-4
Suspend the cells to 10' cells/ml),
Perform suspension 1 stirring incubation.
尚、浮遊攪拌培養を行う時の条件は特にこだわらないが
、初期細胞濃度Fi4XIo’/、dを出来るだけ越え
ない方が望ましい。Although there are no particular restrictions on the conditions for carrying out suspension agitation culture, it is preferable not to exceed the initial cell concentration Fi4XIo'/,d as much as possible.
また、この時、培養液の−を正確にコントロールするこ
とが望ましいが、完全な密閉状態が維持できてさえいれ
ば、培養初期に声を7. OK正確に合わせておけば問
題はない。Also, at this time, it is desirable to accurately control the temperature of the culture solution, but as long as a completely sealed state can be maintained, the temperature of 7. OK, there is no problem as long as you match it correctly.
この操作を繰り返すことで浮遊攪拌培養に適した細胞が
得られる。また、培地は、上述のα−MEM培地と同程
度、もしくはそれ以上の濃度の核酸を含む培地ならいづ
れでもよい。しかし1本細胞がプロリン要求性であるた
めプロリンを含む培地でなくてはいけない。By repeating this operation, cells suitable for floating agitation culture can be obtained. Further, the medium may be any medium containing a nucleic acid concentration equivalent to or higher than that of the α-MEM medium described above. However, since each cell requires proline, the medium must contain proline.
当初、細胞の生育は悪く、また最大細胞密度も低いが繰
シ返し培養を行い生育(増殖)の良好な最大細胞密度の
高い細胞がえられる。Initially, cell growth is poor and the maximum cell density is low, but by repeated culturing, cells with good growth (proliferation) and a high maximum cell density can be obtained.
この様にして得られた細胞は、従来から知られている浮
遊培養株1例えば、ヒト急性単球白血病細胞(THP−
1,Int、 J、 Canc@r 26: 171−
176(1980)χヒト急性前骨髄性白血病細胞のH
L−60(ATCCCCL240 ) 、ヒト急性単球
性白血病細胞のU−937(ATCCCRL 1593
) 、ヒト慢性骨髄性白血病細胞のに−562(AT
CCCCL 243 )、ヒト急性骨髄性白血病細胞の
KG−1(ATCCCCL 246 ) 、ヒト単球性
白血病細胞のJ−1)1(ATCCCCL 24 )と
同様に扱うことができる。The cells obtained in this manner can be used in conventionally known suspension culture strains 1, such as human acute monocytic leukemia cells (THP-
1, Int, J, Canc@r 26: 171-
176 (1980) χ H of human acute promyelocytic leukemia cells
L-60 (ATCCCCCL240), U-937 (ATCCCCRL 1593) of human acute monocytic leukemia cells
), human chronic myeloid leukemia cells -562 (AT
CCCCL 243 ), human acute myeloid leukemia cell KG-1 (ATCCCCCL 246 ), and human monocytic leukemia cell J-1) 1 (ATCCCCCL 24 ).
得られた浮遊攪拌培養に適したCHOdhfr−細胞の
培養は、好ましくは、攪拌基の付いたスピンナ−フラス
コで行なうことが望ましい。The obtained CHOdhfr cells suitable for suspension agitation culture are preferably cultured in a spinner flask equipped with a stirring base.
やむをえない場合は、微生物用のフラスコデイツシュ(
組繊細胞用デイツシュフラスコではなく、細胞が付着し
やすいようにコーティングしていないものなら良い)で
培養することも可能である。If it is unavoidable, use a flask container for microorganisms (
It is also possible to culture in a datesch flask for tissue cells (as long as it is not coated to make it easier for cells to adhere).
また前記以外の方法を用いてもかまわない。このように
浮遊攪拌培養に適したCHOdhfr−細胞を樹立して
も、目的とする生理活性タンパク質をコードする遺伝子
、 dhfr遺伝子を有するプラスミドを含有していな
い場合には以下に示すような操作を行なうことにより目
的とする生理活性タンパク質を生産し得る。Further, methods other than those described above may also be used. Even if CHOdhfr cells suitable for suspension agitation culture are established in this way, if they do not contain a gene encoding the desired physiologically active protein or a plasmid containing the dhfr gene, perform the operations shown below. By doing so, the desired physiologically active protein can be produced.
つまり、予め、 dhfr遺伝子及び目的生理活性タン
パク質をコードする遺伝子を有するプラスミドを導入す
る細胞、即ち、 CHOdbfr−細胞を浮遊攪拌培養
に適した細胞として分離した後)?:、 dhfr遺
伝子及び目的生理活性物質をコードする遺伝子を有する
プラスミドで形質転換し、次に、目的生理活性蛋白質を
産生じている形質転換株を分離する。In other words, cells into which a plasmid containing the dhfr gene and a gene encoding the target physiologically active protein are to be introduced, ie, CHOdbfr- cells, are separated in advance as cells suitable for suspension agitation culture). : Transformation is performed with a plasmid containing the dhfr gene and a gene encoding the physiologically active substance of interest, and then a transformed strain producing the physiologically active protein of interest is isolated.
このようにして得られた形質転換株をメントレキセート
(以下MTXと略す。)を含む培地で生育させ、rJt
性形質転換細胞を分離する。この様な細胞は、MTX耐
性になったことでdhfr遺伝子が増幅されている。従
ってこの時に目的生理活性蛋白質をコードする遺伝子も
一緒に増幅されているため、目的生理活性蛋白質を大量
に生産している。The thus obtained transformed strain was grown in a medium containing mentrexate (hereinafter abbreviated as MTX), and rJt
Isolate sexually transformed cells. In such cells, the dhfr gene is amplified by becoming MTX resistant. Therefore, at this time, the gene encoding the biologically active protein of interest is also amplified, so that the biologically active protein of interest is produced in large quantities.
この目的生理活性蛋白質を大量に生産している細胞を以
後用いればよい。Cells that produce a large amount of this objective physiologically active protein may be used thereafter.
くり返し述べるが、もちろんdhfr遺伝子と目的生理
活性蛋白質をコードする遺伝子を有するプラスミドをま
ずCHOdhfr−細胞に形質転換した後に浮遊攪拌培
養に適した細胞を樹立してもよい。As mentioned again, of course, cells suitable for suspension agitation culture may be established after first transforming CHOdhfr- cells with a plasmid containing the dhfr gene and a gene encoding the physiologically active protein of interest.
即ち、形質転換した後に、浮遊攪拌培養に適した細胞を
樹立してもよいし、また、浮遊攪拌に適した細胞を樹立
してから形質転換しても良いのである。That is, cells suitable for suspension agitation culture may be established after transformation, or cells suitable for suspension agitation may be established and then transformed.
本発明で用いるプラスミドは原則的にdhfr遺伝子及
び生理活性蛋白質をコードする遺伝子を有していなけれ
ばいけないが、好ましくは真核生物細胞内で転写可能な
プロモーター及びSV40スプライシングシグナル(尚
1本発明においてはSV40スプライシングシグナルと
はSV40スプライシングシグナル及びポリA付加シグ
ナルの両方からなるシグナルのことを言うものとする。In principle, the plasmid used in the present invention must have the dhfr gene and a gene encoding a physiologically active protein, but preferably a promoter that can be transcribed in eukaryotic cells and an SV40 splicing signal (in addition, in the present invention, The SV40 splicing signal refers to a signal consisting of both the SV40 splicing signal and the polyA addition signal.
)を有している方が好ましい。) is preferable.
プロモーターとしては普通SV40初期プロモーター(
5V4Q early ) 、ウシパピローマウィルス
(BPVと略する)などが用いられ、このプロモーター
とスプライシングシグナルの間に目的とする生理活性蛋
白質をコードする遺伝子を挿入するわけである。The promoter is usually the SV40 early promoter (
5V4Q early), bovine papilloma virus (abbreviated as BPV), etc., are used, and a gene encoding a biologically active protein of interest is inserted between the promoter and the splicing signal.
プラスミドとしては同一プラスミド内にて目的生理活性
蛋白質をコードする遺伝子とdhf r遺伝子を有する
方が好ましい。It is preferable that the plasmid contains a gene encoding the physiologically active protein of interest and the dhfr gene in the same plasmid.
しかし、74ラスミド内Kdhfr遺伝子を有していな
くても別のプラスミド上にdhf r遺伝子を有してい
る場合でもよい。However, even if the 74 lasmid does not have the Kdhfr gene, it may have the dhfr gene on another plasmid.
この時は1両者を一緒にして形質転換を行なわせる。ま
た、プロモーター中に転写活性を上昇させるようなエン
サンサー配列(例えばSV40 ’yobpくり返し、
レトロウイルスロングターミナルリビ−) (LTR)
中に存在するエンノ・ンサー配列)を有していることも
好ましい。At this time, both are combined to perform transformation. In addition, enhancer sequences that increase transcriptional activity in the promoter (e.g. SV40 'yobp repeats,
Retrovirus Long Terminal Libby) (LTR)
It is also preferable to have an ennocer sequence present in the protein.
さて、このようなプラスミドの転写単位(プロモーター
)の下流に目的生理活性蛋白質をコードする遺伝子を導
入する。Now, a gene encoding a physiologically active protein of interest is introduced downstream of the transcription unit (promoter) of such a plasmid.
上述のことを考え合すと、好ましいプラスミドの形とし
てはSV40初期プロモーター(SV40 early
)。Considering the above, the preferred plasmid form is the SV40 early promoter (SV40 early promoter).
).
目的生理活性蛋白質をコードする遺伝子、 SV40ス
プライシングシグナル(SV40 spHclng &
polyA )。The gene encoding the target physiologically active protein, SV40 splicing signal (SV40 spHclng &
polyA).
dhf r等の遺伝子を含有するプラスミドがよい。A plasmid containing a gene such as dhfr is preferable.
尚、SV40スプライシングシグナルはR,C,Mul
llgan及びP、 B@rg Kより報告(Proc
、 Natl、 Aead、 Scl。In addition, SV40 splicing signals are R, C, Mul
Reported by llgan and P, B@rg K (Proc.
, Natl, Aead, Scl.
USA、 vol 78.2072−7076 (19
81)K記載されていて。USA, vol 78.2072-7076 (19
81) K is listed.
しかも入手可能である。Moreover, it is available.
さて、好ましいプラスミドの例を具体的に示すと、プラ
スミドΔSV40初期プロモーターー目的生理活性蛋白
質をコードする遺伝子−SV40スプライシングシグナ
ル−8v4o初期f口モーター一dhf r遺伝子−S
V40スプライシングシグナル又はプラスミドΔSV4
0初期プロモーター−dhfr遺伝子−SV40スプラ
イシングシグナル−SV40初期プロモーター−目的生
理活性蛋白質をコードする遺伝子−SV40スプライシ
ングシグナルである。Now, specific examples of preferred plasmids are as follows: plasmid ΔSV40 early promoter - gene encoding the target physiologically active protein - SV40 splicing signal - 8v4o early f-mouth motor - dhf r gene - S
V40 splicing signal or plasmid ΔSV4
0 early promoter - dhfr gene - SV40 splicing signal - SV40 early promoter - gene encoding the target physiologically active protein - SV40 splicing signal.
さて1本発明で言う、目的生理活性蛋白質とはヒト及び
マウスインターロイキン1.ヒト及びマウスインターロ
イキン2、ヒト及びマウスインターロイキン3.ヒト及
びマウスα−インターフェロン、ヒト及ヒマウスβ−イ
ンターフェロン、ヒト及びマウスr−インター7エpン
、エリスロポエチン、ヒト分化誘導因子BUF−3ヒト
B#l胞分化因子BSF−2等、何を用いてもよい。Now, in the present invention, the target physiologically active protein is human and mouse interleukin. Human and mouse interleukin 2, human and mouse interleukin 3. Human and mouse α-interferon, human and mouse β-interferon, human and mouse r-inter7epn, erythropoietin, human differentiation factor BUF-3, human B#1 cell differentiation factor BSF-2, etc. Good too.
これらの生理活性蛋白質の中でもヒト分化誘導因子BU
F−3(BUF−3) 、ヒトインターaイキ7(ルー
2)、及びヒトB細胞分化因子(BSF−2)が特に好
ましい、尚、以後、IL−2,BUF−3,BSF−2
と記すと特にことわりがない限シ、ヒトIL−2、ヒト
BUF−3、ヒトBSF−2を表示するものとする。Among these physiologically active proteins, human differentiation factor BU
Particularly preferred are F-3 (BUF-3), human intera-2, and human B cell differentiation factor (BSF-2), hereinafter referred to as IL-2, BUF-3, BSF-2.
Unless otherwise specified, human IL-2, human BUF-3, and human BSF-2 are indicated.
また、 BSF−2はBCDFとも、 IL−6とも呼
ばれているが、本発明においては最近、Rtっともよく
用いられているBSF−2という名称を用いる。BSF-2 is also called BCDF or IL-6, but in the present invention, the name BSF-2, which is most commonly used in Rt, is used in the present invention.
本発明でいう形質転換法としてはDNAをカルシウムリ
ン酸と共澱させるカルンヤム9ン醍広(Graham。The transformation method used in the present invention involves co-precipitation of DNA with calcium phosphate.
F、 L van dsr Eb、 A、 J : V
irology、 52.456(1973))、ある
いはDEAg−テキストラン法(Stow、 N、D、
atal : J、 G@n Virol 33.4
47 (1976)、ミクロマニピエレーターを用いて
核内に遺伝子を導入する微注入法(Gra@mamah
nsA、+et ml M@thod ln Enzy
mol。F, L van dsr Eb, A, J: V
irology, 52.456 (1973)) or the DEAg-text run method (Stow, N.D.
atal: J, G@n Virol 33.4
47 (1976), microinjection method for introducing genes into the nucleus using a micromanipulator (Gra@mamah
nsA, +et ml M@thod ln Enzy
mol.
65、816 (1980) ) 、リン脂質を懸濁し
て得られるすIソーム中に遺伝子を入れ標的細胞と融合
させるリーソーム融合法(Grsgoriadis*
G、 at a1283、814 (1980) )
、目的遺伝子を有する原核細胞生物をグロトデ2スト化
もしくは、スフェロプラスト化にし標的細胞七PEG存
在下で融合させるプロトグラスト法(Scbmffne
rm W、 Proe、 Natl。65, 816 (1980)), the lysome fusion method (Grsgoliadis*
G, at a1283, 814 (1980))
, the protograst method (Scbmffne
rm W, Proe, Natl.
Acad、 Scl IJ、s、a 77、2163
(1980) )などがある。Acad, Scl IJ, s, a 77, 2163
(1980)).
尚、培養液中に生産された目的生理活性メンノ平り質を
精製する方法は従来よ少用いられている一般的な方法を
用いればよい。Incidentally, as a method for purifying the target physiologically active mennoplasma produced in the culture solution, a general method that has been used less frequently may be used.
以下1本発明を実施例に基づいて説明する。The present invention will be explained below based on examples.
実施例!
ヒト分化誘導因子BUF−3について
BUF−3は、ヒト急性単球性白血病細胞TIP−1細
胞が産生ずる蛋白性分化誘導因子である。Example! About human differentiation factor BUF-3 BUF-3 is a protein differentiation factor produced by human acute monocytic leukemia TIP-1 cells.
BUF’−3は、マウス・7レント9白血病細胞に作用
し、この細胞を正常赤芽球細胞へ分化誘導する分化誘導
活性を有する蛋白質である。BUF'-3 is a protein having differentiation-inducing activity that acts on mouse 7rent9 leukemia cells and induces differentiation of these cells into normal erythroblast cells.
BUF−3遺伝子はfJKクローニングされていて。The BUF-3 gene has been fJK cloned.
その塩基配列及びアミノ酸配列も決定されている(第1
図参照)。BUF−3に関しては特開昭62−2340
97号公報にくわしく記載されている。Its nucleotide sequence and amino acid sequence have also been determined (first
(see figure). Regarding BUF-3, JP-A-62-2340
It is described in detail in Publication No. 97.
さて、このBUF−3をコードする遺伝子を含有する動
物細胞発現ベクターpSDcx) / BUF−3を第
2図に示すように構築した。プラスミドベクターpSV
2dhfrとpBR322よりメントレキセート耐性遺
伝子(dhfr遺伝子)をSV40初期プロモーター(
SV40 @arly )及びSV40スプライシング
シグナル(SV40 spHclng & polyA
)の間に順方向に導入したプラスミドpBR322−
dhfrを得た。Now, an animal cell expression vector pSDcx)/BUF-3 containing the gene encoding this BUF-3 was constructed as shown in FIG. Plasmid vector pSV
The mentrexate resistance gene (dhfr gene) was transferred from 2dhfr and pBR322 to the SV40 early promoter (
SV40 @arly ) and SV40 splicing signal (SV40 spHclng & polyA
) plasmid pBR322-
I got dhfr.
また、第2図のように、プラスミドpsV2−dhfr
を制限酵It Hlnd ml Bgl IIで切断後
1本断片をT4DNA / !jメラーゼで処理し、平
滑末端にした後。In addition, as shown in Figure 2, plasmid psV2-dhfr
After cutting with restriction enzyme It Hlnd ml Bgl II, one fragment was converted into T4 DNA/! After treatment with J merase to make blunt ends.
アガロースゲル電気泳動によシ、 SV40初期プロモ
ーター及びSV40スプライシングシグナルを含む2−
ジ7ラグメントを分離した後、こf’L K XhoI
リンカ−を付加した。By agarose gel electrophoresis, 2-
After separating the di7 fragment, this f'L K XhoI
A linker was added.
このフラグナンドを再び制限酵素Xbolで処理した後
にT4ONAI7ガーゼで処理し、閉環した。これを!
ラスミドpsV(x)と命名した。This frangand was treated with restriction enzyme Xbol again and then treated with T4ONAI7 gauze to close the ring. this!
It was named lasmid psV(x).
次に前述のゲラスミ)’ pBR322−dhfrを制
限酵素BamHIで処理後ア7!/ロースrル電気泳動
を行うことより、 SV40ゾロ% −1−−dhfr
遺伝子−SV40スプライシングシグナルのフラグナン
トヲ単離した(第2図)。Next, after treating the aforementioned Gerasumi)' pBR322-dhfr with restriction enzyme BamHI, a7. / By performing low flow electrophoresis, SV40% -1--dhfr
A fragment of the gene-SV40 splicing signal was isolated (Figure 2).
このSV40初期プロモーター−dhfr遺伝子−SV
40スプライシングシグナルを含むBamHI断片をプ
ラスミドpSV(3C)のBamH1部位に導入し、プ
ラスミドPSD(x)を構築した(第2図)。This SV40 early promoter-dhfr gene-SV
A BamHI fragment containing 40 splicing signals was introduced into the BamH1 site of plasmid pSV(3C) to construct plasmid PSD(x) (FIG. 2).
次に奏1勇中場クローニングしたBUF−3のDNAを
T4DNA4リメ2−ゼで処理した後、 Xholリン
カ−を結合させ、そして、Xhol処理して得た断片を
プラスミドpSD(x)のXhoI部位に導入したく第
2図)。Next, the DNA of BUF-3 cloned by Kanade 1 Yuchuba was treated with T4 DNA4 lymase, and then an Xhol linker was ligated, and the fragment obtained by Xhol treatment was inserted into the XhoI site of plasmid pSD(x). (Figure 2).
このようにしてBUF−3遺伝子を有するプラスミドp
SD(x)/ntyp−3を構築した。In this way, plasmid p containing the BUF-3 gene
SD(x)/ntyp-3 was constructed.
即ち1発現ベクターpSD(x) / BUF−3は、
SV40初M2初子20モーターUF−3をコードする
遺伝子−5V40スズライジングシグナル−SV40初
期プロモーターー dhfr遺伝子−SV40スプライ
シングシグナルを有する。That is, the expression vector pSD(x)/BUF-3 is
The gene encoding SV40 first M2 first born 20 motor UF-3 - 5V40 tin rising signal - SV40 early promoter - dhfr gene - has SV40 splicing signal.
尚、この実施例1では、 pSD(x)/ BUF −
3プラスミドを予め、チャイニーズ・ハムスター・オパ
リージヒドロ葉酸還元酵素欠損株に形質転換し。In addition, in this Example 1, pSD(x)/BUF −
The 3 plasmids were previously transformed into a Chinese hamster opaline dihydrofolate reductase-deficient strain.
BUF−3を産生ずる形質転換株を分離し死後に浮遊攪
拌培養に4した株を分離する方法について述べる。A method for isolating a transformed strain that produces BUF-3, which was then subjected to suspension agitation culture after death, will be described.
プラスミドp8Dcx)/BUF−310ttiを−+
りンン人ゝクムソン#焚・法でマウスCHO細胞にトラ
ンスフェクシ、ンした。導入後はlO%仔牛血清を含む
所定の選択培地(GIBCO社製α一部M培地CAT4
10−2000 、核酸類を含まない)5%CO2存在
下、37℃で選択を行ない、3日毎に培地換えを行った
。Plasmid p8Dcx)/BUF-310tti-+
Transfection was carried out into mouse CHO cells using the phosphorescent method. After the introduction, a predetermined selective medium containing 1O% calf serum (α part M medium CAT4 manufactured by GIBCO) was used.
Selection was carried out at 37°C in the presence of 5% CO2 (10-2000, without nucleic acids), and the medium was replaced every 3 days.
約2週間後に生育してくる細胞集団が得られた( IF
O50125)。次に導入されたプラスミドのコピー数
を増加させてやるためにdhfrの拮抗剤であるメント
レキセー)(0,1μM)含む選択培地で培養し耐性細
胞を得た。そして順次メントレキセート濃度を0.2μ
M、0.4μM、1μM、2μM、4μMで上昇させ種
々の段階での耐性コロニーを得た。A cell population that grew after about 2 weeks was obtained (IF
O50125). Next, in order to increase the copy number of the introduced plasmid, resistant cells were obtained by culturing in a selective medium containing 0.1 μM of dhfr antagonist Mentorex. and sequentially increase the mentrexate concentration to 0.2μ
M, 0.4 μM, 1 μM, 2 μM, and 4 μM to obtain resistant colonies at various stages.
そして各メントレキセート濃度で耐性を示す形質転換細
胞が産生ずるBUF−3蛋白量をフレンド細胞を用いた
ヘモグロビン合成量で測定したところ。The amount of BUF-3 protein produced by transformed cells showing resistance at each concentration of mentrexate was measured by the amount of hemoglobin synthesized using Friend cells.
メントレキセート4μMa度に耐性であった形質転換細
胞では、2000U/ゴの濃度のBUF−3を3日間で
蓄積していた。これは、蛋白量換算にすると1μ、9
/mjの濃度に相当するBUF−3を生産していた。Transformed cells that were resistant to 4 μMa of mentrexate accumulated BUF-3 at a concentration of 2000 U/G over 3 days. This is 1 μ, 9 when converted to protein amount.
BUF-3 was produced at a concentration of /mj.
次に、付着状態で生育する形質転換細胞(4μMメント
レキセート耐性2000 U /1)Lt/ 3 da
ys )より浮遊化に適した細胞(CHO−5USP
) (IFO50146)を以下の様にして分離した。Next, transformed cells growing in an adherent state (4 μM mentrexate resistant 2000 U/1) Lt/3 da
ys ) cells more suitable for suspension (CHO-5USP
) (IFO50146) was separated as follows.
4μMメントレキセート耐性細胞を細胞培養用プラスチ
ックフラスコF−75(Nuwa社製A156502
)に301)1)7のio%仔牛血清を含む選択培地(
4μMメントレキセートを含む)を入れ、lXl06個
の細胞を添加し、5%CO2存在下、37℃で培養した
。先金に生育した後引待細胞を集め、全容400dスピ
ンナーフラスコに10%血清を含む100−培地(GI
BCO社製α−MEM培地CAT410−1900 、
上記選択培地に核酸添加したもの。)を張った。次に4
X10’個/mjPcなるように本細胞を培地に懸濁し
死後、攪拌培養を行ない37℃で培養し虎。8日間培養
した後に。Cells resistant to 4 μM mentrexate were placed in a plastic flask F-75 for cell culture (A156502 manufactured by Nuwa).
301) 1) Selective medium containing 7 io% calf serum (
(containing 4 μM mentrexate), 1×10 6 cells were added, and cultured at 37° C. in the presence of 5% CO 2 . Collect the harvested cells after they have grown and place them in a 400D spinner flask containing 100-medium (GI) containing 10% serum.
BCO α-MEM medium CAT410-1900,
Nucleic acid added to the above selection medium. ). Next 4
The cells were suspended in a medium at a concentration of X10' cells/mjPc, and after death, cultured with agitation at 37°C. After culturing for 8 days.
最大m胞’llj度8.8X1 o’4R/ml 、
tft代時M 192 fI間以上を示した(表−1参
)。そして更に8日間の培養をくり返し行なうことで4
週間後には、最大細胞密度2.6X105個7ml、世
代時間87 hrgの細胞が得られた(表−1参)。セ
して次に細胞初期密度1×10個/ mlで培養をくり
返すことで、世代時間48 hra 、 最大細胞密度
7.8X105個/Mと良好に生育する株、即ちCHO
−8USP (IFO−50146)が得られた(表−
1参)。Maximum m cell 'llj degree 8.8X1 o'4R/ml,
tft epoch M 192 fI or more (see Table 1). Then, by repeating the culture for another 8 days, 4
After a week, cells with a maximum cell density of 2.6×10 5 cells in 7 ml and a generation time of 87 hrg were obtained (see Table 1). By repeating the culture at an initial cell density of 1 x 10 cells/ml, we obtained a strain that grows well with a generation time of 48 hr and a maximum cell density of 7.8 x 10 cells/M, namely CHO.
-8USP (IFO-50146) was obtained (Table-
1).
表−1
Cslls (4v+e*ks ) 2.6 X
10587Cel1m(10weeks) 7.
8 X 10548このようにして得られたCHO−8
USP株(IFO50146)は、安定にBUF −3
を培地中に8000U/屑6蓄積していた。ナしてCH
O−5USP株は、同様の培養を20サイクルくり返し
行ったが1世代時間、最大細胞密度BUF−3蓄積量に
は変化はなく、安定な生育。Table-1 Cslls (4v+e*ks) 2.6 X
10587Cel1m (10weeks) 7.
8 X 10548 CHO-8 thus obtained
USP strain (IFO50146) has a stable BUF -3
8000 U/6 pieces of debris were accumulated in the medium. Na then CH
The O-5USP strain was cultured in the same manner for 20 cycles, but there was no change in the maximum cell density and BUF-3 accumulation after one generation, and the growth was stable.
BUF −3生産量を示した(第3図)。BUF-3 production amount is shown (Figure 3).
更にこのCHO−8USP株(rpo 50146 )
は、−1を7.0、溶存酸素を0.05 、0.015
atm K正確にコントロールされた培養系では世代
時間は、24hrsとなり、最大細胞密度は1.0X1
06f固/lnl iCまで達した。Furthermore, this CHO-8USP strain (rpo 50146)
-1 is 7.0, dissolved oxygen is 0.05, 0.015
Atm K precisely controlled culture system has a generation time of 24hrs and a maximum cell density of 1.0X1.
It reached 06f hard/lnl iC.
このようにして得られた浮遊攪拌培養に通した細胞を分
離することでBUF−3の大量生産が容易となった。Mass production of BUF-3 became easy by separating the cells passed through the suspension agitation culture thus obtained.
尚、 BUF−3の単離精製は特開昭62−23049
7号公報に従って行った。即ち、 BUF−3を含む培
養液100m/を、65%飽和の硫安で5℃、12時間
塩析した。遠心分離によシ得られた塩析沈殿物を50m
M)リス−塩酸緩衝液(PH7,8) 2.5m1K溶
解し、透析チューブ(スイクトロボア社製。The isolation and purification of BUF-3 was described in JP-A No. 62-23049.
It was carried out according to Publication No. 7. That is, 100 m of the culture solution containing BUF-3 was salted out with 65% saturated ammonium sulfate at 5°C for 12 hours. The salted-out precipitate obtained by centrifugation was
M) Lis-hydrochloric acid buffer (PH7,8) 2.5ml 1K dissolved in dialysis tube (manufactured by Swiktrobore).
cyrw6.ooo−s、ooo )を用い、5Cで充
分透析した。cyrw6. ooo-s, ooo) and was thoroughly dialyzed at 5C.
し、23℃で30分間、攪拌させた。次に、この懸濁液
を遠心分離し、その遠心上清液を室温23℃から一5℃
に冷却した状態で3時間以上静置させた。これKよ91
本液は二相分離をおこした。The mixture was stirred at 23° C. for 30 minutes. Next, this suspension was centrifuged, and the centrifuged supernatant was collected from room temperature of 23°C to -5°C.
It was left to stand for 3 hours or more in a cooled state. This is K91
This liquid caused two-phase separation.
その際、 BUF−3は1選択的に下層画分(アセ)=
トリル約45%)に濃縮・精製された。これを0.1%
TFAで2倍希釈し、逆相高速液体クロマトグラフィー
で精製した。逆相カラムは、ハイ♂アRP−304(バ
イオラッド社製、C4,300X、5μm)を用いた。At that time, BUF-3 selectively lowers the lower fraction (acetate) =
It was concentrated and purified to about 45% tolyl. This is 0.1%
It was diluted 2 times with TFA and purified by reverse phase high performance liquid chromatography. As a reversed phase column, Hi-A RP-304 (manufactured by Bio-Rad, C4, 300X, 5 μm) was used.
溶媒は、0.1%忙ナテ大はj4旨ト’ TFA・及び
、80%アセトニトリル−0,1%に丁FA
伸六に一曇酢1の2液を用い、リニアグラジェントプロ
グラムで溶出させた。The solvents were 0.1% TFA, 80% acetonitrile, 0.1% TFA, and 1 part cloud vinegar, and eluted with a linear gradient program. Ta.
次に、この溶出され九BUF−3画分を、再度、逆相高
速液体クロマトグラフィーを行った。カラムは、ハイ〆
アRP−304(バイオラッド社ff1c4゜3001
、5 pm )を用いた。Next, this eluted nine BUF-3 fraction was again subjected to reverse phase high performance liquid chromatography. The column was Hi〆A RP-304 (Bio-Rad ff1c4゜3001
, 5 pm) was used.
溶Ktd、o、13%へブタフルオロ酪酸(HFBA
)及び80%アセトニトリル−0,13%へブタフルオ
ロ酪酸の2液を用い、リニアグラツエントゲログラムで
溶出させた。Soluble Ktd, o, 13% hebutafluorobutyric acid (HFBA
) and 80% acetonitrile-0.13% butafluorobutyric acid, and elution was performed using a linear gradient gelogram.
次に、このようにして得られ九BUF−3精製品のうち
1μIを用い8D8ポリアクリルアミドゲル電気泳動(
rル濃度15%)を行った。その結果、メルカプトエタ
ノール非存在下では25kdに、メルカグトエタノール
存在下では16kdに単一なバンド(銀染色法)が認め
られ、他に蛋白のバンドは検出されなかった。このよう
Kして精製されたサングルの比活性は約2X10 U
/ダ蛋白であった。Next, 8D8 polyacrylamide gel electrophoresis (
(concentration 15%) was carried out. As a result, a single band (silver staining method) was observed at 25 kd in the absence of mercaptoethanol and at 16 kd in the presence of mercaptoethanol, and no other protein bands were detected. The specific activity of the sample purified in this way is approximately 2×10 U.
/ It was a protein.
更に、この1m品を逆相高速液体クロマトグラフィーに
供した。この時、用いたカラムはMMCト(アセトニト
リル1%分)にょシ溶出した。Furthermore, this 1 m product was subjected to reverse phase high performance liquid chromatography. At this time, the column used was eluted with MMC (1% acetonitrile).
これにより完全に単一なピークが得られることにより完
全にBUF−3は単離精製し得た。As a result, a completely single peak was obtained, and BUF-3 could be completely isolated and purified.
尚、念の為に得られ九BUF−3精製テンプルをアミノ
酸分析に供したところ、第1図と同じアミノ償配列を有
していることを確認した。As a precaution, the nine-BUF-3 purified temple was subjected to amino acid analysis, and it was confirmed that it had the same amino acid sequence as shown in Figure 1.
実施例2
ヒト・インターロイキン−2にっbで
ヒト・インターロイキン−2(IL−2) l’i、
T細胞の増殖を促進させる蛋白性因子である。Example 2 Human interleukin-2 b, human interleukin-2 (IL-2) l'i,
It is a protein factor that promotes the proliferation of T cells.
IL−2遺伝子は、呑口ら(Nature、 302.
305(1983) ) Kよって既にクローニングさ
れている。The IL-2 gene was described by Nobokuchi et al. (Nature, 302.
305 (1983)) has already been cloned by K.
また第4図に示すようにその塩基配列も既に決定されて
いる(特開昭59−140882 )。コ(7) IL
−2c DNAは、 pcEIL−2に含まれている(
第5図)。以下第5図に示すような操作を行なりた。こ
のIL−2eDNAは両端に数十塩基の長さに及ぶGC
テイルを有している。このGあるいはCという同一の塩
基が並んだ場合、 cDNAの発現の邪魔になると考え
られ九、し九がりてpcEfL−2よシ制隈酵素Pgt
l(宝酒造)処理によj) IL−2eDNA 7ラグ
メントを分離し、それにエクソヌクレアーゼであるBa
131(NIB)処理を行ない、GCテイルの除去を行
なった。そして* T4 DNA polym@ras
* (宝酒造)で両末端を平滑末端にした後、pCEI
L−2よ、9Pstl処理をしてIL−2cDNAを除
いたフラグメントも同様にT4 DNApolym@r
aa*で平滑末端KL、両者をT4 DNllllas
・(宝酒造)で結合した。そして1炸裂されたプラスミ
ドを大腸I H8101株に導入した後、得られた形質
転換株より、プラスミドを調製した。Moreover, as shown in FIG. 4, its nucleotide sequence has already been determined (Japanese Patent Application Laid-Open No. 140882/1982). Ko (7) IL
-2c DNA is contained in pcEIL-2 (
Figure 5). The following operations were performed as shown in FIG. This IL-2eDNA has several dozen bases of GC on both ends.
It has a tail. If these identical bases, G or C, line up, it is thought that it will interfere with the expression of cDNA.
(Takara Shuzo) treatment to separate 7 IL-2eDNA fragments, which were treated with Ba, an exonuclease.
131 (NIB) processing was performed to remove GC tails. And * T4 DNA polym@ras
* After making both ends blunt with (Takara Shuzo), pCEI
L-2, the fragment from which IL-2 cDNA was removed by 9Pstl treatment is also T4 DNApolym@r
blunt-ended KL with aa*, both with T4 DNllllas
- Combined with (Takara Shuzo). After introducing the exploded plasmid into the colon IH8101 strain, a plasmid was prepared from the resulting transformed strain.
得うれたプラスミドの中で、 GCテイルが除かれ発現
効率の高まりたものを選択し、このプラスミドをpCE
IL−2(Bat 7 )と名つけた。Among the obtained plasmids, one with the GC tail removed and the expression efficiency increased was selected, and this plasmid was transformed into pCE.
It was named IL-2 (Bat 7).
pCEルー2 (Bal 7 )からは制限酵素B息吐
■(宝酒造)処理によp IL−2eDNAフラグメン
トを分離し、 T4 DNA polymsraseに
よって平滑末端にし。The pIL-2e DNA fragment was isolated from pCE-2 (Bal 7 ) by restriction enzyme treatment with B (Takara Shuzo), and the fragments were made blunt-ended with T4 DNA polymrase.
さらK Barr+H(、H4ndmの各リンカ−(宝
酒造)と共にT4 DNA llgaa・処理を行ない
、その後、BamHl 、 Hlndll (宝酒造)
処理を行なった。このようにして得られた7ラグメント
を次に、pSV2−dhfr (S、Subraman
l、 at at、 : Mo1. Cs1). Bi
ol。Furthermore, T4 DNA llgaa treatment was performed with each linker (Takara Shuzo) of K Barr + H (, H4ndm), and then BamHl, Hlndll (Takara Shuzo)
processed. The 7 fragments thus obtained were then transformed into pSV2-dhfr (S, Subraman
l, at at, : Mo1. Cs1). Bi
ol.
1.854(1981))のHlnd m 、 Bgl
M 処理して得られる大きい方の断片と結合し、大腸
菌DHI株に形質転換し、その中から、第5図のpsV
2−IL2を有するものを得る。すなわち、 psV2
−dhfr由来のSV40初期グロモーター(SV40
@arly promoter )とSV40 スゲ
ライ’/7グシグナk (SV40 spliting
& polyA )との間K IL−2cDNAが挿入
されたものを得る。次に?ニー(DpSV2−LL−2
プラスミドをPvull。1.854 (1981)) Hlnd m, Bgl
The larger fragment obtained by M treatment was combined and transformed into Escherichia coli DHI strain, from which the psV shown in Figure 5 was
2-obtain one with IL2. That is, psV2
-dhfr derived SV40 early glomotor (SV40
@early promoter) and SV40 Sugerai'/7 Gusigna k (SV40 spliting
& polyA) in which K IL-2 cDNA is inserted. next? knee (DpSV2-LL-2
Pvull the plasmid.
BamHI処理して得られるIL−2aDNAを含んだ
フラグメントにBamHIリンカ−をつけ、llamH
1処理した後に、 psV2 dhfrのBamHl切
断部位に挿入し。A BamHI linker was added to the fragment containing IL-2a DNA obtained by BamHI treatment, and llamH
After 1 treatment, it was inserted into the BamHl cleavage site of psV2 dhfr.
グラx ミドpSD(1)/n、−zΔSV4o初期グ
ロモーター−d h f r 遺伝子SV40スプライ
シングシグナル−SV40初期プロモーターー In、
−2をコードする遺伝子−SV40スプライシングシグ
ナルを得た。このプラスミド1)SD(1)/IL−2
はIL−2cDNAの上流にpsV2−dhfr由来の
マウスdhfr cDNAを有している。gramxmid pSD(1)/n, -zΔSV4o early glomotor-d h fr gene SV40 splicing signal-SV40 early promoter In,
Gene-SV40 splicing signal encoding gene-2 was obtained. This plasmid 1) SD(1)/IL-2
has mouse dhfr cDNA derived from psV2-dhfr upstream of IL-2 cDNA.
プラスミドpSDI / IL−2をCHOdhfr−
細胞にカルシウム・リン酸法でトランス7エクシ、ンし
、pSDI/IL−2プラスミドが導入された形質転換
細胞を分離した。導入直後では、 22.9 U/TL
tのヒト!L−2を生産していた。次に本細胞をMTX
1μMを含む培地で生育させMTX耐性細胞を分離し
た。CHOdhfr-plasmid pSDI/IL-2
The cells were transfected with the calcium phosphate method, and transformed cells into which the pSDI/IL-2 plasmid had been introduced were isolated. Immediately after introduction, 22.9 U/TL
T's human! It was producing L-2. Next, MTX the cells
MTX-resistant cells were isolated by growing in a medium containing 1 μM.
1 pMMTX耐性形質転換細胞は、 512 U/m
lのヒトIL−2を生産していた。次に本細胞より浮遊
攪拌培養に適した細胞の分離を行った。1μM MTX
耐性形質転換細胞を支持体の上で生育させた後。1 pMMTX resistant transformed cells are 512 U/m
1 of human IL-2. Next, cells suitable for suspension agitation culture were isolated from these cells. 1 μM MTX
After growing the resistant transformed cells on the support.
細胞初期密度4×10 個/MKなる様に攪拌基の付い
九スピンナーフラスコ全容400rntの1001を培
地(実施例1で示した核酸を有する培地)に懸濁した。A total of 400 rnt in nine spinner flasks equipped with a stirring base was suspended in a medium (medium containing the nucleic acid shown in Example 1) so that the initial cell density was 4 x 10 cells/MK.
そして、37℃で攪拌培養し、細胞密度が最大に達する
まで培養をつづけ、この攪拌培養を8サイクルくシ返す
ことで最大細胞密度2.9×10548/Ill 、世
代時間80時間となり、そして更に6サイクルくり返す
ことで最大細胞密度6.8×105個/コ、世代時間3
0時間を有する浮遊攪拌に1した細胞が分離された。そ
して、このようにして得られた浮遊攪拌に適した細胞は
、安定にヒトIL−2生産能力を有していた。また、実
施例1で示したように、得られた浮遊攪拌に適した細胞
を以後、くり返し継代をつづけても、世代時間。Then, agitation culture was carried out at 37°C, and culture was continued until the cell density reached the maximum. By repeating this agitation culture for 8 cycles, the maximum cell density was 2.9 x 10548/Ill, and the generation time was 80 hours. By repeating 6 cycles, the maximum cell density is 6.8 x 105 cells/cell, generation time 3
Cells were separated by suspension agitation for 0 hours. The cells thus obtained, which were suitable for floating agitation, had the ability to stably produce human IL-2. Furthermore, as shown in Example 1, even if the obtained cells suitable for floating agitation are repeatedly passaged, the generation time will be shortened.
最大細胞密度、ヒトIL−2生産能力を安定に保持して
いた。Maximum cell density and human IL-2 production ability were stably maintained.
実施例3
(1) BSF−2は、ヒトの、成熟B細胞を抗体産
生細胞へ分化される因子で、第6図に示すようにそのD
NA配列及びアミノ酸配列も既に決定されている(特開
昭63−42688.特開昭63−56291 )。Example 3 (1) BSF-2 is a factor that differentiates human mature B cells into antibody-producing cells, and its D
The NA sequence and amino acid sequence have also been determined (Japanese Patent Application Laid-open Nos. 63-42688 and 63-56291).
またBSF−2は感染症及び癌の治療に有用であること
も本発明者らは見い出している(特願昭62−2890
07 )。The present inventors have also discovered that BSF-2 is useful for the treatment of infectious diseases and cancer (Japanese Patent Application No. 62-2890
07).
さて、このような有用なり5F−2をコードする遺伝子
をハムスターCIO細胞におhて発現させる為に、以下
のようにプラスミドpSD(x)/ BSF−2を構築
した。Now, in order to express such a useful gene encoding 5F-2 in hamster CIO cells, plasmid pSD(x)/BSF-2 was constructed as follows.
1)まずpCDaを制限酵素Hp藤1で切断し、アガロ
ースゲル電気泳動により大きなりNA断片を回収した(
第7図)。1) First, pCDa was cut with the restriction enzyme Hpto1, and large NA fragments were collected by agarose gel electrophoresis (
Figure 7).
ij) BSF−Z eDNAを有するプラスミドp
BSF2−38(T、 Hlrano atml、 N
ature 324e 73(1986) ) f制限
酵素BamHIとB&%■で切断し、 DNAポリメ
ラーゼ処理した後、アガロースゲル電気泳動によりBS
F−2cDNAを含む断片を回収した(第7図)。ij) Plasmid p carrying BSF-Z eDNA
BSF2-38 (T, Hlrano atml, N
ature 324e 73 (1986)) After cutting with restriction enzymes BamHI and B&%■, treating with DNA polymerase, BS was analyzed by agarose gel electrophoresis.
A fragment containing F-2 cDNA was recovered (Figure 7).
1ii) i)と1))で得られた2種類のDNA断
片全T4 DNA りガーゼを用いて結合させた(第7
図)。1ii) The two types of DNA fragments obtained in i) and 1)) were combined using total T4 DNA ligase (7th
figure).
得られ次組み換えDNAを大腸菌H8101株へ導入し
アンピシリン抵抗性を有する株を選択し之。得られた株
からプラスミドDNAを得て制限酵51Cよる切断試験
を行なうことによりpcD BSF−2と護持する菌を
選定した。The obtained recombinant DNA was then introduced into Escherichia coli strain H8101, and strains resistant to ampicillin were selected. Plasmid DNA was obtained from the resulting strain and subjected to a restriction enzyme 51C cleavage test to select bacteria that harbor pcD BSF-2.
IV)77−ノDNAλBSF 2.5 (T、HIr
ano at alNature 324.73. (
1986)) f EcoRiで切断し、アガロースゲ
ル電気泳動によりBSF−Z eDNAを含む最も小さ
な断片を回収した(第7図)。IV) 77-DNAλBSF 2.5 (T, HIr
ano at alNature 324.73. (
(1986)) f EcoRi, and the smallest fragment containing BSF-Z eDNA was recovered by agarose gel electrophoresis (Fig. 7).
■)プラスミドpSP 65 (アマジャム社製)を制
限酵素HeoRIで切断した後、これをIいで精製した
DNA断片とT4 DNAリガーゼを用いて結合させた
(第7図)。得られた組換えDNAを大腸!¥I(81
01株へ導入しアンピシリン抵抗性を有する株を選択し
た。得られた株からプラスミドDNAを得て制限酵素に
よる切断試験を行なうことによりpBSF’2−108
6を保持する菌を選定した。(2) Plasmid pSP 65 (manufactured by Amajam) was cut with the restriction enzyme HeoRI, and then ligated to the DNA fragment purified with I using T4 DNA ligase (Figure 7). The obtained recombinant DNA is used in the large intestine! ¥I (81
01 strain, and a strain having ampicillin resistance was selected. Plasmid DNA was obtained from the resulting strain, and pBSF'2-108 was obtained by performing a restriction enzyme cleavage test.
6 was selected.
vi) 上述の1ii)で得たプラスミドpCD B
SF−2を制限酵素XholとXba[で切断し、アガ
ロースゲル電気泳動により小さな断片を回収した(第8
図)。vi) Plasmid pCDB obtained in 1ii) above
SF-2 was cut with restriction enzymes Xhol and Xba[, and small fragments were collected by agarose gel electrophoresis (No. 8
figure).
vIO上述のいで得たシラスミドpBsF2−1086
を制限酵素Sma lで切断した後、 T4 DNAリ
ガーゼを用いてXhol リンカ−を結合し、さらに
制限酵素Xho IとXbalを切断してアガロースゲ
ル電気泳動によりBSF−2eDNAの後半部分を含む
断片を回収した(第8図)。Cilasmid pBsF2-1086 obtained from vIO above
After cleaving with the restriction enzyme SmaI, an Xhol linker was ligated using T4 DNA ligase, and further cleavage with the restriction enzymes XhoI and Xbal was performed, and a fragment containing the latter half of BSF-2e DNA was recovered by agarose gel electrophoresis. (Figure 8).
vin) プラスミドPAD(りを制限酵素Xbol
で切断した後、この断片とvl)で得た断片及びvi
i)で得九断片の3者をT4 DNA !Jガーゼを用
いて結合させた(第8図)。即ち、!ラスミドpSD(
x) / BSF−2ΔSV40初期プロモーターーd
hfr遺伝子−SV40スプライシングシグナル−SV
40初期7’a−v−−ターーBSF−2をコードする
遺伝子−SV40スプライシングシグナルを構築した。vin) Plasmid PAD (restriction enzyme Xbol
This fragment and the fragment obtained in vl) and vi
i) T4 DNA with 3 of 9 fragments! They were bound using J gauze (Fig. 8). That is,! Lasmid pSD (
x) / BSF-2ΔSV40 early promoter d
hfr gene-SV40 splicing signal-SV
The gene encoding the 40 early 7'a-v-ter-BSF-2-SV40 splicing signal was constructed.
この構築したプラスミドを大腸菌H8101株へ導入し
、アンピシリン抵抗性を有する株を選択した。得られた
株からシラスミドDNAを調製し、制限酵素による切断
試験を行ったことによりプラスミドpSD(x)/BS
F−2を保持する株を選定した。This constructed plasmid was introduced into Escherichia coli strain H8101, and a strain having ampicillin resistance was selected. Cilasmid DNA was prepared from the obtained strain, and a restriction enzyme cleavage test was performed to determine the plasmid pSD(x)/BS.
A strain carrying F-2 was selected.
(2; プラスミドpSD(x)/ BSF−2をカ
)Vンウムリン敞法により、実施例IK従ってノ・ムス
ターCHO細胞に導入し、核酸非要求株を選択した。そ
の培養上清をELISA法により測定し念ところ、10
0U/IILlのBSF−2活性を示した。(2) Plasmid pSD(x)/BSF-2 was introduced into No. Muster CHO cells according to Example IK by the VNumlin method, and a nucleic acid non-requiring strain was selected. The culture supernatant was measured by ELISA method, and it was found that 10
It showed a BSF-2 activity of 0 U/IILl.
(3)(2)で得られたCHO細胞株をlXl0 M
メントレキセート(MTX )を含む培地で培養したと
ころ、培養上清中のBSF−2活性は200U/dに上
昇した。また、さらにI X 10 M MTXを含
む培地で培養したところ、BSF−2活性は800U/
1)7に上昇した。(3) CHO cell line obtained in (2) at 1X10 M
When cultured in a medium containing mentrexate (MTX), BSF-2 activity in the culture supernatant increased to 200 U/d. Furthermore, when cultured in a medium containing I x 10M MTX, the BSF-2 activity was 800U/
1) It rose to 7.
800 U/yilのBSF−2活性を有する細胞が得
られましたが1本細胞が付着細胞であるため浮遊かくは
ん培養に適した細胞の分離を行った。Cells with BSF-2 activity of 800 U/yil were obtained, but since one cell was an adherent cell, cells suitable for floating agitation culture were separated.
BSF−2活性800U/17の細胞を初期細胞密度4
XIO’/―で500M容量のスピンナーフラスコで培
養温度は37℃1回転速度100 rpmの8日間の培
養を行つた。この培養を9サイクル行ったところ、培養
初期では最大細胞密度が7XIO’/I1)であったも
のが3×105/mノと上昇し1世代時間も初期では1
30時間以上でありたが56時間と上昇した。Cells with BSF-2 activity of 800 U/17 were placed at an initial cell density of 4.
Culture was carried out for 8 days at a culture temperature of 37° C. and a rotation speed of 100 rpm in a spinner flask with a capacity of 500 M using XIO'/-. When this culture was performed for 9 cycles, the maximum cell density was 7XIO'/I1) at the initial stage of culture, but it increased to 3x105/m2, and the 1 generation time was 1XIO'/I1) at the initial stage.
It was more than 30 hours, but it increased to 56 hours.
更に、初期細胞密度をI X 105/−とし、4日間
の培養を6サイクル繰シ返した。この結果、最終的に世
代時間30時間、最大細胞密度6X105/mjと生育
の良い細胞CHO−BSF2 (FEBM P−997
0)を得た。この様に浮遊かくはん培養に適した細胞(
FERMP−9970)が得られたがBSF −2生産
能は安定に保持されていた。Further, the initial cell density was set to I x 105/-, and the 4-day culture was repeated for 6 cycles. As a result, the final generation time was 30 hours, the maximum cell density was 6X105/mj, and cells with good growth were CHO-BSF2 (FEBM P-997
0) was obtained. In this way, cells suitable for suspension agitation culture (
FERMP-9970) was obtained, but the BSF-2 production ability was stably maintained.
B19F−2ユニツトは、 I X 10’/R1のS
K%V−a14細胞においてIgM産生を最大の50%
だけ誘導する活性をIUと定義する。B19F-2 unit is I
K%IgM production in V-a14 cells to 50% of maximum
The activity that induces only IU is defined as IU.
効果
従来CHOdhfr″″細胞はBUF−3,IL−2,
BSF’−2等の各種生理活性タンteり質の生産には
適しているが、浮遊攪拌培養ができない為に目的とする
生理活性タンノ苧り質を大量に生産することはできなか
りた。しかし1本発明の方法を用いるとCHOdhfr
’細胞での浮遊攪拌培養が可能となり、それ故、目的と
する生理活性タンノ母り質を極めて大量に生産し得るこ
とができる。Effect Conventional CHOdhfr'' cells have BUF-3, IL-2,
Although it is suitable for producing various bioactive tannins such as BSF'-2, it has not been possible to produce large quantities of the desired bioactive tannins because floating agitation culture is not possible. However, using the method of the present invention, CHOdhfr
'It becomes possible to carry out suspension agitation culture of cells, and therefore it is possible to produce extremely large quantities of the target bioactive tanno-matrix.
第1図はヒト分化誘導因子BUF−3のアミノ酸配列及
びそれをコードする塩基配列を示す。
第2図はプラスミドpSD(x)/ BUF −3の構
築図である。
第3図は得られた〇HO−5USP株のEDF生産能及
び生育の安定性を示し次回である。
第4図はヒトインターロイキ/2のアミノ酸配列及びそ
れをコードする塩基配列を示す。
第5図はプラスミドLPSDI / IL−2の構築図
である。
第6図はヒトB細胞分化因子のアミノ酸配列及びそれを
コードする塩基配列を示す。
第7図はプラスミドpcD BSF−2及びプラスミド
pBsF2−1086の構築図を示す。
第8図はプラスミドpSD(x)/BSF−2の構築図
を示す。FIG. 1 shows the amino acid sequence of human differentiation-inducing factor BUF-3 and the nucleotide sequence encoding it. FIG. 2 is a construction diagram of plasmid pSD(x)/BUF-3. Figure 3 shows the EDF production ability and growth stability of the obtained 〇HO-5USP strain. FIG. 4 shows the amino acid sequence of human interleukin/2 and the nucleotide sequence encoding it. FIG. 5 is a diagram of the construction of plasmid LPSDI/IL-2. FIG. 6 shows the amino acid sequence of human B cell differentiation factor and the nucleotide sequence encoding it. FIG. 7 shows construction diagrams of plasmid pcD BSF-2 and plasmid pBsF2-1086. FIG. 8 shows a construction diagram of plasmid pSD(x)/BSF-2.
Claims (5)
ドロ葉酸還元酵素(以下dhfrとする。)遺伝子を発
現可能な状態で有するプラスミドをチャイニーズ・ハム
スターオバリージヒドロ葉酸還元酵素欠損株(CHOd
hfr^−)細胞に形質転換して得られた細胞を浮遊攪
拌培養し、培養液中に目的生理活性タンパク質を生産さ
せ、そして目的生理活性タンパク質を収得することを特
徴とする生理活性タンパク質の製造法。(1) A plasmid containing a gene encoding a physiologically active protein and a dihydrofolate reductase (hereinafter referred to as dhfr) gene in an expressible state is introduced into a Chinese hamster overly dihydrofolate reductase-deficient strain (CHOd).
Production of a physiologically active protein, which is characterized in that the cells obtained by transforming the hfr^-) cells are subjected to floating agitation culture, the desired physiologically active protein is produced in the culture solution, and the desired physiologically active protein is obtained. Law.
3(以下BUF−3とする)、ヒトインターロイキン2
(以下IL−2とする)、及びヒトB細胞分化因子(以
下BSF−2とする)のいずれかである請求項(1)記
載の製造法。(2) The physiologically active protein is human differentiation factor BUF-
3 (hereinafter referred to as BUF-3), human interleukin 2
(hereinafter referred to as IL-2), and human B cell differentiation factor (hereinafter referred to as BSF-2).
0初期プロモーター−BUF−3をコードする遺伝子−
SV40スプライシングシグナル−SV40初期プロモ
ーター−ジヒドロ葉酸還元酵素(以下dhfrとする)
遺伝子−SV40スプライシングシグナルである請求項
(1)記載の製造法。(3) The plasmid is pSD(x)/BUF-3ΔSV4
0 early promoter - gene encoding BUF-3 -
SV40 splicing signal - SV40 early promoter - dihydrofolate reductase (hereinafter referred to as dhfr)
The production method according to claim (1), wherein the gene-SV40 splicing signal is used.
0初期プロモーター−dhfに遺伝子−SV40スプラ
イシングシグナル−SV40初期プロモーター−BSF
−2をコードする遺伝子−SV40スプライシングシグ
ナルである請求項(1)記載の製造法。(4) The plasmid is pSD(x)/BSF-2ΔSV4
0 early promoter - dhf gene - SV40 splicing signal - SV40 early promoter - BSF
The production method according to claim (1), wherein the gene encoding -2 is a splicing signal of SV40.
初期プロモーター−dhfに遺伝子−SV40スプライ
シングシグナル−SV40初期プロモーター−IL−2
をコードする遺伝子−SV40スプライシングシグナル
である請求項(1)記載の製造法。(5) The plasmid is pSD(I)/IL-2ΔSV40
Early promoter-dhf gene-SV40 splicing signal-SV40 early promoter-IL-2
The production method according to claim (1), wherein the gene encoding the SV40 splicing signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63170142A JP2576200B2 (en) | 1988-03-09 | 1988-07-08 | Method for producing bioactive protein |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5527088 | 1988-03-09 | ||
JP63-55270 | 1988-03-09 | ||
JP63170142A JP2576200B2 (en) | 1988-03-09 | 1988-07-08 | Method for producing bioactive protein |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH029388A true JPH029388A (en) | 1990-01-12 |
JP2576200B2 JP2576200B2 (en) | 1997-01-29 |
Family
ID=26396169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63170142A Expired - Lifetime JP2576200B2 (en) | 1988-03-09 | 1988-07-08 | Method for producing bioactive protein |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2576200B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170020486A (en) | 2014-06-26 | 2017-02-22 | 니폰 제온 가부시키가이샤 | Method for culturing adhesive cells, culture vessel, and method for producing protein |
WO2017104821A1 (en) | 2015-12-18 | 2017-06-22 | 日本ゼオン株式会社 | Method for preparing adherent-type cells acclimated to suspension culture, method for inducing epithelial-mesenchymal transition in adherent-type epithelial cells, and use for methods |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0093619A1 (en) * | 1982-05-05 | 1983-11-09 | Genentech, Inc. | Human tissue plasminogen activator, pharmaceutical compositions containing it, processes for making it, and DNA and transformed cell intermediates therefor |
JPS5942321A (en) * | 1982-05-05 | 1984-03-08 | ジエネンテツク・インコ−ポレイテツド | Human tissue plasminogen activating factor |
JPS59140882A (en) * | 1982-12-24 | 1984-08-13 | Japan Found Cancer | Gene |
JPS59173096A (en) * | 1983-01-19 | 1984-09-29 | ジエネンテツク・インコーポレイテツド | Polycistrone developing vector structure |
JPS62234097A (en) * | 1985-12-18 | 1987-10-14 | Ajinomoto Co Inc | Human differentiation-inducing factor buf-3 |
JPS62289600A (en) * | 1986-02-18 | 1987-12-16 | Kanegafuchi Chem Ind Co Ltd | Interferon-gamma and production thereof |
JPS6332484A (en) * | 1986-06-06 | 1988-02-12 | ジエネンテク,インコ−ポレイテツド | Propduction of biologically active plasminogen activated factor |
JPS6342688A (en) * | 1986-08-06 | 1988-02-23 | Chuzo Kishimoto | Recombinant bcdf |
JPS63196268A (en) * | 1987-02-10 | 1988-08-15 | Kanegafuchi Chem Ind Co Ltd | Transformant cell capable of being subjected to passage multiplication in serum-free medium, breeding thereof and production of protein by said cell |
-
1988
- 1988-07-08 JP JP63170142A patent/JP2576200B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0093619A1 (en) * | 1982-05-05 | 1983-11-09 | Genentech, Inc. | Human tissue plasminogen activator, pharmaceutical compositions containing it, processes for making it, and DNA and transformed cell intermediates therefor |
JPS5942321A (en) * | 1982-05-05 | 1984-03-08 | ジエネンテツク・インコ−ポレイテツド | Human tissue plasminogen activating factor |
JPS59140882A (en) * | 1982-12-24 | 1984-08-13 | Japan Found Cancer | Gene |
JPS59173096A (en) * | 1983-01-19 | 1984-09-29 | ジエネンテツク・インコーポレイテツド | Polycistrone developing vector structure |
JPS62234097A (en) * | 1985-12-18 | 1987-10-14 | Ajinomoto Co Inc | Human differentiation-inducing factor buf-3 |
JPS62289600A (en) * | 1986-02-18 | 1987-12-16 | Kanegafuchi Chem Ind Co Ltd | Interferon-gamma and production thereof |
JPS6332484A (en) * | 1986-06-06 | 1988-02-12 | ジエネンテク,インコ−ポレイテツド | Propduction of biologically active plasminogen activated factor |
JPS6342688A (en) * | 1986-08-06 | 1988-02-23 | Chuzo Kishimoto | Recombinant bcdf |
JPS63196268A (en) * | 1987-02-10 | 1988-08-15 | Kanegafuchi Chem Ind Co Ltd | Transformant cell capable of being subjected to passage multiplication in serum-free medium, breeding thereof and production of protein by said cell |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170020486A (en) | 2014-06-26 | 2017-02-22 | 니폰 제온 가부시키가이샤 | Method for culturing adhesive cells, culture vessel, and method for producing protein |
WO2017104821A1 (en) | 2015-12-18 | 2017-06-22 | 日本ゼオン株式会社 | Method for preparing adherent-type cells acclimated to suspension culture, method for inducing epithelial-mesenchymal transition in adherent-type epithelial cells, and use for methods |
Also Published As
Publication number | Publication date |
---|---|
JP2576200B2 (en) | 1997-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Miura et al. | Molecular cloning and characterization of a novel glycoprotein, gp34, that is specifically induced by the human T-cell leukemia virus type I transactivator p40tax | |
JP5076084B2 (en) | Novel vector and expression cell line for mass production of recombinant protein, and method for producing recombinant protein using the same | |
JPH0753112B2 (en) | Method for producing γ-interferon | |
JP5819725B2 (en) | Recombinant fibrinogen | |
SA94150015B1 (en) | Production and purification of lymphokine | |
JPH07163368A (en) | Recombinant dna and transformant containing the same recombinant dna | |
CN114941011A (en) | Lentiviral vectors and uses thereof | |
CN105218682B (en) | The tumor therapeutic agent and its preparation method and purposes being transformed through IL-12/CD62L fusion protein | |
JPH04228066A (en) | Culture cell for expressing exogenote | |
US4808523A (en) | Constitutive production of human IFN-β1 by mammalian cells transformed by the IFN-β1 gene fused to an SV40 early promoter | |
JPH05503015A (en) | mammalian expression vector | |
RU2130493C1 (en) | Method of preparing protein exhibiting gm-csf activity of pimates | |
JP2009502117A (en) | Recombinant method for erythropoiesis stimulating protein production | |
JPH029388A (en) | Production of physiologically active protein | |
EP0162319A2 (en) | Method of joining heterologous genes | |
JPS6112288A (en) | Vector containing auxiliary dna for characteristic conversion of eykaryotic cell | |
CA1324097C (en) | Inducible heat shock and amplification system | |
JPH02200189A (en) | Gene coding polypeptide having interleukin 2 activity | |
JPH1029952A (en) | Composition for controlling human immunodeficiency virus infection and controlling thereby | |
JPH02485A (en) | Novel human interleukin-4, recombination vector for manifesting the same factor and transformant transformed by the same vector | |
JP2832358B2 (en) | Increasing monoclonal antibody sales | |
Dougherty et al. | Molecular mechanisms regulating TNF-α production by tumor-associated macrophages | |
JPH05276952A (en) | Human protein c expression vector | |
JPS6251991A (en) | Complex plasmid vector | |
EP2446034A1 (en) | Novel polynucleotide molecules for enhanced gene expression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RVTR | Cancellation due to determination of trial for invalidation |